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Introduction

Ultrahigh field (i.e., 7 T and higher) MRI could provide 
a higher signal-to-noise ratio (SNR), better image 
resolution, and improved image contrast (1-3). As the 
Larmor frequency increases with magnetic field strength, 
the resultant high frequency at ultrahigh magnetic fields 
makes the design of large-sized radio-frequency (RF) coils 
challenging. To address this problem, a variety of RF coil 
arrays have been proposed and developed, including the L/C 
loop arrays (4-6), microstrip transmission line arrays (7-12)  
and radiative arrays (13-18). Among them, radiative coil 
arrays, e.g., dipole or monopole arrays, demonstrate their 
unique performance in design simplicity and large imaging 

penetration and coverage, and are increasingly used for 
ultrahigh field MRI.

Minimizing the electromagnetic (EM) coupling among 
coil elements is critical to RF coil array designs, given that 
better decoupling could lead to higher SNR and better 
parallel imaging performance. In telecommunication 
applications, a large amount of studies have been focused 
on reducing the coupling of monopole and dipole antennas. 
In references (19,20), different kinds of metamaterials were 
applied to decouple two nearby monopoles. Above from 
that, hybrid couplers using L/C network or microstrip line 
approach (21,22) have been used to achieve port decoupling 
for monopole or dipole antennas. All these methods could 
suppress the coupling effect, but suffer from complicated 
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structures and might not be suitable for MRI applications.
In reference (23), a decoupling structure using a phase 

shifter and a bridge capacitor was successfully implemented 
to diminish the coupling between two printed monopoles. 
In MRI applications, tunable decoupling networks are 
preferred since different imaging samples or loads might 
cause the change of mutual coupling, consequently the 
fine adjustment of decoupling circuit is often needed. 
Since phase shifters are not easy to adjust in practice, this 
approach might not be suitable in MRI applications. In this 
study, we proposed a combined decoupling and matching 
network (DMN) for radiative coil arrays in ultrahigh field 
MRI, providing a convenient approach to feed and decouple 
radiative RF arrays.

Methods

Figure 1 shows the circuit diagram of the proposed DMN 
for antenna arrays in MRI applications. The DMN was 
accomplished by an interconnecting reactive element (Xc), 
two parallel reactive elements (Xp), and two series reactive 
element (Xs). The reactive element is a capacitor or inductor 
in practice.

Since Xc affects the odd but not the even mode, it can be 
used to make the odd mode impedance approach to the even 
mode impedance. In some special cases where the coupling 
is totally reactive, the even and odd mode impedance at the 

new ports can be equal to each other, which means that the 
new ports are decoupled. In general cases, a more complex 
network, e.g., T-shaped or π-shaped network, is needed for 
decoupling (24). In this study, Xp was partly used to form a 
π-shaped network with Xc for port decoupling, and partly 
used to form an L-shaped network with Xs for port matching.

In order to verify the proposed design, a 2-channel 
monopole array with DMN is numerically computed 
using ANSYS HFSS, as shown in Figure 2. The width and 
length of each monopole element are 1 cm and 25 cm, 
respectively. The distance of the two monopole elements 
is about 6 cm. A cylindrical water phantom with an outer 
diameter of 16 cm and a length of 30 cm is placed 2 cm 
below the monopole elements. The EM parameters of the 
water phantom are set as follows: conductivity σ =0.59 s/m; 
relative permittivity; εr =78. 

For comparison, we also simulated a 2-channel 
monopole array without decoupling treatments and a single 
monopole. Values of all reactive components were obtained 
by RF circuit co-simulation method (25,26). The operate 
frequency is 297.2 MHz, which is the Larmor frequency of 
our unitized 7T MRI scanner.

Results

Simulated S-parameter

Figure 3 depicts the frequency response of the magnitudes 
of the S-parameters, with S11 and S21 representing reflection 
and mutual coupling, respectively. The values of reactive 
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Figure 1 Circuit diagram of the proposed DMN for 2-channel 
antenna arrays. Xc, Xp and Xs corresponds to the interconnecting 
reactive element, parallel reactive elements and series reactive 
element, respectively. DMN, decoupling and matching network.

Figure 2 Simulation geometry of two monopoles with the DMN. 
The width and length of each monopole is 1 cm and 25 cm, 
respectively. The distance between the two monopoles is about 6 
cm. DMN, decoupling and matching network. 
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Figure 3 Simulated S-parameter plots of two monopoles loaded with the water phantom. (A) S11 plot of two coupled monopoles without 
decoupling treatments; (B) S11 plot of two monopoles with the proposed DMN; (C) S21 plot of two coupled monopoles without decoupling 
treatments; (D) S21 plot of two monopoles with the proposed DMN. DMN, decoupling and matching network.
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components used are as follows: Xc =6.6 pF, Xs =13.5 pF,  
Xp =71.9 nH. Figure 3A,C show the S-parameter of two coupled 
monopoles. As can be noticed, mutual coupling between 
the monopoles is nearly −5 dB at desired frequency when 
both monopoles are matched. With the proposed DMNs, 
ports 1 and 2 are well decoupled (−24.8 dB) and matched 
to 50 ohm (Ω) simultaneously, as shown in Figure 3B,D.  
It is worth noting that the S11 bandwidth of decoupled 
monopoles is rather small. This is partly due to the changing 
self-impedance, and partly due to the changing radiation 
pattern of the monopoles.

We also evaluated the normalized noise matrixes (Ψ) of 
the two arrays by calculating Eq. [1] and [2] (27), where Ekm 
is the local electric field of voxel k from channel m, σk is the 
local conductivity of voxel k, ∆x, ∆y and ∆z are the voxel size 
in x, y, and z directions. In this study, the voxel size for noise 
matrix calculation in x, y, z directions is 2, 2 and 5 mm, 
respectively. The noise correlation of the monopole arrays 
without decoupling treatments and with the proposed 
DMN are 0.41 and 0.15, respectively.

[1]

[2]

Current distribution

Figure 4 shows the current distribution of two monopole 
elements when only port 1 was excited with 1W power. 
Figure 4A shows the current distribution of the two close-
spaced monopoles without decoupling treatments. Arrows 
in red color indicate the current directions along the 
monopole elements. It is obvious that the current flows 
into port 2 and the right monopole, leading to strong EM 
coupling between two ports. When the decoupling network 
was added, however, the induced current becomes almost 
zero at the feed-point of the right monopole, as shown in 
Figure 4B. This has also been validated by S-parameter 
results as described above.

From Figure 4B, it is also seen that not the monopole 
elements but the ports are decoupled. That means both 
monopole elements are excited when only one port is 
fed. The current distribution of the two-element array 
is characterized by “large” currents flowing in opposite 
directions. Similar results have also been observed in 
previous study (28). 

Electronic and magnetic field distribution

Figure 5 shows the H field, E field and transmit field (B1
+) 
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Figure 4 Current distribution of two monopoles without decoupling treatments (A) and with the proposed DMN (B). In simulation, only 
port 1 is excited with 1W power. In Figure 4A, obvious induced current is observed in port 2 due to the strong coupling. In Figure 4B, 
almost no current flows into port 2 by using the decoupling and matching network. EM, electromagnetic; DMN, decoupling and matching 
network.

Figure 5 H field, E field and transmit field (B1
+) on the water phantom in the transverse plane (X-Y plane) of single monopole antennas (A1-

A6), two coupled monopole antennas (B1-B6) and two decoupled monopole antennas (C1-C6).
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on the water phantom in the transverse plane of single 
monopole antennas (A1-A6), two coupled monopole 
antennas (B1-B6) and two decoupled monopole antennas 
(C1-C6). In the simulation, one port was excited with 1W 
with the other port terminated with 50 Ω. B1

+ field was 
extracted from simulation by Eq. [3] (29). 

[3]

As expected, part of the power was transferred to the 
other monopole element when no decoupling treatments 
were used, as shown in Figure 5A,B. The field result is 
consistent with the S21 result as described above (about  
−5 dB). It is worth noting that the electromagnetic fields 
of decoupled monopole elements are still different from 
that of single monopole even though the S21 is as low as  
−24.8 dB, as shown in Figure 5A,C. This also indicates that 
the proposed method is a port decoupling method rather 
than an element decoupling method.

Discussion and conclusions

In summary, by applying the proposed L/C network, the 
port isolation between two monopoles can be improved 
from −5 dB to −25 dB meanwhile excellent matching 
performance can also be attained. In the conventional 
approaches, decoupling network and matching network are 
separated which increases the circuit complexity. In this 
study, we utilized a combined DMN and thus the number 
of required components can be minimized. Since less 
number of tuning components is required, this design is 
advantageous to MRI applications.

It is noted that the proposed method is a port decoupling 
approach rather than an element decoupling approach. 
Therefore, the electric and magnetic fields of the decoupled 
monopole are different from those of single monopoles. 
This feature can be seen from Figure 4 that the two 
monopole elements with decoupling network have a similar 
current distribution as the loop coil, with currents on two 
conductors flow in different directions. This makes the 
H field and B1 field strong at the peripheral area on the 
phantom, as shown in Figures 5C1-C6. 

Although this concept was exclusively presented for the 
particular case of a 2-channel monopole array, it can be 
generalized to monopole arrays with more channels, i.e., eight 
channels. Also, the idea can be extended to dipole arrays in 
MRI. In the case of the dipole antenna, the DMN might be 
different from the monopole antenna at certain level because of 
its enlarged self-impedance over that of the monopole antenna.
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