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Abstract: Computer vision and artificial intelligence applications in medicine are becoming increasingly 
important day by day, especially in the field of image technology. In this paper we cover different artificial 
intelligence advances that tackle some of the most important worldwide medical problems such as cardiology, 
cancer, dermatology, neurodegenerative disorders, respiratory problems, and gastroenterology. We show how 
both areas have resulted in a large variety of methods that range from enhancement, detection, segmentation 
and characterizations of anatomical structures and lesions to complete systems that automatically identify 
and classify several diseases in order to aid clinical diagnosis and treatment. Different imaging modalities 
such as computer tomography, magnetic resonance, radiography, ultrasound, dermoscopy and microscopy 
offer multiple opportunities to build automatic systems that help medical diagnosis, taking advantage of their 
own physical nature. However, these imaging modalities also impose important limitations to the design of 
automatic image analysis systems for diagnosis aid due to their inherent characteristics such as signal to noise 
ratio, contrast and resolutions in time, space and wavelength. Finally, we discuss future trends and challenges 
that computer vision and artificial intelligence must face in the coming years in order to build systems that 
are able to solve more complex problems that assist medical diagnosis.
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Introduction

Undoubtedly, it is intangible to think about all the 
technological advances that have been developed in the field 
of medicine in recent decades. Not only have they allowed 
us to understand more precisely the anatomy and physiology 
of the different organs that structure the human body, 
but they have also let us advance in the identification and, 
therefore, the treatment of several diseases from very early 
stages in different areas of medicine. This has been largely 
accomplished by the development of computer vision (CV) 
and artificial intelligence (AI). Briefly, these tools provide us 
the ability to acquire, process, analyze, and understand an 
infinite number of static and dynamic images in real time, 
which will represent a better characterization of each disease, 
and a better patient selection for early interventions.

Since many diagnostic methods available to date present 
the disadvantage of being invasive, expensive and/or very 
complex for their standardization in most parts of the world, 
assisted diagnosis through CV and AI represent a feasible 
solution that allows to identify a broad number of different 
diseases from initial stages, define better the treatment and 
follow-up, and decrease the health care costs associated with 
each patient.

The union of high-performance computing with 
machine learning (ML) offers the capacity to deal with big 
medical image data for accurate and efficient diagnosis. 
Moreover, AI and CV may reduce the significant intra- and 
inter-observer variability, which undermines the significance 
of the clinical findings. AI allows to automatically make 
quantitative assessments of complex medical image with 
increased diagnosis accuracy.

The object ive of  this  review is  to assess  in an 
understandable and well-structured way recent advances in 
automatic medical image analysis in some of the diseases 
with higher incidence and prevalence rates worldwide.

Cardiovascular diseases (CVD), oncological disorders and 
pulmonary diseases such as chronic obstructive pulmonary 
disease (COPD) and coronavirus disease 2019 (COVID-19) 
have positioned themselves as the main causes of mortality 
in individuals 50 years of age and older (1-5). Moreover, 
CVD are also the main cause of premature death (4). 
Gastrointestinal and liver diseases account for some of the 
highest burden and cost in public health care worldwide 
(4,6). Moreover, the lack of timely attention at early stages 
of these diseases lead to high morbidity and mortality 
rates (3). Neurodegenerative diseases such as Alzheimer’s 

and Parkinson’s have increased their incidence in modern 
times. As life expectancy increases, so does the occurrence 
of these diseases (7). Although AI has contributed to 
develop a large number of methods that assist the diagnosis 
of these diseases (8,9), we limit this review to CV and ML 
methods applied on medical imaging, namely ultrasound, 
computer tomography, magnetic resonance, microscopy 
and dermoscopy. We show how these methods are used 
to detect, classify, characterize and enhance relevant 
information in order to aid clinical diagnosis and treatment.

In the next section, the relation of medical imaging 
with CV and AI is discussed from a general point of view. 
Subsequent sections show recent advances and applications 
of these two areas of computer science that have improved 
diagnosis performance of the above-mentioned diseases. 

CV and AI in medical imaging

According to Patel et al. (10) some of the earliest works 
on AI applied to medicine date from the 1970s when 
AI was an already known discipline and the term was 
created at the very famous 1956 Dartmouth College  
conference (11). While many researchers created model-
based image processing based on AI, they did not call them 
that, even when their algorithms were from this area (10). 
Since then, new applications started to emerge that led 
to the first conference of the new organization Artificial 
Intelligence in Medicine Europe (AIME), at Maastricht, 
The Netherlands on June 1991, that established the term 
AI in Medicine. At first, most methods were based on expert 
systems. More recently, Kononenko (12) punctuates that 
the goal of AI in medicine is to try to make computers more 
intelligent and one of the basic requirements of intelligence 
is the ability to learn. ML appeals to that concept and some 
of the first successful algorithms in medicine were naive 
Bayesian approaches (12).

CV deals with a large range of problems such as image 
segmentation, object recognition, detection, reconstruction, 
etc. It aims at modeling and understanding the visual 
world by extracting useful information from digital images, 
often inspired by complex tasks of human vision. Although 
it exists since the 1960s, it remains an unsolved and 
challenging task to the extent that only recently computers 
have been able to provide useful solutions in different 
application fields. It is a multidisciplinary subject closely 
related to AI. AI is a broad area of computer science that 
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aims at building automatic methods to solve problems that 
typically require human intelligence. ML, in turn, is a part 
of AI that builds systems that are able to automatically 
learn from data and observations. Most successful methods 
of CV have been developed with ML techniques. Among 
the most widely used methods of ML are Support Vector 
Machines (SVM), Random Forests, Regression (linear and 
logistic), K-Means, k-nearest neighbors (k-NN), Linear 
Discriminant Analysis, Naive Bayes (NB), etc.

Deep learning (DL) is a subfield of ML that has become 

an attractive and popular tool in CV because of its amazing 
results in complex problems of visual information analysis 
and interpretation. The term deep refers to multiple-layer 
neural networks models. In recent years, there has been a 
rising interest in applying DL models to medical problems 
(12-14). For example, deep neural networks have shown 
amazing results in skin lesion classification tasks. Some 
outstanding examples can be found in annual challenges (15).

Examples of DL models are convolutional neural 
networks (CNNs), recurrent neural networks, long short-
term memory, generative adversarial networks, etc. Recent 
advances in this field have shown impressive accuracies and 
measured results. A schematic relation between CV and AI 
in medical imaging is presented in Figure 1.

The interaction between CV and AI in medical imaging 
is shown in Figure 2. Relevant feature extraction in medical 
image databases is a first critical step to train a new ML 
model. The training process aims at obtaining a model 
that has learned a specific task such as segmentation, 
classification, detection, recognition, etc. on the specific 
training data. Next, the model is tested with new input 
data that undergoes the same feature extraction process. 
The results of the task achieved with this test data are 
evaluated with performance metrics. If results do not meet 
the user requirements, the process is repeated until a new 
combination of feature extraction and ML methods satisfies 
the required performance level.
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Machine Learning
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Computer vision
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edical Im
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Figure 1 Relation between computer vision and artificial 
intelligence.
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Figure 2 The flow of computer vision and machine learning interaction in medical imaging
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CVD

Heart analysis is relevant for understanding cardiac 
diseases which are a major concern in the health area. They 
constitute a multifactorial and multidisciplinary clinical 
disease, leading to a great detriment to the quality of 
patients’ life. The World Heart Federation reports CVD 
as the main cause of morbidity and mortality in almost two 
thirds of the world population. Some of the most important 
diseases are related to the heart and blood vessels. They 
include coronary heart diseases, cerebrovascular disease, 
peripheral arterial disease, rheumatic heart disease, 
congenital heart disease, deep vein thrombosis and 
pulmonary embolism. Behavioral risk factors such as 
unhealthy diet, physical inactivity, alcohol consumption, 
and obesity represent major risk factors for heart failure (16).

Different medical  imaging modalit ies  are used 
for the assessment of heart failure such as computed 
tomography (CT), magnetic resonance imaging (MRI) and 
echocardiography (EG). Clinical analysis of these images 
comprises qualitative as well as quantitative examinations. 

Applications of AI aiming at assessing heart function 
have ranged from localizing and segmenting anatomical 
structures to recognizing structural as well as dynamic 
patterns, and more recently to automatically identifying 
and classifying several diseases. Whenever heart failure 
occurs, the heart shows a reduced function. This may cause 
the left ventricle (LV) to lose its ability to contract or relax 
normally. In response, LV compensates for this stress by 
modifying its behavior, which creates hypertrophy and 
progresses to congestive heart failure (17). These patterns 
can be recognized and evaluated by AI.

Anatomical and dynamical parameter estimations are 
necessary to assess heart failure. These tasks related with 
imaging technology are so relevant that in the last decades 
their research and development allowed not only to search 
for better resolution and contrast in their studies, but 
also the possibility to merge anatomical and functional 
information. Moreover, new imaging protocols have been 
developed to comply with analysis and segmentation tasks. 
Chen et al. presented a complete study of different DL 
techniques in various image modalities to segment one, two 
or all cardiac structures (18), as well as coronary arteries, all 
of them supporting clinical measurements such as volume 
and ejection fraction.

Some of the more difficult problems of automatic 
segmentation include poor image quality, low contrast and 
poor structure border detection. Moreover, cardiac anatomy 

and gray value distribution of the images varies from person 
to person, especially when a cardiopathy exists. If we add 
the intra vendor and scanners differences, the challenge for 
the development of more sophisticated tools is considerable.

Many different methods for ventricle segmentation have 
been reported in the literature, where classical active contours 
are some of the more popular (19). CNNs often excel 
because of its improved segmentation performance despite 
their dependence on large amounts of training data (18). 
This is a serious issue in the case of the medical area, because 
of data availability restrictions in clinical environments and 
because of the lack of medical experts willing to annotate 
large amounts of data. This is a tedious task, causing fatigue 
as well as intra and inter variability between experts (20). In 
some areas such as CT and MRI challenges have emerged 
with annotated databases (18,21,22).

The use of DL has become common not only for cardiac 
segmentation but also to support classic algorithms, for 
example when searching for an initial localization of the 
cardiac structures to segment. Recently, this initialization 
has been achieved with a CNN that finds a coarse shape 
while a level set refines the contour, as shown on Figure 3. 
This hybrid method has the advantage of using only a small 
database to train a neural network, e.g., a UNet, since only 
a rough initial segmentation is needed; detail refining is a 
task left to the active contour method

Different  neural  network models  emerged for 
segmentation tasks, such as the UNet model or even Full 
Convolutional Networks (FCN) as the main algorithm 
(23,24). These methods have proved to obtain good 
results. Table 1 presents some of the relevant works in the 
cardiovascular area with a mention to the imaging modality. 

Motion analysis as support for heart failure analysis

Most 2D segmentation methods analyze complete volumes 
on a slice by slice basis losing inter-slice interactions. They 
usually fail in some challenging slices located on the base or 
on the apex where contours are not well defined. To address 
these problems additional information, such as motion, has 
been introduced in many of these methods. Optical flow 
estimation comprises techniques that can be used to provide 
information of cardiac motion through the cardiac cycle. 
Dynamic changes of the cardiac walls can be characterized 
by motion vectors showing the heart deformation. 
Heart’s motion estimation can assist the study of different 
malformations and anomalies, and this information can 
be enhanced again with different image features. Over the 
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Figure 3 Modules of a segmentation step using UNet deep learning as initialization.

Table 1 Cardiovascular applications. Selection of relevant works of different methods in cardiovascular area with different image modalities

Selected works Description Type of images Year

Chen et al. (18) Study of different deep learning techniques for analysis and segmentation 
tasks for different heart structures and coronary arteries with Convolutional 
neural networks 

MR, CT, US 2020

Petitjean et al. (19) Short axis view segmentation with active contours method MR 2011

Carbajal-Degante et al. (23) CNN and active contours for segmentation CT 2020

Avendaño et al. (24) UNet CNN segmentation of cardiac structures MR 2019

Zhang et al. (25) Creation of a CNN based tool that identifies cardiopathies in clinical practice Echocardiogram 2018

MR, magnetic resonance; CT, computer tomography; US, ultrasound.

years, the study of cardiac movement has been carried out 
mainly in two dimensional images, however, it is important 
to consider that the deformations due to the movement 
of the heart occur in a three-dimensional space. New 3D 
results can demonstrate the heart’s movement complexity as 
shown in Figure 4 (26).

Future trends in the cardiac area aim at building fully 
automatic tools able to understand the images and relate 
them to specific pathologies. This is the case of Zhang 
et al. (25), who developed a complete tool that identifies 
different cardiopathies. Their integrated system analyses 
echocardiogram studies and is composed of modules that 
start from identifying metadata from Digital Imaging and 
Communications in Medicine format, followed by a pipeline 
of different DL algorithms with four tasks, (I) image 
classification, (II) image segmentation, (III) measurements 
of cardiac structure and function, and (IV) disease 
detection. Decisions are taken during the pipeline, ending 
in a differentiation of patients’ characteristics that indicate a 
disease detection, such as hypertrophic cardiomyopathy or 
pulmonary hypertension.

Oncological diseases 

Breast ultrasound (BUS)

Breast cancer has become the most frequent cancer and 
the number one cause of cancer-related deaths among 
women around the world, with rates increasing in nearly 
every region globally. Early detection and screening are 
critical to improve the prognosis for the patient. Screening 
consists in identifying cancers before any symptoms appear 
and, although, mammography is recommended by the 
WHO for breast cancer screening, ultrasound has become a 
useful tool for assisting and complementing this procedure, 
especially in limited resource settings with weak health 
systems where mammography is not cost-effective (27). 
While mammography has a high sensitivity in the detection 
of microcalcifications, ultrasound is able to detect tumors 
in dense breast tissue, usually found in women under age 
30, with higher sensitivity than mammography (28). Young 
women have low incidence rates of breast cancer; however, 
its incidence increases at a faster rate than in older women 
and their tumors tend to be larger, with a higher grade of 
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malignancy and poorer prognostic characteristics, making 
ultrasound necessary as a complementary technique in 
breast screening. Also, ultrasound is the best imaging 
modality to identify if the lesion is solid, such as a benign 
fibroadenoma or cancer, or a fluid-filled benign cyst (29). 
Even with this advantage, the visualization of lesions 
in BUS images is a difficult task due to some intrinsic 
characteristics of the images like speckle, acoustic shadows 
and blurry edges (30). These drawbacks make ultrasound 
imaging and diagnosis highly operator-dependent and with 
a high inter-observer variation rate, increasing the risk 
of oversight errors. Therefore, computer-aided diagnosis 
(CAD) systems are desirable to help radiologists in breast 
cancer detection and classification. CAD systems using BUS 
images generally focus on solving three problems: lesion 
detection, lesion segmentation, and lesion classification. 

Lesion detection and segmentation

Accurate automatic detection and segmentation methods 
of breast tumors can help the experts to achieve faster 
diagnoses, and it’s a key stage of fully automatic systems 
for breast cancer diagnosis using ultrasound images (31). 
Because of the mentioned inherent artifacts in BUS images 
the automatic detection and segmentation of lesions in this 
imaging modality is not an easy task (30). 

Ultrasound gray-level intensities provide helpful 
information about the density of different tissues found 
in the images, however the poor quality of ultrasound 
images due to speckle noise makes the differentiation 
difficult. Because of this, most of the proposed methods 

for tumor detection and segmentation in BUS images use 
a pre-processing step to obtain more homogenous regions 
and enhance the contrast of the image, while preserving 
important diagnostic features (32,33). The internal echo 
pattern of structures has been used to depict the local 
variation of pixel intensities to detect abnormal regions 
within the BUS images, to distinguish lesion regions 
from normal tissue, acoustic shadows and glands. Texture 
information seems highly suitable for characterizing 
internal echo patterns in different structures. However, 
texture analysis in ultrasound images is not an easy task and 
many metrics have been used to describe the echo patterns 
in breast tumors (34-36). 

Several studies report automatic methods (30-40), where 
modeling the knowledge of BUS and oncology as prior 
constraints is needed. Based on the literature, ML-based 
methods stand out among the most popular. Supervised 
methods like AdaBoost, Artificial Neural Networks and 
Random Forest are the most common methods used for 
lesion detection and segmentation in BUS (37). Image 
features used in these methods should be appropriately 
selected according to the application, and texture 
information seems highly suitable for ultrasound images, 
but making an appropriate Feature Selection is an important 
step specially when dealing with high dimensionality  
spaces (30). Feature selection methods like Principal 
Component Analysis and Genetic algorithms have been used 
to improve the results in the detection and segmentation of 
lesions, with true positive fraction (TPF) values of 84.48%; 
however, these approaches still rely on manually designated 
features, which depend on good understanding of the 

A B

Figure 4 Motion estimation. (A) 2D motion estimation results for heart left ventricle on systole, short axis view. (B) Heart volume with 3D 
motion estimation results on diastole.
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images and the lesions (38). DL, which is a new field of ML, 
can directly learn abstract levels of features directly from 
images, solving the need to propose an initial set of features 
to describe the problem. CNNs such as LeNet, UNet and 
FCN-AlexNet, have been successfully implemented in the 
tasks of lesion detection and segmentation with TPF values 
of 89.0%, 91.0% and 98.0% (39) respectively. A summary 
of representative works can be seen in Table 2.

Classification of breast lesions

The malignancy of a tumor is estimated by the expert 
ultrasonographer mainly from its shape, echogenicity and 
the internal echo pattern. Morphological features such 
as roundness, aspect ratio, convexity and compactness 
have been used to characterize the shape of tumors. 
These descriptors along with texture analysis have 
shown good results in the classification of breast lesions 
using ML approaches (40).  Most of the proposed 
methods used classical ML approaches including Linear 
Regression, Fuzzy Logic Systems and SVM, where the 
main difference between them are the chosen descriptors 
used to characterize lesions with accuracy values up to 
95.45% (37). CNNs have been used for the classification 
of lesions by producing a set of transformation functions 
and image features directly from the data to characterize 
the malignancy of the lesion. Different CNN models, 
including GoogleNet, ResNet50, Inception V3, Xception 
and Mask-RCNN have been proposed for this task, having 
accuracy values up to 98.0% for the classification of breast 
lesions into benign and malignant (42,43). A summary of 

representative works can be seen in Table 3. Figure 5 shows 
a segmentation and classification of two different breast 
lesions. 

Fundamental issues and future directions

Although CV and AI methods have been successfully 
applied for breast lesion detection, segmentation, and 
classification, there are some fundamental issues that need 
to be solved before fully CAD systems can be developed 
taking advantage of these techniques. In fully automatic 
methods a key step is the lesion detection, which delivers 
candidate regions of interest (ROIs). Although ML 
approaches have shown good results in this task, it remains 
an open and challenging problem because the appearance 
of benign and malignant lesions are quite different and the 
quality of the images will also depend on the ultrasonic 
device, contributing to the difficulty of modeling the lesions. 
Another important aspect that should be considered is the 
presence of posterior acoustic shadowing, which appears 
as a dark region behind the lesion, often obfuscating lesion 
margins and making it difficult to determine the shape of 
the lesion. Since this is a challenging issue, this artifact 
has been overlooked in many BUS CAD systems, however 
there is an urgent to overcome this problem in order to 
improve these systems (44). Moreover, the increasing use 
of 3D ultrasound imaging calls for new lesion detection, 
segmentation and classification techniques that can be used 
in a 3D surgical context (41,45). For the development of 
these techniques, the creation of new datasets that consider 
ethical considerations is necessary (46).

Table 2 Lesion detection and segmentation. Selection of relevant works for lesion detection and segmentation in oncological diseases 

Selected works Description Techniques Year

Chen et al. (30) Semi-automatic 3D lesion segmentation method Discrete active contours with automatic initialization 2003

Moon et al. (31) Automatic 3D lesion detection 3D mean shift and fuzzy c-means clustering 2014

Madabhushi et al. (32) Automatic 2D lesion segmentation Directional gradient deformable shape-based model 
and probabilistic classification of image pixels

2003

Liu et al. (35) Automatic 2D lesion detection Kernel SVM and classification checkpoints 2010

Torres et al. (38) Automatic 2D lesion detection Genetic algorithms for feature and parameter selection 
and random forest classification

2019

Yap et al. (39) Automatic 2D lesion segmentation Patched and fully convolutional CNNs 2008

Huang et al. (41) Automatic 3D lesion segmentation method Neural networks applied to 2D texture patches 2008

SVM, Support Vector Machines; CNN, convolutional neural network.
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Deep learning in dermatology

The skin is the largest organ in the human body (47) 
while skin cancer is the most common form of cancer in 
the United States (U.S.) (48). According to the American 
Academy of Dermatology, it is estimated that 1 in  
5 Americans will develop skin cancer in their lifetime. As 
with any other type of cancer, the sooner it is spotted, the 
better the prognosis becomes. When skin cancer is caught 
early, it is highly treatable. This type of cancer is mainly 
diagnosed through a visual inspection. Among the different 
types of malignant neoplasia, melanoma is a rare form of 
skin cancer that develops from skin cells called melanocytes 
which are located in the layer of basal cells at the deepest 
part of the epidermis, they are also found in the iris, inner 
ear, nervous system, heart and hair follicles among other 
tissues. Melanoma represents fewer than 5% of all skin 
cancers in the U.S. However, melanoma is also the deadliest 

form of skin cancer, it is responsible for about 75% of all 
skin cancer related deaths (49). In Mexico, melanoma is 
responsible for 80% of deaths from skin cancer (50). It is 
increasing in the world, more than any other malignancy. 
According to the latest report of the National Institute of 
Cancerology (Instituto Nacional de Cancerología, INCan), 
the number of cases in Mexico increased 500% in recent 
years (51).

Dermatologists use different visual inspection methods to 
determine if a skin lesion under analysis may be melanoma 
(malignant). Some of these methods are the ABCDE rule,  
7 points checklist, and the Menzies method (52) just 
to name a few. All these methods are based on the 
visual features that make a malignant melanoma lesion 
distinguishable. Dermatology is a medical specialty which 
can greatly benefit from the powerful feature extraction 
capabilities of deep neural networks.

Malignant 0.909

48c

Benign 0.957

A B

Figure 5 Detection, segmentation, and classification of breast lesions in US using Mask R-CNN. (A) Malignant lesion. (B) Benign lesion.

Table 3 Breast lesion analysis. Selection of relevant works for detection and classification of breast lesions

Selected works Description Year

Chen et al. (36) Texture classification of 3D ultrasound breast using run difference matrix with neural networks 2005

Cao et al. (42)
Evaluation of the performance of several state-of-the-art DL model for the detection and classification for 
breast lesions

2019

Chiao et al. (43) Automatic detection, segmentation and classification of breast lesions using Mask RCNN 2019

DL, deep learning. 
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State of the art

There is a variety of recent publications that utilize the 
tools and models of DL to address the problem of skin 
lesion classification, the use of these techniques has achieved 
a much better performance in terms of metrics such as 
accuracy, specificity and sensitivity in comparison with 
the results obtained with classical ML techniques. Some 
examples of them can be found in (53-59).

One of the most relevant articles about the applications 
and the potential that DL can offer in the field of 

dermatology was presented by Esteva et al. (54). The 
performance of this network was tested against 21 certified 
dermatologists in two critical cases: carcinomas vs. 
seborrheic keratosis and melanomas vs. nevus. Research 
concludes that the convolutional neuronal network achieves 
a superior performance than that reached by experts in 
dermatology. The use of the system in mobile devices to 
facilitate an early diagnosis is proposed.

Table 4 presents a review of some of the relevant works 
mentioned above. The last two columns respond to two 
important aspects: if the performance of the proposed 

Table 4 Skin lesion classification. Selection of relevant works of deep learning methods applied to skin lesion detection and classifications

Selected works Description and main contributions
Compared against 

health-care 
professionals

Is the 
dataset 
public?

Year

Esteva et al. (54) CNN trained with 129,450 images belonging to 757 skin lesion classes. 
Performance tested against 21 dermatologists. CNN outperforms 
dermatologists at skin cancer classification

Yes No 2017

Fujisawa et al. (55) CNN trained with 4,867 images belonging to 14 skin lesion classes. 
Performance tested against 13 dermatologists and nine dermatology trainees. 
CNN outperforms dermatologists at skin tumors classification

Yes No 2019

DeVries et al. (56) CNN trained on a public dataset for a skin lesion classification challenge. CNN 
uses two different scales of input images to obtain satisfactory results

No Yes 2017

Mahbod et al. (57) Automated computational method for skin lesion classification based on three 
CNNs that act as visual feature extractors. Features are combined with SVM 
whose outputs are merged to generate a final result. Training and validation 
steps are performed with a public dataset. Satisfactory performance on 150 
validation images of the public dataset

No Yes 2017

Harangi et al. (58) Classification method for 3 different skin lesions based on an ensemble of  
4 CNNs trained on public datasets. Method fuses outputs of classification 
layers of the four CNNs. Final classification is obtained by a weighted output 
of each of the CNNs. Results are satisfactory

No Yes 2018

Menegola et al. (59) Ensemble of CNNs combining outputs with a SVM final decision. Several public 
datasets were combined into one to train the CNNs

No Yes 2017

Results are satisfactory for two binary classification problems, melanoma vs. all 
and keratosis vs. all

Liu et al. (60) Deep learning system (DLS) identifies 26 common skin conditions in adults 
referred for teledermatology consultation (60). DLS provides full differential 
diagnosis across those 26 conditions

Yes No 2020

The DLS consists of several CNN modules that process a variable number of 
input images. A secondary module processes patient metadata (demographic 
information and medical history)

Dataset comes from a teledermatology service in the US

System diagnostic accuracy was compared against clinicians. Its performance 
is comparable to dermatologists and more accurate than general practitioners

SVM, Support Vector Machines; CNN, convolutional neural network.
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method was compared with that of health professionals and 
if the dataset used to train the neural network models is 
publicly available, by “public” we mean whether the images 
belong to a well-known dataset or whether the authors 
collected their data from different public and private sources 
and ultimately made the final dataset public. This last aspect 
is important as it is one of the factors that allows the results 
to be reproduced and compared with other techniques.

CNNs for dermatology

In Figure 6, we show the typical architecture of a CNN. 
CNNs are composed of several convolution and pooling 
layers that act as automatic feature extractors for images, 
the fully connected network receives the relevant features 
as input and acts as a classifier. CNNs can be trained to 
perform a widely different variety of tasks, they provide a 
way to train superhuman image classifiers (61).

State of the art deep CNNs (YOLOv3) (62) have been 
trained in conjunction with image processing techniques 
(segmentation algorithms) to deploy a skin lesion detection 
system that learns to detect (localize and classify) three types 
of skin lesions: melanoma, nevus, and seborrheic keratosis. 
The more general case, detecting benign from malignant 
skin lesions has also been addressed. Some of the visual results 
are shown in Figure 7. The DL-based detection system can 
predict a confidence value (probability) for the nature of the 
skin lesion under analysis at three different scales.

Results of Figure 7 were verified by a dermatologist (to 
assure that the skin lesion in the image corresponded to 
the label attached to it). They belong to a test partition 
which was never seen by the deep neural network. The test 
partition was conformed from publicly available images 
from different healthcare websites.

For training the neural network, images from the 

International Skin Imaging Collaboration archive (ISIC 
archive) were used. The ISIC archive is a high quality 
dermoscopic image database, collected from international 
leading clinical centers and acquired from a variety of 
devices. At the time of preparing this work, the ISIC 
archive dataset consisted of 19,330 benign lesions and  
2,286 malignant lesions. It is important to remark that 
DL models learn the most when they are trained with the 
largest possible number of images.

Future trends in AI for dermatology

One of the most recent works on the skin lesion 
classification problem was presented by Google Health in 
collaboration with other institutions like the University 
of California-San Francisco, the Massachusetts Institute 
of Technology and the Medical University of Graz. They 
developed a Deep Learning System (DLS) capable of 
delivering a differential diagnosis of the most common 
skin conditions seen in primary care. Unlike previous 
approaches, this system can exploit the information present 
in the images as well as in the metadata, achieving an 
accuracy across 26 skin conditions, on par with U.S. board-
certified dermatologists (60).

DL-based systems can be of great use for dermatologists, 
they can be put to work as a desktop automatic diagnostic 
app or can be embedded into a smartphone attached to a 
mobile dermatoscope. We seek to deploy, in the near future, 
a real-time DL solution in a smartphone app that could 
be used by general practitioners and the general public. As 
stated by Liu et al. (60), a solution of this kind could be useful 
in regions where there is a lack of medical specialists in local 
clinics. This technology has the potential to have an impact 
on public health as it can increase the capabilities of general 
practitioners and help in the decision-making process.
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Figure 6 Simplified architecture of a Convolutional Neural Network.
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Microscopy image analysis for cancer

Microscopy image acquisition modalities use the light 
spectrum of electromagnetic radiation and its interaction 
with internal tissues to evaluate molecular changes. In 
contrast to other acquisition techniques, microscopy 
takes advantage of various colors of light to visualize and 
measure several tissue features with improved contrast and 
resolution. These features also have potential applications 
in diagnosis, grading, identification of tissue substructures, 
prognostication and mutation prediction (63). One of 
the advantages of microscopy is high spatial resolution. 
The typical resolution is around hundreds of nanometers, 
useful for monitoring subcellular features. Superresolution 
imaging methods can further improve the resolution by 
one or two orders of magnitude (64). Microscopy takes 
advantage of a variety of contrast mechanisms, where the 
most popular stain is hematoxylin and eosin (H&E). 

The pathologists have been beneficiated directly by these 
applications because they could propose tailored therapies 
based on individual profiles and spend more time focusing on 
more complicated cases that are not as quickly diagnosable. 
Even though the number of digital images generated 
for diagnostic and therapeutic purposes is increasing  

rapidly (65), extensive experimental comparisons and state-
of-the-art surveys are difficult tasks because most data are 
not public (66) and because there are substantial differences 
in acquisition protocols, tissue preparation and stain 
reactivity (67).

In the field of CAD based on microscopy image 
assessment, an objective quantitative approach is required to 
increase reproducibility and predictive accuracy. Microscopy 
provides relevant information about the tissue since the 
structure is preserved in the preparation process, and it is 
considered the diagnosis gold standard for many diseases, 
including many types of cancer (68).

ML for cancer classification

In this section, we focus on two types of cancer: 
hematologic malignancies (HMs) and colorectal. The main 
idea is the classification of microscopy image databases 
that include different types of malignancies (hematologic) 
and tissues (colorectal). The whole classification process 
involves CV and ML algorithms, and the process consists 
of two significant steps: description and classification. 
The description of these databases is centered on textural 
information from the images to compute feature vectors 

Figure 7 Processed test images by the trained deep neural network. Nevi correctly detected as benign and melanoma correctly detected as 
malignant (upper row). Seborrheic keratosis (benign lesion) and melanoma correctly detected (lower row).
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(CV). Then, feature vectors are generated from textural 
information to be processed by the classifier; in other 
words, a machine-learning algorithm.

HMs are a collection of diseases that includes leukemia 
and lymphomas (69). Three types of malignancies 
will be addressed in this study: Chronic lymphocytic 
leukemia (CLL), follicular lymphoma (FL), and mantle 
cell lymphoma (MCL). The IICBU2008-lymphoma  
dataset (70) includes the three mentioned malignancies, and 
many automatic methods have been proposed to classify this 
dataset.

According to GLOBOCAN 2018 data, colorectal cancer 
(CRC) is the third most deathly and the fourth common 
type of cancer worldwide, with more than 1.8 million new 
cases registered in 2018 (71). The Epistroma database (72) 
is a collection of epithelial and stroma tissue samples taken 
from patients with histologically verified CRC at the 
Helsinki University Central Hospital, Helsinki, Finland, 
from 1989 to 1998.

A classification method based on textural features applied 
to both colorectal and HMs is based on discrete orthogonal 
moments (DOMs). The orthogonal moments are computed 
as the projection of the images on an orthogonal polynomial 

basis. One way of interpreting the projection is as the 
correlation measure between the image and the polynomial 
basis (73). The best known discrete polynomial bases (74), 
with a vast number of applications in a variety of research 
areas, are Tchebichef, Krawtchouk, Hahn, and Dual Hahn.

González et al. (75), based on previous papers (76,77), 
introduced and validated Shmaliy orthogonal moments 
as a statistical textural descriptor, and its performance is 
compared to the DOMs. This statistical textural descriptor 
is based on overlapping square windows and assure 
numerical stability. They also proposed a classification 
method with the most popular ML algorithms: SVM, k-NN 
rule, NB rule, and Random Forest. The general scheme 
of classification is depicted in Figure 8. This proposal and 
its detailed description have been published previously 
for CRC (78) and HMs (73,75) with state-of-art results 
at the time of publication. Recently, with the spread of 
neural networks, some papers (79,80) have worked on these 
databases using CNNs, e.g., Kather et al. (81) compared 
classical textural descriptors with the most known CNNs 
architectures applied to different microscopy image 
datasets. Table 5 summarizes a list of relevant classification 
methods with different algorithms applied to microscopy 

Statistical textural feature
vectors of training set

Statistical textural feature
vectors of validation set

Linear
Discriminant

Analysis

Statistical textural feature
vectors of training set

Classifier

Class 1

Class 2

Figure 8 General scheme of classification based on discrete orthogonal moments. After computing local DOMs using sliding windows, the 
statistical textural feature vectors are computed and classified.
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Table 5 Microscopy image classification. List of representative classification methods on Lymphoma and Epistroma databases

Selected works Description Database Year 

Meng et al. (82) Novel classification model called collateral representative subspace projection modeling 
(C-RSPM)

Lymphoma 2010

Orlov et al. (83) Image description with Chebyshev and Fourier features. They used WND-CHARM, naïve 
Bayes, and RBF network classifiers. Color deconvolution in stained images (RGB to HE)

Lymphoma 2010

Xu et al. (84) Introduction to Deep Convolutional Neural Networks based feature learning to segment or 
classify epithelium and stroma regions from microarrays. They compared their proposal  
with three handcraft feature extraction-based approaches

Epistroma 2016

Nava et al. (73) Description based on Discrete Orthogonal Tchebichef Moments and classification with  
SVM and k-NN

Epistroma 2016

González et al. (75) Description with discrete orthogonal moments and classification with classical ML 
algorithms. Introduction of Shmaliy polynomials as a texture descriptor

Lymphoma 2018

Bianconi et al. (85) Novel image descriptor called improved opponent color local binary patterns (IOCLBP).  
It was compared with classical and neural-network-based textural features

Epistroma and 
Lymphoma

2017

Song et al. (86) Description based in Fisher vector encoding with multiple handcrafted or learned local 
features, and a separation guided dimension reduction method

Lymphoma 2017

Kather et al. (81) Performance comparison between classical textural descriptors with the most known  
CNNs architectures applied to different microscopy image datasets

Epistroma 2020

SVM, Support Vector Machines; CNN, convolutional neural network; ML, machine learning.

image datasets, ordered chronologically.
DOMs, in conjunction with ML algorithms, have 

proven to be particularly useful methods for description 
and classification of microscopy images. From a future 
perspective, polynomial bases can be used as modulation 
filters in addition to CNNs, as Luan et al. (87) show in their 
paper.

As the area of microscopy imaging continues to develop, 
both in acquisition techniques and the application of 
new contrast mechanisms, the processing of these images 
will also grow. For example, through the cited cases, 
color processing (i.e., different color spaces and color 
deconvolution) in microscopy images is recurrent to obtain 
better classification results among tissues of interest. That 
improvement depends directly on the acquisition and the 
contrast mechanism. On the other hand, the more public 
databases there are, the better profitability from the latest 
DL classifiers, because more information, means better 
performance classifiers.

Neurodegenerative diseases and brain structure 
segmentation 

In recent years, automatic detection of different brain 

structures has become a challenging task for scientists since 
the nature of image acquisition often yields issues as noise, 
blur or intensity inhomogeneities which depend on the 
specific medical image modality, affecting the correct brain 
localization and visualization process. The most popular 
image modalities used for brain analysis are positron 
emission tomography (PET), single photon emission 
computed tomography (SPECT) and MRI, the latter 
becoming a standard tool due to the good quality contrast 
of brain tissues in a non-invasive way and has proven very 
efficient for diagnosis, evaluation and monitoring.

Since the process of manual delineation of brain 
structures is exhausting and time consuming for experts, 
the need of automated segmentation is urgent, not only to 
improve accuracy but also to reduce inter and intra observer 
variability. For instance, the identification of subcortical 
brain structures, hippocampus, hypothalamus, amygdala, 
among others, is a challenging task due to their size and 
shape. Some of these structures possess a special interest for 
its association with neurodegenerative disorders (88,89).

This section reviews some representative semi-automatic 
methods based on CV and AI reported in the literature that 
tackle brain segmentation problems in medicine and its 
application nowadays.
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Whole brain segmentation

Neurodegenerative disorders are usually related to brain 
alterations such as structure, shape and volume changes. 
Whole brain segmentation helps providing qualitative and 
quantitative comparison with other smaller brain structures. 
FreeSurfer is a software developed by Fischl et al. (90) which 
provides a set of algorithms to segment the whole brain 
from T1-weighted images. A particular approach based 
on Markov random fields is Local Cooperative Unified 
Segmentation (LOCUS) which was originally designed by 
Scherrer et al. (91) and includes subcortical segmentation 
in phantoms and real 3T brain scans. Other approaches 
extract relevant information such as high energy regions 
and oriented structures to ease the identification of white 
matter, gray matter and cerebrospinal fluid as stated in (92).

The role of hippocampus in dementia

Different types of neurodegenerative diseases are originated 
in different areas of the brain. For instance, hippocampus 
plays a key role in the prediction of diseases such as 
Alzheimer, schizophrenia and bipolar disorder, among 
others. Jorge Cardoso et al. (93) presented a technique for 
Alzheimer early detection named Similarity and Truth 
Estimation for Propagated Segmentation (STEPS). It 
segments the hippocampus with practical applications to 
Alzheimer’s Disease Neuroimaging Initiative (ADNI). 
ADNI stores a large data collection that attempts to keep 
record of the progression of Alzheimer disease, including 
MRI and PET images, blood biomarkers, genetic and 
cognitive tests. In order to reduce the number of atlases 
(labeled images) needed to guide the segmentation of the 
whole hippocampus, Multiple Automatically Generated 
Templates (MAGeT) is a method proposed by Pipitone  
et al. (94) to generate templates constructed via label 
propagation, this method achieves good performance 
compared to classic multi-atlas methods with a reduced 
training data.

Adapting segmentation methods to analyze shape and 
intensity information leads to a robust scheme to deal with 
common image degradations. An automatic segmentation of 
the caudate nuclei was constructed by using a probabilistic 
framework to estimate the relation between shape and 
pixel intensities. This leads to an important improvement 
for segmenting subcortical brain structures as proposed by 
Patenaude et al. (95) and originally applied on evaluating 
Alzheimer’s disease by the software FIRST. In order to 

improve the segmentation results in the accurate extraction 
of hippocampus from brain MR images, Gao et al. (96) 
exploit the capability of atlas-based methods which serves 
as the initialization for a further implementation in a semi-
automatic model. Table 6 summarizes some of the more 
relevant segmentation methods in this area.

Subcortical structures and brainstem linked to movement 
disorders

Electric stimulation of the functional brain regions has 
been suggested in the literature as a surgical treatment for 
some movement-related disorders (101). Surgical planning 
of these procedures implies segmenting automatically 
the appropriate region with high accuracy. For instance, 
brainstem is relevant to describe disorders as Parkinson 
or progressive supranuclear palsy. Brainstem includes 
structures like midbrain, pons, medulla oblongata and 
substantia nigra. Several diseases are directly related to 
atrophy, reduced nigra volume and structure deformations. 
Particularly, Li et al. (97) explored the literature to provide 
a conclusive relation of substantia nigra concentration in 
Parkinson’s patients. Complementary works have developed 
methods to increase accuracy in midbrain segmentation by 
including texture descriptors and performing local analysis 
as proposed by Olveres et al. (98) whose results are displayed 
in Figure 9.

Among the subcortical structures, the basal ganglia are 
located in the center of the brain and consist of several 
different groups of neurons. Neuronal death means that 
these groups of neurons can no longer work properly, 
causing stumbling and shaking. In order to improve classic 
segmentation techniques with subcortical applications, DL-
based methods have emerged as successful alternatives. 
As shown by Milletari et al. (99), DL results may vary 
depending on the architecture used. Authors showed 
a segmentation comparative in MRI and transcranial 
ultrasound volumes of the basal ganglia and midbrain. The 
incorporation of probabilistic atlases as spatial features 
allows neural networks to segment the most difficult areas 
of subcortical brain structures, Kushibar et al. (100).

Respiratory diseases

COPD

There are several important respiratory diseases, such as 
COPD, asthma, occupational lung diseases and pulmonary 
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Table 6 Brain structure segmentation. A summary of representative methods for brain segmentation

Selected works Description Type of images Structure(s)

Fischl et al. (90) FreeSurfer software T1-weighted MRI Whole brain

Scherrer et al. (91) LOCUS (Local Cooperative Unified Segmentation) based on  
Markov Random Fields

T3 MRI Subcortical

Carbajal-Degante et al. (92) Texture-based approach with Hermite coefficients and level sets MRI Brain tissue

Jorge Cardoso et al. (93) STEPS (Similarity and Truth Estimation for Propagated 
Segmentation)

PET, MRI Hippocampus

Pipitone et al. (94) MAGeT (Multiple Automatically Generated Templates) Templates Hippocampus

Patenaude et al. (95) Alzheimer’s evaluation by the software called FIRST T1-weighted MRI Subcortical

Gao et al. (96) Semiautomatic atlas-based MRI Hippocampus

Li et al. (97) Substantia nigra concentration in Parkinson’s patients Ultrasound, TCS Brainstem

Olveres et al. (98) Deformable models based on local analysis MRI Midbrain

Milletari et al. (99) Fully automatic localization and segmentation with a CNN MRI, ultrasound Deep brain regions

Kushibar et al. (100) Spatial and deep convolutional features MRI Subcortical

MRI, magnetic resonance imaging; PET, positron emission tomography; TCS, transcranial sonography; CNN, convolutional neural 
network.

Figure 9 Segmentation results of midbrain in MRI by Olveres et al. (99).

hypertension. According to WHO (102), COPD is a 
progressive lung disease that causes breathlessness (initially 
with exertion) and predisposes to exacerbations and serious 
illness. It is characterized by a persistent reduction of 
airflow. Globally, it is estimated that it accounts for 5% 
of all deaths until 2019. More than 90% of COPD deaths 
occur in low  and middle-income countries and the primary 
cause of COPD is exposure to tobacco smoke (either active 
smoking or second hand smoke). Traditionally diagnosis of 
COPD is done by spirometry; however, this method might 
underdiagnose considerably (103).

Recently, several papers like the Bibault et al. and Mekov 
et al. (104,105), propose digital image modalities and AI 
using low dose CT images to detect signs of COPD with 
DL techniques. Even when the disease is not curable, 

results offer an opportune diagnosis which allows treatment 
to improve life quality in COPD patients. In order to pay 
attention to the lungs area, where lesions occur, several 
segmentation algorithms have been developed and, 
nowadays, this task can be executed with traditional as well 
as DL methods (106,107). COPD detection is treated in 
Rajpurkar et al. (108) and Shi et al. (109) reviews several 
methods of segmentation for severe COVID-19. These 
tasks are accomplished using X radiographies and chest CT 
images.

There is an increasing number of studies that detect 
pneumonia on chest radiographies like the one of Zech  
et al. (110). CT images have proven to have enough 
spatial resolution to obtain specific metrics of pneumonia 
lesions needed to estimate a damage level according to 
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Castillo-Saldana et al. (111). They provide objective density-
based and texture-based evaluation of the lungs. New 
methods of measuring airways have recently been developed 
that complete a prognosis and guide clinical decisions.

On the other hand, studies demonstrate that COPD may 
also increase the risk of contracting severe COVID-19 (112), 
another important respiratory disease to analyze. Table 7  
presents some of the relevant works mentioned in this 
section. 

COVID-19

The impact of the COVID-19 worldwide crisis has triggered 
efforts in research communities and interdisciplinary 
groups to collaborate and search for solutions to mitigate 
this disease effects. CT imaging and X-ray studies have 
been helpful in the prognosis for patients since they allow 
to detect characteristic lesions such as ground-glass opacity, 
consolidation, pleural effusion, bilateral involvement, 
peripheral and diffuse distribution (113). However, with the 
pandemic generated by COVID-19, the lack of radiological 
expertise and the need for precise interpretation chest 
medical images has become evident. AI solutions aim at 
helping the clinical area to face this worldwide crisis.

Image-analysis research groups have focused on building 
computer aided diagnosis systems to detect COVID-19 
from the automatic analysis of lung chest radiography 
and CT images. These AI systems provide a probability 
of existence of COVID-19 as well as detect, segment and 
quantify lesions in the lungs (109,113). Figure 10 shows the 
results delivered by one of such systems that are already 

available online.

Gastrointestinal and liver diseases

Another important area in which AI and CV have had 
impact is gastroenterology and hepatology. Le Berre  
et al. (114) made a ten-year compilation of contributions 
ranging from ML to DL technologies. In the endoscopic 
area AI has been used in lesions analysis, cancer detection 
and inf lammatory les ions analysis .  They present  
53 studies, most of them related to endoscopy, that detect 
or improve diagnosis of intestinal lesions, polyp’s cancer, as 
well as premalignant and malignant analysis of the upper 
gastrointestinal tract, and/or the entire digestive tract. 
With the assistance of AI algorithms, performances are 
above 80%. Kudo et al. (115) identified neoplasms through 
endoscopic images with high accuracy and low interobserver 
variation. They identified colon lesions with 96.9% 
sensitivity, 100% specificity and 98% accuracy. Diagnostic 
accuracy of their EndoBRAIN system was calculated on a 
multi-center study using 69,142 endocytoscopic images.

AI has also been used in the study of inflammatory 
bowel diseases, ulcers. celiac disease, lymphangiectasia 
and hookworm (114), as well as in identifying the risk of 
possible bleeding of inflammatory bowel with an accuracy 
above 90%.

A s  s e e n  a b o v e ,  m o s t  c o n t r i b u t i o n s  o f  A I  i n 
gastroenterology have been applied on endoscopy images. 
In the case of liver diseases, AI has been found useful in 
other image modalities as described below. Table 8 presents 
some of the relevant works in the gastroenterology area. 

Table 7 Respiratory diseases. Selection of relevant works of different methods in respiratory area

Selected works Description Type of images Year

Bibault and Xing. (104) Use artificial intelligence to detect signs of COPD with deep learning techniques CT and X-ray 2020

Mekov et al. (105) Use artificial intelligence and machine learning to detect signs of COPD CT 2020

Afzali et al. (106) Use of contour-based lung shape analysis for tuberculosis detection Chest Xray 2020

Shi et al. (109) Review of Artificial Intelligence Techniques in Imaging Data Acquisition, 
Segmentation and Diagnosis for COVID-19

CT and X-ray 2021

Zech et al. (110) Detect pneumonia on chest radiographies Chest Xray 2018

Castillo-Saldana et al. (111) Obtain specific metrics of pneumonia lesions to give a damage degree for chronic 
obstructive pulmonary disease and fibrotic interstitial lung disease

CT 2020

Li et al. (113) Use of artificial Intelligence to distinguish between COVID-19 from Community 
Acquired Pneumonia on chest CT

Chest CT image 2020

CT, computer tomography; COPD, chronic obstructive pulmonary disease.
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Imagen original Resultados
(IA para segmentación y detección de lesiones)

Resultados
IA-Red CNN para clasificación:

La imagen puede corresponder a: covid-19
Probabilidad de covid-19: 99.996%

Pulmón =49.034% (Contorno en color negro)
Pulmón sano =65.606% Vidrio despulido =
31.62% (Contorno en color rojo)
Consolidacion =2.204% (Contorno en color
verde)

Figure 10 AI-based online tool that predicts COVID-19 and segments (green and red contours) lung lesions associated to the disease  
(https://www.imagensalud.unam.mx).

Table 8 Gastrointestinal and liver diseases. Selection of relevant works of different methods in gastrointestinal area

Selected works Description Type of images Year

Le Berre et al. (114) Review of a 10-year compilation of contributions that include machine learning and 
deep learning technologies for diagnosis of intestinal lesions, polyp’s cancer, as well as 
premalignant and malignant analysis of the upper gastrointestinal tract

Endoscopy 2020

Kudo et al. (115) Identification of neoplasms through endoscopic images with high accuracy and low 
interobserver variation

Endoscopy 2020

Vivanti et al. (116) Automatic detection of tumors to evaluate liver CT scan studies CT 2017

Liu et al. (117) CNN method to detect liver cirrhosis with classification accuracy of 86.9% US 2017

Biswas et al. (118) Deep learning technique for detection of hypoechoic fatty liver diseases and stratification 
of normal and abnormal (fatty) ultrasound liver images

US 2018

Yasaka et al. (119) CNN lesions classification method with an average accuracy of 84% for several liver 
lesions, malignant tumors, other mass-like lesions, and cysts

CT 2018

Ibragimov et al. (120) CNN anatomical segmentation method for portal vein segmentation, with results of 83% 
for Dice coefficient 

CT 2017

US, ultrasound; CT, computed tomography; CNN, convolutional neural network.

Liver diseases

Nonalcoholic fatty liver disease (NAFLD) comprises a 
broad clinical spectrum which ranges from simple hepatic 
steatosis to more advanced stages such as non-alcoholic 
steatohepatitis (NASH), liver cirrhosis, and in certain cases 
it can lead to hepatocellular carcinoma (HCC) (121,122). 
Currently, it is considered the most prevalent chronic liver 
disease worldwide.

Predictions show a discouraging picture which brings 
greater costs associated with health, and a worse prognosis 
for patients. In this context, it is very important to identify 
patients who are at a higher risk of developing chronic 
liver disease in order to prevent cirrhosis progression or 
development of HCC (123,124).

AI has been used to assess patients with this disease,  
13 studies used data from electronic medical records and/or 
biologic features to build the algorithms and three studies 

used data from elastography. These models identified their 
target factor with approximately 80% accuracy (114).

Several authors have applied AI to assist liver disease 
diagnosis, such as focal liver lesion detection, segmentation 
and evaluation, as well as diffuse liver staging. Most 
techniques use CT, MRI or Ultrasound images and the 
reported results are very promising.

In the case of tumor detection methods based on CNN 
with CT images have shown to increase the precision rate to 
86% compared with the 72% of human performance (116). 
In the case of ultrasound Liu et al. (117) developed a CNN 
method that can detect liver cirrhosis with a classification 
accuracy of 86.9%. In the case of fat liver disease and 
stratification Biswas et al. (118) applied a DL technique for 
detection of hypoechoic fatty liver diseases and stratification 
of normal and abnormal (fatty) ultrasound liver images. 
They created a ML application for tissue characterization 
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and risk assessment, composed of three different algorithms, 
namely SVM, extreme learning machines and a DL 
CNN model. The ultrasound images of 63 patients were 
annotated as normal and abnormal depending upon the 
biopsy laboratory tests. The report shows an astonishing 
accuracy of 100% with the DL CNN system.

Recent developments have been directed to specific 
problems such as detection of fatty liver disease, tumor 
detection, metastasis prediction with high performance 
rates, often above 90% of accuracy (125).

An advanced method (119) based on a CNN with 
CT images shows an average accuracy of 84% in the 
classification of several liver lesions, i.e., HCC, other 
malignant tumors, other mass-like lesions, and cysts.

Ibragimov et al. (120) showed a Dice coefficient of 83% 
with a CNN working on CT images in the case of portal 
vein segmentation.

The future of AI in liver medical care lies in the 
implementation of fully automated clinical tasks to help 
complex diagnosis. This implies to overcome present day 
limitations of ML technique such as multiple tasking. 
Massive efforts to gather annotated image and clinical data 
are also needed.

Discussion and conclusions

In this paper we presented several examples where CV and 
ML have been successfully used in medical applications 
in different organs, pathologies, and image modalities. 
These technologies have the potential to impact on public 
health as they can increase the capabilities of general 
practitioners and help in the standardization of the 
decision-making process, especially in regions where there 
is a lack of medical specialists in local clinics. Although 
these advantages have push towards constant update of the 
performance results across different applications, there exist 
some challenges that are commonly encountered, giving 
room for improvement.

Though multiple databases have emerged in the last 
decade there is still need for more information in the 
medical field, the need of databases with expert-annotated 
ground truth that supports the creation and performance 
of these methods is still an important issue. Benchmark 
datasets, accessible to the public, can be valuable to 
compare existing approaches, discover useful strategies and 
help researchers to build better approaches. The lack of 
up-to-date benchmark databases is due to several factors, 

among them, restrictions in clinical environments and 
lack of medical experts willing to annotate large amounts 
of data. The latter being a task that is challenging since 
manual segmentation is a tedious task that is prone to 
errors due to inter and intra observer variability. Although 
an incredible effort has been done, including many years 
of work and large quantities of spending resources, the 
amount of sufficient and balanced data to evaluate the 
performance of different techniques applied to the medical 
field is scarce, compared with the large amount of publicly 
available datasets in other areas such as ImageNet, COCO 
dataset, Google’s Open Images. There is a clear need of 
new medical workflows that enables to overcome the above-
mentioned problems, but it is equally important to foster 
research on new AI techniques that are less dependent on 
big data quantities neither so computationally demanding. 

Although transfer learning and data augmentation are 
commonly used to address the issue of small datasets, 
research on how to improve cross-domain and cross-
modal learning and augmentation in the medical field is a 
most needed task. A promising paradigm in ML is meta-
learning. This includes a series of methods that aim at using 
previously learned knowledge to solve related tasks. In 
medical imaging this opens new possibilities to overcome 
the problem of limited data sets. For instance, a model 
that learned to classify anatomical structures in a given 
modality, e.g., CT, can use that knowledge to classify the 
same structures in other modalities like MRI or ultrasound. 
Likewise, a model that learned to segment a given structure, 
e.g., a cardiac cavity, can use that knowledge to learn to 
segment other cavities without the need to train a new 
model from scratch. 

Another topic that has recently called for attention in 
automatic methods for medical imaging is the need to 
account not only with high accuracy and precision but 
also with a measure of how certain the response given by 
an automatic method is. This is the case, for instance, of 
the Bayesian DL networks that include a probabilistic 
model that allows to quantify the uncertainty of a decision. 
An uncertainty measure provides the radiologist with an 
additional confidence parameter to emit a diagnosis assisted 
by an automatic method. 

Finally, hybrid methods that combine conventional ML 
techniques with current state-of-the-art DL methods are 
also promising alternatives that have shown significant 
improvements over single methods. In addition, current 
computing capabilities have allowed these techniques to 
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become increasingly popular, opening new challenges to the 
scientific community for developing and implementing fully 
automated real-time clinical tasks to help complex diagnosis 
and procedures.

Acknowledgments

Funding: This work has been sponsored by UNAM PAPIIT 
grants TA101121 and IV100420, and SECTEI grant 
202/2019. 

Footnote

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at http://dx.doi.
org/10.21037/qims-20-1151). The authors have no conflicts 
of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. 

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. GBD 2013 Mortality and Causes of Death Collaborators. 
Global, regional, and national age-sex specific all-cause 
and cause-specific mortality for 240 causes of death, 1990-
2013: a systematic analysis for the Global Burden of 
Disease Study 2013. Lancet 2015;385:117-71.

2. Beard JR, Officer A, de Carvalho IA, Sadana R, Pot AM, 
Michel JP, Lloyd-Sherlock P, Epping-Jordan JE, Peeters 
GMEEG, Mahanani WR, Thiyagarajan JA, Chatterji 
S. The World report on ageing and health: a policy 
framework for healthy ageing. Lancet 2016;387:2145-54.

3. Marengoni A, Angleman S, Melis R, Mangialasche F, 
Karp A, Garmen A, Meinow B, Fratiglioni L. Aging with 
multimorbidity: a systematic review of the literature. 

Ageing Res Rev 2011;10:430-9.
4. Dagenais GR, Leong DP, Rangarajan S, Lanas F, Lopez-

Jaramillo P, Gupta R, Diaz R, Avezum A, Oliveira GBF, 
Wielgosz A, Parambath SR, Mony P, Alhabib KF, Temizhan 
A, Ismail N, Chifamba J, Yeates K, Khatib R, Rahman 
O, Zatonska K, Kazmi K, Wei L, Zhu J, Rosengren A, 
Vijayakumar K, Kaur M, Mohan V, Yusufali A, Kelishadi R, 
Teo KK, Joseph P, Yusuf S. Variations in common diseases, 
hospital admissions, and deaths in middle-aged adults in 21 
countries from five continents (PURE): a prospective cohort 
study. Lancet 2020;395:785-94.

5. World Health Organization. WHO report on cancer: 
setting priorities, investing wisely and providing care for 
all. Geneva: World Health Organization, 2020. License: 
CC BY-NC-SA 3.0 IGO.

6. Wolff JL, Starfield B, Anderson G. Prevalence, expenditures, 
and complications of multiple chronic conditions in the 
elderly. Arch Intern Med 2002;162:2269-76.

7. Maresova P, Javanmardi E, Barakovic S, Barakovic Husic J, 
Tomsone S, Krejcar O, Kuca K. Consequences of chronic 
diseases and other limitations associated with old age - a 
scoping review. BMC Public Health 2019;19:1431.

8. Kontos D, Summers RM, Giger M. Special Section Guest 
Editorial: Radiomics and Deep Learning. J Med Imaging 
(Bellingham) 2017;4:041301.

9. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine 
Learning for Medical Imaging. Radiographics 
2017;37:505-15.

10. Patel VL, Shortliffe EH, Stefanelli M, Szolovits P, 
Berthold MR, Bellazzi R, Abu-Hanna A. The coming of 
age of artificial intelligence in medicine. Artif Intell Med 
2009;46:5-17.

11. Moor J. The Dartmouth College Artificial Intelligence 
Conference: The Next Fifty Years. AI Magazine 
2006;27:87.

12. Kononenko I. Machine learning for medical diagnosis: 
history, state of the art and perspective. Artif Intell Med 
2001;23:89-109.

13. Krizhevsky A, Sutskever I, Hinton GE. ImageNet 
Classification with Deep Convolutional Neural Networks. 
In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, 
editors. NeurIPS Proceedings (2018). Curran Associates, 
Inc., 2012:1097-105

14. Shen D, Wu G, Suk HI. Deep Learning in Medical Image 
Analysis. Annu Rev Biomed Eng 2017;19:221-48.

15. The ISIC 2020 Challenge Dataset. 2020 Jun. [accessed 29 
Jun, 2020]. Available online: https://challenge2020.isic-
archive.com/

http://dx.doi.org/10.21037/qims-20-1151
http://dx.doi.org/10.21037/qims-20-1151
https://creativecommons.org/licenses/by-nc-nd/4.0/


3849Quantitative Imaging in Medicine and Surgery, Vol 11, No 8 August 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(8):3830-3853 | http://dx.doi.org/10.21037/qims-20-1151

16. World Health Organization. Cardiovascular diseases 
(CVD) 2019. Available online: https://www.who.int/
health-topics/cardiovascular-diseases/. [Online; accessed: 
May 11th 2020].

17. Ventura-Clapier R. Encyclopedia of Exercise Medicine in 
Health and Disease. Springer Berlin Heidelberg, 2012.

18. Chen C, Qin C, Qiu H, Tarroni G, Duan J, Bai 
W, Rueckert D. Deep Learning for Cardiac Image 
Segmentation: A Review. Front Cardiovasc Med 2020;7:25.

19. Petitjean C, Dacher JN. A review of segmentation 
methods in short axis cardiac MR images. Med Image Anal 
2011;15:169-84.

20. Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, 
Morganti AG, Bellomi M. Radiomics: the facts and the 
challenges of image analysis. Eur Radiol Exp 2018;2:36.

21. Sunnybrook Cardiac Data 2009. Cardiac MR Left 
Ventricle Segmentation Challenge. Available online: 
http://www.cardiacatlas.org/studies/sunnybrook-cardiac-
data/. [Online; accessed: January 26th 2020].

22. CAMUS Database. Available online: https://www.creatis.
insa-lyon.fr/Challenge/camus. 2019. [Online; accessed: 
December 1st 2019].

23. Carbajal-Degante E, Avendaño S, Ledesma L, Olveres 
J, Escalante-Ramírez B. Active contours for multi-
region segmentation with a convolutional neural network 
initialization. SPIE Photonics Europe Conference, 
2020:36-44.

24. Avendaño S, Olveres J, Escalante-Ramírez B. 
Segmentación de Imágenes Médicas mediante UNet. 
In: Reunión Internacional de Inteligencia Artificial y sus 
Aplicaciones RIIAA 2.0, Aug 2019

25. Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, 
Beussink-Nelson L, Lassen MH, Fan E, Aras MA, Jordan 
C, Fleischmann KE, Melisko M, Qasim A, Shah SJ, 
Bajcsy R, Deo RC. Fully Automated Echocardiogram 
Interpretation in Clinical Practice. Circulation 
2018;138:1623-35.

26. Mira C, Moya-Albor E, Escalante-Ramírez B, Olveres J, 
Brieva J, Venegas E. 3D Hermite Transform Optical Flow 
Estimation in Left Ventricle CT Sequences. Sensors (Basel) 
2020;20:595.

27. WHO. WHO position paper on mammography screening. 
2014. Available online: https://www.who.int/cancer/
publications/mammography_screening/en/

28. Devolli-Disha E, Manxhuka-Kërliu S, Ymeri H, Kutllovci 
A. Comparative accuracy of mammography and ultrasound 
in women with breast symptoms according to age and 
breast density. Bosn J Basic Med Sci 2009;9:131-6.

29. Stavros AT, Thickman D, Rapp CL, Dennis MA, Parker 
SH, Sisney GA. Solid breast nodules: use of sonography 
to distinguish between benign and malignant lesions. 
Radiology 1995;196:123-34.

30. Chen DR, Chang RF, Wu WJ, Moon WK, Wu WL. 
3-D breast ultrasound segmentation using active contour 
model. Ultrasound Med Biol 2003;29:1017-26.

31. Moon WK, Lo CM, Chen RT, Shen YW, Chang JM, 
Huang CS, Chen JH, Hsu WW, Chang RF. Tumor 
detection in automated breast ultrasound images using 
quantitative tissue clustering. Med Phys 2014;41:042901.

32. Madabhushi A, Metaxas DN. Combining low-, high-
level and empirical domain knowledge for automated 
segmentation of ultrasonic breast lesions. IEEE Trans Med 
Imaging 2003;22:155-69.

33. Abd-Elmoniem KZ, Youssef AB, Kadah YM. Real-
time speckle reduction and coherence enhancement in 
ultrasound imaging via nonlinear anisotropic diffusion. 
IEEE Trans Biomed Eng 2002;49:997-1014.

34. Bader W, Böhmer S, van Leeuwen P, Hackmann J, 
Westhof G, Hatzmann W. Does texture analysis improve 
breast ultrasound precision? Ultrasound Obstet Gynecol 
2000;15:311-6.

35. Liu B, Cheng HD, Huang J, Tian J, Tang X, Liu J. Fully 
automatic and segmentation-robust classification of breast 
tumors based on local texture analysis of ultrasound 
images. Pattern Recognit 2010;43:280-98.

36. Chen WM, Chang RF, Kuo SJ, Chang CS, Moon WK, 
Chen ST, Chen DR. 3-D ultrasound texture classification 
using run difference matrix. Ultrasound Med Biol 
2005;31:763-70.

37. Xian M, Zhang Y, Cheng HD, Xu F, Zhang B, Ding 
J. Automatic breast ultrasound image segmentation: A 
survey. Pattern Recognit 2018;79:340-55.

38. Torres F, Escalante-Ramirez B, Olveres J, Yen PL. Lesion 
Detection in Breast Ultrasound Images Using a Machine 
Learning Approach and Genetic Optimization. Lecture 
Notes in Computer Science, 2019:289-301.

39. Yap MH, Edirisinghe EA, Bez HE. A novel algorithm for 
initial lesion detection in ultrasound breast images. J Appl 
Clin Med Phys 2008;9:2741.

40. Mainiero MB, Goldkamp A, Lazarus E, Livingston 
L, Koelliker SL, Schepps B, Mayo-Smith WW. 
Characterization of breast masses with sonography: can 
biopsy of some solid masses be deferred? J Ultrasound 
Med 2005;24:161-7.

41. Huang SF, Chen YC, Woo KM. Neural network analysis 
applied to tumor segmentation on 3D breast ultrasound 



3850 Olveres et al. CV and AI in medical images

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(8):3830-3853 | http://dx.doi.org/10.21037/qims-20-1151

images. 2008 Proc IEEE Int Symp Biomed Imaging, 
2008:1303-6.

42. Cao Z, Duan L, Yang G, Yue T, Chen Q. An experimental 
study on breast lesion detection and classification from 
ultrasound images using deep learning architectures. BMC 
Med Imaging 2019;19:51.

43. Chiao JY, Chen KY, Liao KY, Hsieh PH, Zhang G, 
Huang TC. Detection and classification the breast tumors 
using mask R-CNN on sonograms. Medicine (Baltimore) 
2019;98:e15200.

44. Huang Q, Luo Y, Zhang Q. Breast ultrasound image 
segmentation: a survey. Int J Comput Assist Radiol Surg 
2017;12:493-507.

45. Fenster A, Parraga G, Bax J. Three-dimensional 
ultrasound scanning. Interface Focus 2011;1:503-19.

46. Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Dataset 
of breast ultrasound images. Data Brief 2019;28:104863.

47. Kanitakis J. Anatomy, histology and immunohistochemistry 
of normal human skin. Eur J Dermatol 2002;12:390-401.

48. American Cancer Society. Cancer Facts & Figures 2019. 
Available online: https://www.cancer.org/research/cancer-
facts-statistics/all-cancer-facts-figures/cancer-facts-
figures-2019.html [Online; accessed: December 1st 2019].

49. Schadendorf D, Hauschild A. Melanoma in 2013: 
Melanoma—the run of success continues. Nat Rev Clin 
Oncol 2014;11:75.

50. Camacho LCP, Gerson CR, Góngora JMÁ, Villalobos PA, 
Blanco VYC, López RO. Actualidades para el tratamiento 
del melanoma metastásico, estado del arte. Anales 
Médicos de la Asociación Médica del Centro Médico ABC 
2017;62:196-207.

51. Orendain-Koch N, Ramos-Álvarez MP, Ruiz-Leal AB, 
Sánchez-Dueñas LE, Crocker-Sandoval AB, Sánchez-
Tenorio T, Izquierdo-Álvarez J. Melanoma en la práctica 
privada en México: un diagnóstico oportuno. Dermatol 
Rev Mex 2015;59:89-97.

52. Johr RH. Dermoscopy: alternative melanocytic algorithms-
the ABCD rule of dermatoscopy, menzies scoring method, 
and 7-point checklist. Clin Dermatol 2002;20:240-7.

53. Codella NCF, Gutman D, Celebi ME, Helba B, Marchetti 
MA, Dusza SW, Kalloo A, Liopyris K, Mishra N, Kittler 
H, Halpern A. Skin Lesion Analysis Toward Melanoma 
Detection: A Challenge at the 2017 International 
Symposium on Biomedical Imaging (ISBI), Hosted by 
the International Skin Imaging Collaboration (ISIC). 
2018 IEEE 15th International Symposium on Biomedical 
Imaging (ISBI 2018). IEEE, 2018:168-72.

54. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau 

HM, Thrun S. Dermatologist-level classification of skin 
cancer with deep neural networks. Nature 2017;542:115-8. 
Erratum in: Nature. 2017 Jun 28;546(7660):686.

55. Fujisawa Y, Otomo Y, Ogata Y, Nakamura Y, Fujita R, 
Ishitsuka Y, Watanabe R, Okiyama N, Ohara K, Fujimoto 
M. Deep-learning-based, computer-aided classifier 
developed with a small dataset of clinical images surpasses 
board-certified dermatologists in skin tumour diagnosis. 
Br J Dermatol 2019;180:373-81.

56. DeVries T, Ramachandram D. Skin lesion classification 
using deep multi-scale convolutional neural networks. 
arXiv preprint arXiv:170301402. 2017.

57. Mahbod A, Ecker R, Ellinger I. Skin lesion classification 
using hybrid deep neural networks. arXiv preprint 
arXiv:170208434. 2017.

58. Harangi B. Skin lesion classification with ensembles of 
deep convolutional neural networks. J Biomed Inform 
2018;86:25-32.

59. Menegola A, Tavares J, Fornaciali M, Li LT, Avila S, Valle 
E. RECOD titans at ISIC challenge 2017. arXiv preprint 
arXiv:170304819. 2017.

60. Liu Y, Jain A, Eng C, Way DH, Lee K, Bui P, Kanada K, 
de Oliveira Marinho G, Gallegos J, Gabriele S, Gupta V, 
Singh N, Natarajan V, Hofmann-Wellenhof R, Corrado 
GS, Peng LH, Webster DR, Ai D, Huang SJ, Liu Y, 
Dunn RC, Coz D. A deep learning system for differential 
diagnosis of skin diseases. Nat Med 2020;26:900-8.

61. Osinga D. Deep Learning Cookbook: Practical Recipes to 
Get Started Quickly. 1st column. O’Reilly Media; 2018.

62. Redmon J, Farhadi A. Yolov3: An incremental 
improvement. arXiv preprintarXiv:180402767. 2018.

63. Kumar D, Hani AFM, editors. Optical imaging for 
biomedical and clinical applications. 1st editon. Boca 
Raton: CRC Press/Taylor & Francis, 2018

64. Heintzmann R, Gustafsson MGL. Subdiffraction 
resolution in continuous samples. Nat Photonics 
2009;3:362-4.

65. Kothari S, Phan JH, Wang MD. Eliminating tissue-
fold artifacts in histopathological whole-slide images for 
improved image-based prediction of cancer grade. J Pathol 
Inform 2013;4:22.

66. Khan AM, Rajpoot N, Treanor D, Magee D. A Nonlinear 
Mapping Approach to Stain Normalization in Digital 
Histopathology Images Using Image-Specific Color 
Deconvolution. IEEE Trans Biomed Eng 2014;61:1729-38.

67. Rubin R. Rubin's pathology: clinicopathologic foundations 
of medicine. Strayer DS, Rubin E, McDonald JM, 
Michalopoulos GK, editors. 5th edition. Lippincott 



3851Quantitative Imaging in Medicine and Surgery, Vol 11, No 8 August 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(8):3830-3853 | http://dx.doi.org/10.21037/qims-20-1151

Williams & Wilkins, 2008
68. Vardiman JW. The World Health Organization (WHO) 

classification of tumors of the hematopoietic and lymphoid 
tissues: An overview with emphasis on the myeloid 
neoplasms. Chem Biol Interact 2010;184:16-20.

69. Shamir L, Orlov N, Mark Eckley D, Macura TJ, 
Goldberg IG. IICBU 2008: a proposed benchmark suite 
for biological image analysis. Med Biol Eng Comput 
2008;46:943-7.

70. Sertel O, Kong J, Lozanski G, Arwa Sa, Catalyurek 
U, Saltz J, Gurcan M, editors. Texture classification 
using nonlinear color quantization: Application to 
histopathological image analysis. Proc IEEE Int Conf 
Acoust Speech Signal Process, 2008:507-600

71. Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal 
cancer: incidence, mortality, survival, and risk factors. Prz 
Gastroenterol 2019;14:89-103.

72. Linder N, Konsti J, Turkki R, Rahtu E, Lundin M, 
Nordling S, Haglund C, Ahonen T, Pietikäinen M, 
Lundin J. Identification of tumor epithelium and stroma 
in tissue microarrays using texture analysis. Diagn Pathol 
2012;7:22.

73. Nava R, González G, Kybic J, Escalante-Ramírez B. 
Characterization of hematologic malignancies based on 
discrete orthogonal moments. 2016 Sixth International 
Conference on Image Processing Theory, Tools and 
Applications (IPTA). 12-15 Dec. 2016; Oulu, Finland. 
IEEE, 2016:1-6.

74. Flusser J, Suk T, Zitova B. 2D and 3D Image Analysis by 
Moments. John Wiley & Sons, 2016.

75. González G, Nava R, Escalante-Ramírez B. A Comparative 
Study on Discrete Shmaliy Moments and Their Texture-
Based Applications. Math Probl Eng 2018;2018:1673283.

76. Marcos JV, Cristóbal G. Texture classification using 
discrete Tchebichef moments. J Opt Soc Am A Opt Image 
Sci Vis 2013;30:1580-91.

77. Mukundan R, Ong SH, Lee PA. Image analysis by 
Tchebichef moments. IEEE Trans Image Process 
2001;10:1357-64.

78. Nava R, González G, Kybic J, Escalante-Ramírez 
B. Classification of Tumor Epithelium and Stroma 
in Colorectal Cancer Based on Discrete Tchebichef 
Moments. In: Laura CO, Shekhar R, Wesarg S, Gonzalez 
Ballester MÁ, Drechsler K, Sato Y, Erdt M, Linguraru 
MG. editors. Clinical Image-Based Procedures. 
Translational Research in Medical Imaging. CLIP 2015. 
Lecture Notes in Computer Science, vol 9401. Springer, 
Cham, 2016:78-87.

79. Huang Y, Zheng H, Liu C, Ding X, Rohde GK. 
Epithelium-Stroma Classification via Convolutional 
Neural Networks and Unsupervised Domain Adaptation 
in Histopathological Images. IEEE J Biomed Health 
Inform 2017;21:1625-32.

80. Yu X, Zheng H, Liu C, Huang Y, Ding X. Classify 
epithelium-stroma in histopathological images based on 
deep transferable network. J Microsc 2018;271:164-73.

81. Kather JN, Bello-Cerezo R, Di Maria F, van Pelt GW, 
Mesker WE, Halama N, Bianconi F. Classification of 
Tissue Regions in Histopathological Images: Comparison 
Between Pre-Trained Convolutional Neural Networks 
and Local Binary Patterns Variants. Nanni L, Brahnam S, 
Brattin R, Ghidoni S, Jain LC, editors. Deep Learners and 
Deep Learner Descriptors for Medical Applications 2020. 
Intelligent Systems Reference Library. Springer, 2020:95-115

82. Meng T, Lin L, Shyu ML, Chen SC, editors. Histology 
Image Classification Using Supervised Classification and 
Multimodal Fusion. 2010 IEEE International Symposium 
on Multimedia; 13-15 Dec. 2010; Taichung, Taiwan. 
IEEE, 2010:145-52.

83. Orlov NV, Chen WW, Eckley DM, Macura TJ, Shamir 
L, Jaffe ES, Goldberg IG. Automatic Classification 
of Lymphoma Images With Transform-Based 
Global Features. IEEE Trans Inf Technol Biomed 
2010;14:1003-13.

84. Xu J, Luo X, Wang G, Gilmore H, Madabhushi A. A 
Deep Convolutional Neural Network for segmenting and 
classifying epithelial and stromal regions in histopathological 
images. Neurocomputing 2016;191:214-23.

85. Bianconi F, Bello-Cerezo R, Napoletano P. Improved 
opponent color local binary patterns: an effective local 
image descriptor for color texture classification. J Electron 
Imaging 2017;27:011002.

86. Song Y, Li Q, Huang H, Feng D, Chen M, Cai W. 
Low Dimensional Representation of Fisher Vectors 
for Microscopy Image Classification. IEEE Trans Med 
Imaging 2017;36:1636-49.

87. Luan S, Chen C, Zhang B, Han J, Liu J. Gabor 
Convolutional Networks. IEEE Trans Image Process 
2018;27:4357-66.

88. Dolz J, Massoptier L, Vermandel M. Segmentation 
algorithms of subcortical brain structures on MRI 
for radiotherapy and radiosurgery: A survey. IRBM 
2015;36:200-12.

89. González-Villà S, Oliver A, Valverde S, Wang L, 
Zwiggelaar R, Lladó X. A review on brain structures 
segmentation in magnetic resonance imaging. Artif Intell 



3852 Olveres et al. CV and AI in medical images

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(8):3830-3853 | http://dx.doi.org/10.21037/qims-20-1151

Med 2016;73:45-69.
90. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, 

Haselgrove C, van der Kouwe A, Killiany R, Kennedy 
D, Klaveness S, Montillo A, Makris N, Rosen B, Dale 
AM. Whole brain segmentation: automated labeling of 
neuroanatomical structures in the human brain. Neuron 
2002;33:341-55.

91. Scherrer B, Dojat M, Forbes F, Garbay C. LOCUS: LOcal 
Cooperative Unified Segmentation of MRI Brain Scans. 
Med Image Comput Comput Assist Interv 2007;10:219-27.

92. Carbajal-Degante E, Olveres J, Escalante-Ramírez B. A 
multiphase active contour model based on the Hermite 
transform for texture segmentation. Proceedings Volume 
10679, Optics, Photonics, and Digital Technologies for 
Imaging Applications V; 106791H. 2018:364-72.

93. Jorge Cardoso M, Leung K, Modat M, Keihaninejad 
S, Cash D, Barnes J, Fox NC, Ourselin S; Alzheimer’s 
Disease Neuroimaging Initiative. STEPS: Similarity and 
Truth Estimation for Propagated Segmentations and 
its application to hippocampal segmentation and brain 
parcelation. Med Image Anal 2013;17:671-84.

94. Pipitone J, Park MT, Winterburn J, Lett TA, Lerch JP, 
Pruessner JC, Lepage M, Voineskos AN, Chakravarty 
MM; Alzheimer's Disease Neuroimaging Initiative. 
Multi-atlas segmentation of the whole hippocampus and 
subfields using multiple automatically generated templates. 
Neuroimage 2014;101:494-512.

95. Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A 
Bayesian model of shape and appearance for subcortical 
brain segmentation. NeuroImage 2011;56:907-22.

96. Gao Y, Corn B, Schifter D, Tannenbaum A. Multiscale 3D 
shape representation and segmentation with applications 
to hippocampal/caudate extraction from brain MRI. Med 
Image Anal 2012;16:374-85.

97. Li DH, He YC, Liu J, Chen SD. Diagnostic Accuracy 
of Transcranial Sonography of the Substantia Nigra in 
Parkinson's disease: A Systematic Review and Meta-
analysis. Sci Rep 2016;6:20863

98. Olveres J, Carbajal-Degante E, Escalante-Ramírez B, 
Vallejo E, García-Moreno CM. Deformable Models for 
Segmentation Based on Local Analysis. Math Probl Eng 
2017;2017:1646720.

99. Milletari F, Ahmadi SA, Kroll C, Plate A, Rozanski 
V, Maiostre J, et al. Hough-CNN: Deep learning 
for segmentation of deep brain regions in MRI and 
ultrasound. Comput Vis Image Underst 2017;164:92-102.

100. Kushibar K, Valverde S, González-Villà S, Bernal J, 
Cabezas M, Oliver A, Lladó X. Automated sub-cortical 

brain structure segmentation combining spatial and deep 
convolutional features. Med Image Anal 2018;48:177-86.

101. Perlmutter JS, Mink JW. Deep brain stimulation. Annu 
Rev Neurosci 2006;29:229-57.

102. WHO. Chronic obstructive pulmonary disease (COPD). 
World Health Organization: WHO. [Online; accessed: 
October 4th 2020]. Available online: https://www.who.
int/news-room/fact-sheets/detail/chronic-obstructive-
pulmonary-disease-(copd)

103. Diab N, Gershon AS, Sin DD, Tan WC, Bourbeau J, 
Boulet LP, Aaron SD. Underdiagnosis and Overdiagnosis 
of Chronic Obstructive Pulmonary Disease. Am J Respir 
Crit Care Med 2018;198:1130-9.

104. Bibault JE, Xing L. Screening for chronic obstructive 
pulmonary disease with artificial intelligence. Lancet Digit 
Health 2020;2:e216-7.

105. Mekov E, Miravitlles M, Petkov R. Artificial intelligence 
and machine learning in respiratory medicine. Expert Rev 
Respir Med 2020;14:559-64.

106. Afzali A, Mofrad FB, Pouladian M. Contour-based 
lung shape analysis in order to tuberculosis detection: 
modeling and feature description. Med Biol Eng Comput 
2020;58:1965-86.

107. Selvan R, Dam EB, Detlefsen NS, Rischel S, Sheng K, 
Nielsen M, Pai A. Lung Segmentation from Chest X-rays 
using Variational Data Imputation. Lung Segmentation 
from Chest X-rays using Variational Data Imputation. 
Presented at the first Workshop on the Art of Learning 
with Missing Values (Artemiss) hosted by the 37th 
International Conference on Machine Learning (ICML). 
Jul 2020.

108. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, 
Ding D, Bagul A, Langlotz C, Shpanskaya K, Lungren 
MP, Ng AY. CheXNet: Radiologist-Level Pneumonia 
Detection on Chest X-Rays with Deep Learning. 
arXiv:1711.05225 Nov 2017.

109. Shi F, Wang J, Shi J, Wu Z, Wang Q, Tang Z, He K, Shi 
Y, Shen D. Review of Artificial Intelligence Techniques in 
Imaging Data Acquisition, Segmentation, and Diagnosis 
for COVID-19. IEEE Rev Biomed Eng 2021;14:4-15.

110. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, 
Oermann EK. Variable generalization performance 
of a deep learning model to detect pneumonia in 
chest radiographs: A cross-sectional study. PLoS Med 
2018;15:e1002683.

111. Castillo-Saldana D, Hague CJ, Coxson HO, Ryerson CJ. 
Using Quantitative Computed Tomographic Imaging to 
Understand Chronic Obstructive Pulmonary Disease and 



3853Quantitative Imaging in Medicine and Surgery, Vol 11, No 8 August 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(8):3830-3853 | http://dx.doi.org/10.21037/qims-20-1151

Fibrotic Interstitial Lung Disease: State of the Art and 
Future Directions. J Thorac Imaging 2020;35:246-54.

112. Lippi G, Henry BM. Chronic obstructive pulmonary 
disease is associated with severe coronavirus disease 2019 
(COVID-19). Respir Med 2020;167:105941.

113. Li L, Qin L, Xu Z, Yin Y, Wang X, Kong B, Bai J, Lu Y, 
Fang Z, Song Q, Cao K, Liu D, Wang G, Xu Q, Fang X, 
Zhang S, Xia J, Xia J. Artificial Intelligence Distinguishes 
COVID-19 from Community Acquired Pneumonia on 
Chest CT. Radiology 2020;296:E65-71.

114. Le Berre C, Sandborn WJ, Aridhi S, Devignes MD, 
Fournier L, Smaïl-Tabbone M, Danese S, Peyrin-
Biroulet L. Application of Artificial Intelligence to 
Gastroenterology and Hepatology. Gastroenterology 
2020;158:76-94.e2.

115. Kudo SE, Misawa M, Mori Y, Hotta K, Ohtsuka K, 
Ikematsu H, Saito Y, Takeda K, Nakamura H, Ichimasa 
K, Ishigaki T, Toyoshima N, Kudo T, Hayashi T, 
Wakamura K, Baba T, Ishida F, Inoue H, Itoh H, Oda M, 
Mori K. Artificial Intelligence-assisted System Improves 
Endoscopic Identification of Colorectal Neoplasms. Clin 
Gastroenterol Hepatol 2020;18:1874-1881.e2.

116. Vivanti R, Szeskin A, Lev-Cohain N, Sosna J, Joskowicz 
L. Automatic detection of new tumors and tumor burden 
evaluation in longitudinal liver CT scan studies. Int J 
Comput Assist Radiol Surg 2017;12:1945-57.

117. Liu X, Song JL, Wang SH, Zhao JW, Chen YQ. 
Learning to Diagnose Cirrhosis with Liver Capsule 
Guided Ultrasound Image Classification. Sensors (Basel) 
2017;17:149.

118. Biswas M, Kuppili V, Edla DR, Suri HS, Saba L, Marinhoe 
RT, Sanches JM, Suri JS. Symtosis: A liver ultrasound 

tissue characterization and risk stratification in optimized 
deep learning paradigm. Comput Methods Programs 
Biomed 2018;155:165-77.

119. Yasaka K, Akai H, Abe O, Kiryu S. Deep Learning with 
Convolutional Neural Network for Differentiation of 
Liver Masses at Dynamic Contrast-enhanced CT: A 
Preliminary Study. Radiology 2018;286:887-96.

120. Ibragimov B, Toesca D, Chang D, Koong A, Xing L. 
Combining deep learning with anatomical analysis for 
segmentation of the portal vein for liver SBRT planning. 
Phys Med Biol 2017;62:8943-58.

121. Mendez-Sanchez N, Cruz-Ramon VC, Ramirez-
Perez OL, Hwang JP, Barranco-Fragoso B, Cordova-
Gallardo J. New Aspects of Lipotoxicity in Nonalcoholic 
Steatohepatitis. Int J Mol Sci 2018;19:2034.

122. Méndez-Sánchez N, Chavez-Tapia NC, Almeda-Valdes P, 
Uribe M. The management of incidental fatty liver found 
on imaging. What do we need to do? Am J Gastroenterol 
2018;113:1274-6.

123. Valencia-Rodríguez A, Vera-Barajas A, Barranco-Fragoso 
B, Kúsulas-Delint D, Qi X, Méndez-Sánchez N. New 
insights into the association between non-alcoholic 
fatty liver disease and atherosclerosis. Ann Transl Med 
2019;7:S300.

124. López-Velázquez JA, Silva-Vidal KV, Ponciano-Rodríguez 
G, Chávez-Tapia NC, Arrese M, Uribe M et al. The 
prevalence of nonalcoholic fatty liver disease in the 
Americas. Ann Hepatol 2014;13:166-78.

125. Zhou LQ, Wang JY, Yu SY, Wu GG, Wei Q, Deng YB, 
Wu XL, Cui XW, Dietrich CF. Artificial intelligence 
in medical imaging of the liver. World J Gastroenterol 
2019;25:672-82.

Cite this article as: Olveres J, González G, Torres F,  
Moreno-Tagle JC, Carbajal-Degante E, Valencia-Rodríguez A,  
Méndez-Sánchez N, Escalante-Ramírez B. What is new in 
computer vision and artificial intelligence in medical image 
analysis applications. Quant Imaging Med Surg 2021;11(8):3830-
3853. doi:10.21037/qims-20-1151


