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Background: Magnetic resonance (MR) quantitative T1ρ imaging has been increasingly used to detect the 
early stages of osteoarthritis. The small volume and curved surface of articular cartilage necessitate imaging 
with high in-plane resolution and thin slices for accurate T1ρ measurement. Compared with 2D T1ρ mapping, 
3D T1ρ mapping is free from artifacts caused by slice cross-talk and has a thinner slice thickness and full 
volume coverage. However, this technique needs to acquire multiple T1ρ-weighted images with different 
spin-lock times, which results in a very long scan duration. It is highly expected that the scan time can be 
reduced in 3D T1ρ mapping without compromising the T1ρ quantification accuracy and precision.
Methods: To accelerate the acquisition of 3D T1ρ mapping without compromising the T1ρ quantification 
accuracy and precision, a signal-compensated robust tensor principal component analysis method was 
proposed in this paper. The 3D T1ρ-weighted images compensated at different spin-lock times were 
decomposed as a low-rank high-order tensor plus a sparse component. Poisson-disk random undersampling 
patterns were applied to k-space data in the phase- and partition-encoding directions in both retrospective 
and prospective experiments. Five volunteers were involved in this study. The fully sampled k-space 
data acquired from 3 volunteers were retrospectively undersampled at R=5.2, 7.7, and 9.7, respectively. 
Reference values were obtained from the fully sampled data. Prospectively undersampled data for R=5 and 
R=7 were acquired from 2 volunteers. Bland-Altman analyses were used to assess the agreement between 
the accelerated and reference T1ρ measurements. The reconstruction performance was evaluated using the 
normalized root mean square error and the median of the normalized absolute deviation (MNAD) of the 
reconstructed T1ρ-weighted images and the corresponding T1ρ maps.
Results: T1ρ parameter maps were successfully estimated from T1ρ-weighted images reconstructed using 
the proposed method for all accelerations. The accelerated T1ρ measurements and reference values were in 
good agreement for R=5.2 (T1ρ: 40.4±1.4 ms), R=7.7 (T1ρ: 40.4±2.1 ms), and R=9.7 (T1ρ: 40.9±2.2 ms) in the 
Bland-Altman analyses. The T1ρ parameter maps reconstructed from the prospectively undersampled data 
also showed promising image quality using the proposed method.
Conclusions: The proposed method achieves the 3D T1ρ mapping of in vivo knee cartilage in eight minutes 
using a signal-compensated robust tensor principal component analysis method in image reconstruction.
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Introduction

Osteoarthritis (OA) is an important public health problem 
(1,2). Cartilage degeneration due to OA changes the 
functional properties of cartilage and can eventually cause 
cartilage destruction (3). Conventional magnetic resonance 
imaging (MRI) provides sufficient tissue contrast to detect 
morphological changes in cartilage (4) but cannot measure 
the physiological changes in cartilage that occur during the 
earliest stages of OA development (2,5). Recent studies have 
shown that quantitative MRI has the potential to serve as a 
reproducible, noninvasive biomarker to identify subjects at 
risk for OA (6,7).

Magnetic spin-lattice relaxation in the rotating frame 
(T1ρ) has received considerable interest in the early detection 
of cartilage degeneration (8,9). It can probe the slow motion 
of the macromolecules in the articular cartilage extracellular 
matrix (ECM). Changes to the ECM, such as proteoglycan 
loss, can be reflected in the T1ρ measurements (10). In vivo 
studies have shown that the cartilage T1ρ value increased in 
OA subjects compared with controls (11-13). Furthermore, 
elevated T1ρ was observed in subcompartments in OA 
subjects where no obvious morphological changes were 
observed, suggesting the capability of T1ρ in detecting very 
early biochemical changes within the cartilage matrix (12).

Quantitative T1ρ imaging suffers from a long scan time 
since multiple T1ρ-weighted images with different spin-lock 
times (TSLs) must be acquired to calculate the T1ρ values. 
Relative to 2D T1ρ mapping, 3D T1ρ mapping is more 
suitable for cartilage imaging because of the small size of 
the articular cartilage. However, using 3D imaging further 
prolongs the scan time and thus limits the widespread 
clinical use of this technique. Therefore, it is necessary 
to accelerate the data acquisition for 3D T1ρ mapping of 
cartilage.

Several methods based on compressed sensing (CS) have 
been proposed for 3D T1ρ mapping acceleration (14-19).  
Due to the high compressibility of the image in the 
parametric direction, CS is especially suitable for T1ρ 
mapping. Pandit et al. combined CS with data-driven 

parallel imaging (PI) to accelerate cartilage T1ρ mapping 
and successfully implemented the data acquisition process 
on a clinical MRI scanner. The scan time was reduced to 
one-third that associated with full sample acquisition (14).  
Zhou et al. reconstructed the undersampled T1ρ mapping 
data using the combined CS and PI method and achieved 
acceleration factors of 3 and 3.5. However, this technique 
has been applied only in a 2D version of the reconstruction 
scheme (18). Zibetti et al. compared the results with 
reconstructions of 3D T1ρ images based on CS using 
different regularization functions and achieved a very high 
acceleration factor of 10 for both Cartesian and radial 
acquisitions (16,19). They recommended the low-rank plus 
sparse matrix decomposition method (L+S) (20) for the 
Cartesian acquisition, one of the most popular methods due 
to its excellent reconstruction performance (16). Although 
these studies showed promising results using retrospectively 
undersampled data, no prospective undersampling 
reconstruction was shown.

Recently we developed an accelerated 2D T1ρ mapping 
method, which is referred to as SCOPE, and applied it 
for 2D T1ρ mapping of brain (21). A signal compensation 
strategy is applied in SCOPE to enhance the low rankness 
of the T1ρ-weighted image matrix and reconstruct images 
using the L+S method (20) followed by the inverse 
compensation. SCOPE needs to vectorize 2D images to 
construct the image matrix. The vectorization step leads to 
the loss of spatial information and may cause reconstruction 
degradation (22). When extending SCOPE to 3D T1ρ 
mapping, high-dimensional data can be treated as a tensor 
to avoid vectorizing the 3D images. This tensor-based 
representation has been successfully applied in dynamic 
MRI (22,23); it utilizes the spatial coherence of the image 
and, hence, can improve the reconstruction performance.

In this study, we investigated the feasibility of a signal-
compensated robust tensor principal component analysis 
(TenSCOPE) method for accelerated 3D cartilage T1ρ 

mapping. In this framework, we decompose the 3D T1ρ-
weighted images compensated at different TSLs as a low-
rank high-order tensor plus sparse component. Both 
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retrospective and prospective experiments were performed 
to assess the performance of TenSCOPE.

Methods

Robust tensor principal component analysis (RTPCA) 
model

The T1ρ-weighted image matrix can be decomposed as 
a superposition of a sparse component S and a low-rank 
tensor L. The corresponding optimization model is defined 
using the following formula:

 
{ } ( ) ( ) ( ), ,min ank s.t. ,  + = + = +            S      [1]

w he re   1 2 3 TSLN N N N× × ×∈ R  i s  t he  i mag e  s e r i e s  to  be 
r e c o n s t r u c t e d  a n d   1 2 3 TSLN N N N Nc× × × ×∈ R  r e p r e s e n t s 
the acquired k-space data. N1, N2, and N3 represent the 
number of frequency- and phase-encoding lines in kx, 
ky, and kz, respectively. NTSL is the total number of TSLs, 

and Nc represents the channel number. S denotes the 
sparse representation operator. A represents the multicoil 
encoding operator which performs the multiplication with 
coil sensitivities followed by the undersampled Fourier 
transform (20,24). E is the measurement error.

The rank of the tensor L needs to be minimized. 
However, unlike matrix rank, the definition of tensor rank 
depends on the decomposition methods, which is not unique 
(25,26). Generally, a tensor can be decomposed as the 
sum of several rank-1 tensors. Tensor rank is based on the 
number of rank-1 tensors. We used Tucker decomposition 
in this work as a generalization of the matrix singular-value 
decomposition (SVD) in the high-dimensional space that 
is computationally tractable and flexible (27). Specifically, 
this process decomposes a tensor into the multiplication 
between a core tensor and matrices along each mode, which 
is similar to the SVD of matrices, as shown in Figure 1A. 
A demonstration of Tucker decomposition is shown in 
Algorithm 1. The rank of the tensor in mode i of unfolding 
is defined as:

Figure 1 Flow diagram of the robust tensor principal component analysis (RTPCA) model and  the TenSCOPE method for image 
reconstruction. (A) The RTPCA model. (B) The TenSCOPE method for image reconstruction.Note that the 4-way tensor and Tucker 
decompositions are shown for illustration purposes only. 
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 ( ) ( )i irank rank=   [2]

where Li represents the mode-i matricization of tensor L, 
which can be defined as Li=unfold(L,i) (26). The i-rank 
can be regarded as a generalization of the SVD rank (for 
a matrix, these two are equivalent). With this definition, 
a low rank tensor is a tensor with all low rank unfoldings. 
Therefore, to estimate low-rank tensors, the multi-
dimensional tensor trace norm of an i-order tensor is 
calculated using the weighted sum of the nuclear norms of 
the unfoldings in each mode:

 
* 1 *

 n
i ii
λ

=
=∑   [3]

where λ = [λ1,λ2,…,λn]
T represents the rank regularization 

parameters of different unfolding matrices for the Tucker 
nuclear norm. With the above tensor rank definition, Eq. [1] 
can be reformed as:

 
{ } ( ) ( ), , *

min s.t. ,  + = + = +           S  [4]

Algorithm 1 Tucker Decomposition Algorithm for TenSCOPE 
reconstruction
INPUT: 4-way data tensor L with dimensions (N1,N2,N3,NTSL) and 
the rank regularization parameter λ=[λ1,λ2,λ3,λ4]
ALGORITHM:
(1) Unfold the tensor L along its single modes:
L1: which reshapes L into a N1×(N2N3NTSL) complex matrix
L2: which reshapes L into a N2×(N1N3NTSL) complex matrix
L3: which reshapes L into a N3×(N1N2NTSL) complex matrix
L4: which reshapes L into a NTSL×(N1N2N3) complex matrix

(2) Compute the complex SVD of Ln and obtain the orthogonal 
matrices U(1), U(2), U(3), and U(4) from the nth-mode signal subspace

(3) Compute the complex core tensor G related by

 
( ) ( ) ( ) ( )
H H H H

1 2 3 41 2 3 4 U U U U= × × × × 

which is equivalent to its unfolding forms:
 

( ) ( ) ( )
H

n nn i jU U U with1 n 4 and i j n = ⊗ ≤ ≤ ≠ ≠  

where ⊗ denotes the Kronecker product 
(4) Compute the high-order singular value truncation  

(hard-thresholding):
rank(Gn)=λn with 1≤n≤4

(5) Construct back the filtered tensor  ( )
den
n :

 
( ) ( ) ( ) ( )

H
den

 n n i jU U U with1 n 4 and i j n = ⊗ ≤ ≤ ≠ ≠  

OUTPUT: The denoised tensor Lden is obtained by folding.

TenSCOPE model

In TenSCOPE, a signal compensation strategy is applied 

by multiplying the T1ρ-weighted image signal by the 
compensation coefficient. The compensation coefficient can 
be calculated via the inversion of the T1ρ decay using the 
following formula:

 ( )
TSL

k k 1ρ k=1,2, ,N
Coef =1/exp -TSL / T



 [5]

where TSLk represents the spin-lock duration for the kth 
T1ρ-weighted image, and NTSL is the total TSL number. 
The compensated T1ρ-weighted images are then obtained 
with the RTPCA model. The optimization model of the 
TenSCOPE method is defined as follows:

 
{ } ( ) ( ) ( ), , *

min s.t. C ,+ = + = +           S  [6]

where C(∙) denotes the pixelwise signal compensation operator 
using the above compensation coefficients Coefk  (21).  
The signal intensity of the image matrix in the TSL 
direction should be the same after applying the signal 
compensation, and the rank of L will then decrease.

The solution strategy for Eq. [6] is summarized in 
Algorithm 2 and depicted in Figure 1B. First, the T1ρ-
weighted image series to be reconstructed is involved 
in signal compensation. Low-resolution T1ρ maps are 
reconstructed using the fully sampled k-space center to 
estimate the initial compensation coefficient. Specifically, 
the compensation was performed by multiplying the original 
image signal by the inversion of the monoexponential decay 
at each voxel. Then, the image series represented by a 4-way 
tensor X were decomposed by a low-rank tensor L and a 
sparse component S. L and S were obtained using Tucker 
decomposition [denoted by T(∙)] and soft thresholding 
[denoted by D(∙)], respectively, to reconstruct the T1ρ-
weighted images. Soft thresholding is defined as follows:

 ( ) ( )( )( )
( ) ( )

i fold unfold , i

p  0,
p

D ST

ST p max p v

 =



= −


 

 [7]

where unfold(S,i) represents the mode-i matricization of 
tensor S; fold(·) represents the inverse process, which folds 
a matrix to a tensor; p is an element of the image matrix; 
v represents the threshold. In the j-th iteration, the data 
consistency is enforced by Lj+Sj−C(A*(AC−1(Lj+Sj)−Y)), 
where C−1(·) represents the division of the image signal by 
the compensation coefficient in Eq. [5] pixel by pixel. A* is 
the adjoint operation of A, which performs the backward 
function (21,24). The reconstructed T1ρ-weighted images are 
then used to update the T1ρ maps with the exponential model, 
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and are applied to update the compensation coefficient. The 
image reconstruction and compensation coefficient updating 
steps are repeated alternately until the algorithm convergence 
is reached. The stopping criterion in this method is defined as 
the point when the algorithm reaches the maximum number 
of iterations or at which the relative change in the solutions 
in two consecutive iterations is less than a predefined value. 

Algorithm 2 The pseudocode of the proposed TenSCOPE 
algorithm
INPUTS: A: encoding operator
                 Y: the undersampled k-space data
            TSLk: the kth spin-lock duration
OUTPUTS: X: the reconstructed image series

1. Initialize X0=A*(Y) and the initial T1ρ map  0
1ρT

2. For the outer iteration i = 1:I, perform the following steps until 
convergence
[1] Calculate  ( )

TSL

i i-1
k 1ρ k=1,2, ,N

Coef =1/exp -TSL / T


[2]  ( )i 1
0  i C −=   with Coefi

[3] Initialize S0=0

[4] For the inner iteration j = 1:J, perform the following steps

a. update Lj by Tucker decomposition,  ( )i
j j 1 j 1 L S− −= − 

b. update Sj by soft thresholding,  ( )i
j j 1 j −= −   

c. Data consistency  ( )i * 1
j j j j jC( C ( ))−= + − + −       

[5] End the inner iteration

[6]  ( )i 1 i
JC−= 

[7] Update  i
1ρT

T1ρ map estimation

T1ρ maps are obtained by fitting the reconstructed T1ρ-
weighted images with different TSLs pixel by pixel:

 ( )
TSL

k 0 k 1ρ k=1,2, ,N
M =M exp -TSL / T



 [8]

where M0 is the baseline image intensity without applying 
a spin-lock pulse and Mk is the signal intensity for the kth 
TSL image. During reconstruction, a log-based linear 
fitting method was used to update the T1ρ map and reduce 
the calculation complexity (21). The final T1ρ map was 
estimated using the nonlinear least-squares fitting method 
with the Levenberg-Marquardt algorithm from the 
reconstructed T1ρ-weighted images.

Data acquisition and reconstruction

All the MR scans were performed on a 3T scanner (uMR 

790, United Imaging Healthcare, Shanghai, China) using 
a commercial 12-channel phased-array knee coil. T1ρ-
weighted image datasets of the knee were acquired using 
a 3D modulated flip angle technique in refocused imaging 
with an extended echo train (MATRIX) sequence and a 
self-compensated paired spin-lock preparation pulse (28). 
The spin-lock frequency was fixed at 500 Hz (B1 of spin-
lock pulse =11.74 µT). Three healthy volunteers (1 male, 
age: 26 years old; 2 females, age: 45±15 years old) were 
recruited for T1ρ scanning. The imaging parameters were: 
TE/TR =8.96/2,000 ms, matrix size: 256×146×124, pixel 
size = 0.98×0.98×1 mm3, echo train length =60,echo spacing 
=4.48 ms, and TSLs =5, 10, 20, 40, and 60 ms. The scan 
time for the fully sampled dataset with elliptical scanning 
was 39 minutes and 30 seconds. The fully sampled k-space 
datasets were retrospectively undersampled using Poisson-
disk random (15,18) patterns with R=5.2, 7.7, and 9.7. The 
sampling masks for each TSL are different. Figures 2 and 
3 show the applied undersampling pattern of ky-kz for 
R=5.2 and R=9.7. Data were fully sampled in the frequency 
encoding direction. To estimate the coil sensitivity map, the 
central k-space area was fully sampled with size =16×16 for 
R=5.2 and R=7.7 and size =12×12 for R=9.7. Furthermore, 
the T1ρ mapping data were prospectively undersampled 
using the Poisson-disk randomly undersampled scheme with 
net acceleration factors R=5 and R=7. Two volunteers (one 
male, 29 years old; one female, 30 years old) were involved 
in the prospectively study. The imaging parameters were 
the same as those used in the retrospective experiment. 
The scan time was 10 minutes and 10 seconds for R=5 and  
7 minutes and 20 seconds for R=7. Due to the time limit, the 
reference scan was acquired using the PI with accelerating 
factor R=3. The reference images were then reconstructed 
using the ESPIRIT method (29) from the BART toolbox 
(download link: https://people.eecs.berkeley.edu/~mlustig/
Software.html). The scan time for the reference scan was  
18 minutes and 50 seconds.

The TenSCOPE method was applied to reconstruct 
the 3D T1ρ-weighted image series. In the retrospective 
reconstruction, the iteration numbers of the outer loop 
were 4, 5, and 6 for R=5.2, 7.7, and 9.7 respectively. For 
the inner loop, the corresponding iteration numbers were 
16, 18, and 20. In the prospective reconstruction, the 
iteration numbers for R=5 and 7 were 4 and 5 for the outer 
loop and 16 and 20 for the inner loop, respectively. All the 
tensor transforms and decompositions were implemented 
using the MATLAB tensor toolbox by Brett et al. from 
Sandia National Laboratories (download link: http://www.

https://people.eecs.berkeley.edu/~mlustig/Software.html
https://people.eecs.berkeley.edu/~mlustig/Software.html
http://www.tensortoolbox.org/


3381Quantitative Imaging in Medicine and Surgery, Vol 11, No 8 August 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(8):3376-3391 | http://dx.doi.org/10.21037/qims-20-790

Figure 2 The undersampling pattern and estimated T1ρ parameter maps for selected cartilage ROIs. (A) The 2D Poisson-disk random 
undersampling pattern in ky-kz for a net acceleration factor of R=5.2. (B) The estimated T1ρ parameter maps for selected cartilage ROIs 
overlaid on the reconstructed T1ρ-weighted images at TSL =5 ms for R=5.2, 7.7, and 9.7 using the TenSCOPE, L+S, and LLR methods, 
respectively, for slice 49 of subject 1. The reference image and T1ρ parameter map were obtained from the fully sampled k-space data.

tensortoolbox.org/). In this study, 4 parameters needed to be 
tuned in the Tucker decomposition, and the reconstruction 
quality depends on 3 rank constraint parameters that 
control the complexity of spatial redundancy and 1 rank 
constraint parameter that controls the complexity of 
temporal redundancy in Tucker decomposition. The spatial 
redundancy parameters are chosen empirically as 0.45× the 
number of frequency-encoding lines, 0.65× the number of 
phase-encoding lines, and 0.65× the number of partition-
encoding lines (30). Since signal compensation enhances the 
low rankness of the image matrix in the parameter direction, 
the temporal redundancy parameter is set as 1. The 
threshold in soft thresholding for different TSLs was set as 
[0.02, 0.02, 0.025, 0.025, 0.03]. For comparison, the L+S 
method (20) and the locally low-rank method (LLR) (31) 
were also applied to reconstruct the undersampled k-space 
data. In the L+S method, the singular-value thresholding 
and soft-thresholding algorithms (20) were used to solve for 
the L component and S component, respectively. The ratio 
for singular-value thresholding was set as 0.02, and the ratio 

for soft thresholding was set as [0.02, 0.025, 0.025, 0.035, 
0.035] to achieve optimal performance. In the LLR method, 
the iteration number was set as 40, 50, and 60 for R=5.2, 7.7, 
and 9.7, respectively. The block size was set as 8×8, and the 
threshold for the singular value decomposition was initially 
set as 0.03 of the largest singular value, reduced to 0.01 
after 10 iterations, and finally reduced to 0.005 in the final 
10 iterations. 

Assessment

The quality of the reconstructed T1ρ-weighted images was 
assessed based on the normalized root mean square error 
(nRMSE) using the following formula:

 2 2
est ref ref2 2

nRMSE= x x x-  [9]

where xest is the reconstructed image from the undersampled 
k-space data , xref denotes the reference image from the fully 
sampled data.
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The T1ρ quantification was assessed using the median of 
the normalized absolute deviation (MNAD) (16) and the 
mean T1ρ values (18) from the accelerated reconstruction 
for all the pixels in the selected cartilage regions of interest 
(ROIs) from all the acquisitions. In addition, three ROIs in 
the cartilage region were manually selected from four slices 
of each dataset (a total of 36 ROIs), and the mean T1ρ values 
were calculated for each ROI. Cartilage was segmented 
manually according to Li et al.’s work (12). Linear 
regression and Bland-Altman analysis were used to assess 
the agreement of the T1ρ parameter between the accelerated 
reconstructions and the reference.

The MNAD was defined as:
 ( ) ( )

( ) ( )( )
ref

m ROI
ref

p m -p m
MNAD(ROI)=Median

p m +p m 2∈

 
 
 
 

 [10]

where pref(m) represents the reference parameter from fully 
sampled data; p(m) represents the T1ρ parameter estimated 
from the reconstructed images of the undersampled data. 
An MNAD of 0.1 corresponds to a median deviation of 
10% from the estimated parameters compared with the 
reference.

The mean T1ρ value of the selected ROI compartment 
was defined as follows:

 (n)
1ρ 1ρ1

1T = T
N

N

n=∑  [11]

where N represents the number of pixels in the selected 
ROI compartment,  1ρT  represents the mean T1ρ value of 
the selected ROI compartment, and  (n)

1ρ T  represents the T1ρ 
value of the nth pixel of the selected ROI compartment.

In the prospective experiments, the T1ρ values of the 
selected ROIs in cartilage regions from the 2 subjects were 
also calculated and then compared with the reference values 
by the Wilcoxon signed-rank test. Statistical significance 
was set to P<0.05.

All the image reconstructions and analyses were 
performed in MATLAB 2017b (The MathWorks, Natick, 
MA, USA) on an HP workstation with 160 GB DDR4 
RAM and 32 cores (two 16-core Intel Xeon E5-2660 2.6 
GHz processors).

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the Ethics Committee at the Shenzhen 
Institute of Advanced Technology, Chinese Academy of 
Sciences (Ethics Committee approval number: SIAT-
IRB-200315-H0455), and written informed consent was 
obtained from all patients.

Results

The T1ρ-weighted images (at TSL =5 ms) from two 
volunteers using the TenSCOPE, L+S and LLR methods 
are shown in Figures 2 and 3. The estimated T1ρ maps in 
selected ROIs are overlaid on the reconstructed images. The 
T1ρ-weighted images reconstructed using the LLR method 
are more blurred than those using the other two methods, 
showing obvious smoothing artifacts. By adding the sparse 
component to the low-rank-based method, i.e., using the 
L+S method, the smoothing artifacts are alleviated. The 
T1ρ-weighted images reconstructed using the TenSCOPE 
method show comparable image quality to the reference 
and achieve lower nRMSEs than images reconstructed 
using the L+S method for all acceleration factors. The 
T1ρ maps estimated from the TenSCOPE reconstructions 
show good agreement with the reference estimated from 
the fully sampled acquisition. Figure 4 shows the nRMSEs 
and MNADs of the selected ROIs (shown in Figure 5) from 
the accelerated reconstructions of the two datasets. The 
TenSCOPE reconstructions are more accurate than those 
obtained using the L+S and LLR methods, with the lowest 
nRMSE and MNAD values obtained for all acceleration 
factors. TenSCOPE improves the quality of the T1ρ maps 
in terms of the MNAD relative to that of the L+S method, 
especially for high-acceleration cases. 

Figure 6 shows the scatter plots and Bland-Altman 
plots of the mean T1ρ values of ROIs using TenSCOPE 
compared with a reference. In the linear regression 
analyses, the estimated T1ρ values using TenSCOPE 
show good agreement with the reference (R2=0.9554 for 
5.2× acceleration, R2=0.9213 for 7.7× acceleration, and 
R2=0.9209 for 9.7× acceleration). In the Bland-Altman 
analyses, the T1ρ values agree well with the reference values 
for R=5.2 (T1ρ: mean ± std: 40.4±1.4 ms, bias: 0.3 ms,  
95% CI: −2.5, 3.1), R=7.7 (T1ρ: mean ± std: 40.4± 2.1 ms, 
bias: 1.5 ms, 95% CI: −2.6, 5.6), and R=9.7 (T1ρ: mean 
± std: 40.9±2.2 ms, bias: 1.5 ms, 95% CI: −3.0, 5.9). No 
statistically significant differences were observed between 
the T1ρ values measured across the subjects with different 
acceleration factors and the fully sampled reference.

Figure 7 shows the T1ρ-weighted images obtained from 
the prospectively undersampled data using the TenSCOPE 
method for R=5 and R=7. Reference images are also shown 
for comparison. Figure 8 shows the corresponding T1ρ 
parameter maps estimated from the reconstructed images. 
The T1ρ maps in the selected ROIs of cartilage regions were 
overlaid on the reconstructed T1ρ-weighted images at TSL 
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Figure 3 The undersampling pattern and estimated T1ρ parameter maps for selected cartilage ROIs. (A) The 2D Poisson-disk random 
undersampling patterns in ky-kz for a net acceleration factor R=9.7. (B) The estimated T1ρ parameter maps for selected cartilage ROIs 
overlaid on the reconstructed T1ρ-weighted images at TSL =5 ms for R=5.2, 7.7, and 9.7 using the TenSCOPE, L+S, and LLR methods, 
respectively, for slice 44 of subject 2. The reference image and T1ρ parameter map were obtained from the fully sampled k-space data. LLR, 
locally low-rank method; TSL, spin-lock time; ROI, region of interest.

Figure 4 nRMSEs of the reconstructed images (A,B) and MNADs of the estimated T1ρ parameter maps (C,D) for selected ROIs using the 
TenSCOPE, L+S and LLR methods at R=5.2, 7.7 and 9.7, respectively. MNAD, median of the normalized absolute deviation; ROI, region of interest.
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Figure 5 Selected ROIs of cartilage used for the nRMSE and MNAD evaluations in Figure 4. The numbers of voxels included in ROI 1 and 
ROI 2 are 216 and 305, respectively. MNAD, median of the normalized absolute deviation; ROI, region of interest.

Figure 6 Linear regression (A,B,C) and Bland-Altman plots of the accelerated T1ρ parameters (D,E,F) with R=5.2, 7.7, and 9.7 relative 
to the T1ρ parameters from the fully sampled reference. The solid and dashed lines in the Bland-Altman plots represent the bias and ±2 
standard deviation limits, respectively.

=5 ms. No obvious blurring artifacts were observed in the 
T1ρ-weighted images and T1ρ maps reconstructed using the 
TenSCOPE method for R=5 and R=7. The results of T1ρ 
values of the selected ROIs in cartilage regions shown in 
Figure 8 and the Wilcoxon signed-rank test are shown in 
Table 1. There were no statistically significant differences 
between the T1ρ values measured by TenSCOPE for either 
accelerated scans (R=5, 7) or the reference values for the 
selected ROIs (both P>0.05). 

Discussion

In this work, we developed a novel accelerated 3D T1ρ 
mapping of knee cartilage method to obtain the T1ρ 
parameters from highly undersampled data with the 
acceleration factor up to 9.7. The signal-compensated 
robust tensor principal component analysis model for image 
reconstruction displayed excellent performance. According 
to our results, the reconstructed T1ρ-weighted images using 
TenSCOPE showed fewer blurring artifacts and achieved 
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Figure 7 The reconstructed images at TSL=5 ms from the prospectively undersampled datasets of two subjects (A, subject 1, B, subject 2) 
for R=5 and R=7 using TenSCOPE. The reference images were obtained by applying the ESPIRIT method to the undersampled data with 
R=3. TSL, spin-lock time.

Figure 8 T1ρ maps estimated from the prospectively undersampled datasets of two subjects (A, subject 1, B, subject 2) for R=5 and R=7 using 
TenSCOPE. T1ρ parameter maps for selected cartilage ROIs are overlaid on the reconstructed T1ρ-weighted images at TSL =5 ms. The reference 
maps were obtained by applying the ESPIRIT method to the undersampled data with R=3. TSL, spin-lock time; ROI, region of interest.
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lower reconstruction errors than those obtained with other 
methods, i.e., the LLR method. Even at a high acceleration 
factor, the TenSCOPE method still maintains reasonable 
image quality and accurate T1ρ maps. The resulting T1ρ 
estimations show good agreement with the reference 
derived from the fully sampled data.

CS has been successful for accelerating T1ρ mapping 
of knee cartilage. In Pandit et al. (14), a method which 
combined CS and autocalibrating reconstruction for 
Cartesian sampling (ARC) was applied to accelerate T1ρ 
mapping of knee cartilage with acceleration factors up to 2.3. 
T1ρ maps obtained from the retrospective reconstructions 
using this method were shown with errors less than 5%. 
In Zhou et al. (18), a combined reconstruction with locally 
adaptive iterative support detection (k-t LAISD) and PI 
was used to accelerate T1ρ mapping of knee cartilage. The 
T1ρ quantification results showed high fidelity between 
accelerated and fully sampled data with achieved acceleration 
factors of 3 and 3.5, due to the local adaptability of the 
regularization and joint estimation of the coil sensitivities. 
In the above two studies, no prospective undersampling 
was implemented and the sparse prior was mainly used. 
In Zibetti et al. (16), CS reconstruction using 12 different 
sparsifying transforms was compared in reducing the scan 
time of T1ρ mapping for cartilage, and the low rank with 
spatial finite difference (L+S SFD) transform is suggested 
as one of the most suitable sparsifying transforms. In this 
work, we combined low-rank and sparse priors in the CS 
reconstruction and applied a signal-compensated robust 
tensor principal component analysis model to reconstruct 
3D images from undersampled data.  We provide 
comparable or better results compared with state-of-the-art 
CS methods. The prospective reconstructions showed that 
the proposed TenSCOPE method can achieve comparable 
performance to the reference scan using PI.

In our previous work (21), we showed that obvious 
blur artifacts were observed in the reconstructions using 
the low-rank-based methods such as LLR. By adding the 

sparse component to the low-rank method, the smoothing 
artifacts were alleviated. The same conclusion can be drawn 
from Figures 2 and 3. Similar to the SCOPE method in 
our previous work, the sparse component in the proposed 
TenSCOPE method is the differentiation between the 
acquired images and the exponential relaxation model 
resulting from hardware imperfections of the MR scanner, 
noise, and other factors. The strength of the differentiation 
varies according to TSL, and it may be better to use 
different thresholds for the images at different TSLs. In 
previous studies (20,32), L+S decomposition was applied 
to dynamic imaging or multispectral imaging, in which the 
data did not fit a low-rank only component and therefore 
the sparse component contains significant energy. L+S 
decomposition was applied in static imaging in this study, 
but we found that some image details can still be observed 
in the sparse component, especially in the cartilage region. 
Therefore, although the energy (about 4.31% in average for 
our knee data) in the sparse component was relatively small, 
it could not be neglected in the reconstruction.

In our recent work (33), we applied the SCOPE method 
to reconstruct the T1ρ-weighted images slice-by-slice in a 
2D reconstruction version and showed the superiority of 
this method over the L+S method. In this study, we used a 
low-rank tensor to replace the low-rank matrix to capture 
the data correlation in multiple dimensions beyond the 
TSL direction. To validate the effectiveness of tensors in 
the reconstruction, we also compared TenSCOPE with 
SCOPE. Figure 9 shows the reconstruction results using 
the proposed TenSCOPE and SCOPE methods. It can be 
observed that TenSCOPE improves the quality of the T1ρ-
weighthed images and T1ρ maps in terms of the nRMSE and 
MNAD relative to that of the SCOPE method, with lower 
nRMSEs and MNADs than SCOPE for all the acceleration 
factors.

In the proposed TenSCOPE method, the initial signal 
compensation coefficient was calculated from the center 
of fully sampled k-space data. The performance may be 
improved by adding a pre-reconstruction step; notably, 
the missing k-space data are interpolated using a TV-
regularized estimate (34) prior to estimating the initial 
signal compensation coefficient. However, no such pre-
reconstruction is necessary for the proposed method since 
the coefficient is updated iteratively in the reconstruction 
step. Four parameters, including the outer iteration 
number, inner iteration number, rank parameter for Tucker 
decomposition, and threshold for the sparse component, 
need to be carefully selected in the optimization process. 

Table 1 Average T1ρ values of selected ROIs of cartilage regions 
in Figure 8 obtained from reference scans and the accelerated  
acquisition with R=5 and 7, respectively, as well as the corresponding  
P value

Reference R=5 R=7

T1ρ (ms) 54.0±2.9 53.9±3.6 53.8±4.0

P value − 0.16 0.09

ROI, region of interest.
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Figure 9 The estimated T1ρ parameter maps for selected cartilage ROIs and the nRMSE curves of the selected ROI in the reconstructed 
T1ρ-weighted images. (A) The estimated T1ρ parameter maps for selected cartilage ROIs overlaid on the reconstructed T1ρ-weighted images 
at TSL =5 ms for R=5.2, 7.7, and 9.7 using the TenSCOPE and SCOPE methods for subject 3. (B) The nRMSE curves of the selected ROI 
in the reconstructed T1ρ-weighted images using the TenSCOPE and SCOPE methods for all acceleration factors and the MNAD curves of 
the selected ROI in the reconstructed T1ρ maps using the above two methods for all acceleration factors. TSL, spin-lock time; ROI, region 
of interest; MNAD, median of the normalized absolute deviation.

All the iteration numbers and the thresholds for the sparse 
component were selected empirically.

To evaluate the convergence of the proposed method, we 
calculated the relative change of image norm between two 
consecutive iterations at different undersampling levels with 
R=5.2, R=7.7 and R=9.7. The relative change was defined as

 ( ) ( )iter iter 1 iter 1norm I I / norm I− −−   [12]

where Iiter represents the reconstructed image in the iter-th 
iteration. The iteration number includes both the inner and 
outer iterations. Figure 10 shows the relative change for the 
reconstructed image during each iteration. It demonstrates 
that the proposed algorithm converges with different 
undersampling levels as long as the iteration number is 
large enough. In this work, the algorithm iterates until the 
algorithm reaches the maximum number of iterations or the 
relative change in the solution is less than 5×10−4. 

The rank parameter for Tucker decomposition is an 
important parameter in the TenSCOPE method. Figure 11  

shows an example of the reconstructed T1ρ-weighted 
images with different rank parameters used in the Tucker 
decomposition at TSL =5 ms for one slice of the dataset 
with R=7.7. While an insufficient tensor rank may lead to 
blurring artifacts or bias the T1ρ measurements, high values 
can lead to limited noise reduction. Furthermore, the rank 
needs to be prespecified before running TenSCOPE. In this 
study, the rank parameter was selected empirically (30). An 
optimized rank parameter may help improve reconstruction 
performance (35). Regarding the regularization parameter 
for the sparse component, there is a trade-off between the 
convergence speed and the image quality. The algorithm 
converges more slowly using a small parameter, and more 
image details will be lost if a larger parameter is used, while 
the noise will not be sufficiently removed using a smaller 
parameter (Figure 12).

Since the T1ρ map was updated in each outer iteration, 
Tucker decomposition was performed in each iteration, 
which further increased the computational burden of the 
proposed method. In our current implementation, the 
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computation was approximately 3 hours for each iteration 
for a data set size of 256 (frequency encoding) ×146 (phase 
encoding) ×124 (slices) ×12 (channel) ×5 (TSL). To reduce 
the reconstruction time, we applied parallel computing in 
MATLAB in the process of the T1ρ map estimation. The 
number of workers used in parallel computing is 30, and the 

reconstruction times for R=5.2, 7.7, and 9.7 were 4.7, 6.8 
and 8.5 hours, respectively. The reconstruction time of the 
TenSCOPE was longer than that of the L+S method and 
comparable to that of the LLR method. Taking R=5 as an 
example, the times required for L+S and LLR were 4.3 and 
4.75 hours, respectively. The computational speed can be 
further improved by using a C implementation or graphical 
processing units (GPUs) instead of MATLAB.

PI can be integrated with CS-based methods to further 
accelerate the acquisition. In most CS-based fast MR 
parameter mapping methods, the fully sampled k-space 
center prolongs the acquisition time since multiple T1ρ-
weighted images need to be acquired, especially in 3D 
T1ρ mapping applications. Therefore, PI can be used to 
undersample the k-space center to further reduce the 
acquisition time (36). For reconstruction, the undersampled 
k-space center can be first reconstructed with Generalized 
Autocalibrating Partial Parallel Acquisition (GRAPPA), 
and the proposed TenSCOPE method can then be used to 
reconstruct the T1ρ-weighted images.

This work lacks longitudinal reproducibility and 
variations in cartilage T1ρ studies. The longitudinal 
reproducibility and variations in cartilage T1ρ are necessary 

Figure 11 The reconstructed T1ρ-weighted images with different rank parameters (λ) used in the Tucker decomposition at TSL =5 ms for 
one slice of the dataset with R=7.7. TSL, spin-lock time.

Figure 10 The relative change in TenSCOPE between the two 
consecutive iterations for the dataset of one volunteer with R=5.2, 
7.7 and 9.7.
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in studies with clinical applications, such as cartilage 
degeneration evaluations. In future studies, longitudinal 
reproducibility assessments will be performed for clinical 
studies by applying the TenSCOPE method to detect early 
cartilage damage and degeneration in patients with OA, 
acute joint injury or cartilage damage.

Conclusions

We introduced a TenSCOPE method that uses a signal-
compensated robust tensor principal component analysis 
model to reconstruct 3D images from undersampled data. 
The proposed method yields reasonable parameter estimates 
at high acceleration factors for the 3D T1ρ mapping of in 
vivo knee cartilage, thereby reducing the scan time.
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