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Background: Stage T1 nasopharyngeal carcinoma (NPCT1) and benign hyperplasia (BH) are 2 common 
causes of nasopharyngeal mucosa/submucosa thickening without specific clinical symptoms. The treatment 
management of these 2 entities is significantly different. Reliable differentiation between the 2 entities is 
critical for the treatment decision and prognosis of patients. Therefore, our study aims to explore the optimal 
energy level of noise-optimized virtual monoenergetic images [VMI (+)] derived from dual-energy computed 
tomography (DECT) to display NPCT1 and BH and to explore the clinical value of DECT for differentiating 
these 2 diseases.
Methods: A total of 91 patients (44 NPCT1, 47 BH) were enrolled. The demarcation of the lesion margins 
and overall image quality, noise, contrast-to-noise ratio (CNR), and signal-to-noise ratio (SNR) were evaluated 
for 40–80 kiloelectron volts (keV) VMIs (+) and polyenergetic images in the contrast-enhanced phase. Image 
features were assessed in the contrast-enhanced images with optimal visualization of NPCT1 and BH. The 
demarcation of NPCT1 and BH in iodine-water maps was also assessed. The contrast-enhanced images were 
used to calculate the slope of the spectral Hounsfield unit curve (λHU) and normalized iodine concentration 
(NIC). The nonenhanced phase images were used to calculate the normalized effective atomic number (NZeff). 
The attenuation values on 40–80 keV VMIs (+) in the contrast-enhanced phase were recorded. The diagnostic 
performance was assessed using receiver operating characteristic (ROC) curve analysis.
Results: The 40 keV VMI (+) in the enhanced phase yielded higher demarcation of the lesion margins 
scores, overall image quality scores, noise, SNR, and CNR values than 50–80 keV VMIs (+) and 
polyenergetic images. NPCT1 yielded higher attenuation values on VMI (+) at 40 keV (A40), NIC, λHU, 
and NZeff values than BH. The multivariate logistic regression model combining image features (tumor 
symmetry) with quantitative parameters (A40, NIC, λHU, and NZeff) yielded the best performance for 
differentiating the 2 diseases (AUC: 0.963, sensitivity: 89.4%, specificity: 93.2%).
Conclusions: The combination of DECT-derived image features and quantitative parameters contributed 
to the differentiation between NPCT1 and BH.
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Introduction

Stage T1 nasopharyngeal carcinoma (NPCT1) and benign 
hyperplasia (BH) are 2 common causes of nasopharyngeal 
mucosa/submucosa thickening without specific clinical 
symptoms (1). The treatment management of these 
2 entities is significantly different. NPCT1 is treated 
with radical radiotherapy, and BH requires no specific  
treatment (2). Therefore, reliable differentiation between 
the 2 entities is critical for the treatment decision and 
prognosis of patients.

The definitive differential diagnosis of NPC and BH is 
reached through endoscopic-guided biopsy (3). However, 
an endoscopic biopsy is limited due to its invasiveness and 
bleeding risk (4).

Magnetic resonance imaging (MRI) is a noninvasive tool 
used for differentiating NPCT1 and BH (5). However, the 
diagnostic accuracy of MRI is limited for these 2 entities 
due to the considerable overlap of MRI features such as 
diffuse symmetrical wall thickening of the nasopharynx 
(1,6-8). Moreover, the wider application of MRI is limited 
by its high cost.

As a recent and noninvasive imaging modality, dual-
energy computed tomography (DECT) can provide 
addit ional  image reconstruct ions  such as  v irtual 
monoenergetic images (VMI) with different kiloelectron 
volts (keV) (9,10). Increasing evidence indicates that VMI 
at 40 keV can improve the visualization of tumors and their 
boundaries in head and neck cancers (11-13). Moreover, a 
novel noise-optimized VMI reconstruction algorithm [VMIs 
(+)] can further improve image quality at low-keV levels 
(14,15). On the other hand, DECT can provide a variety of 
quantitative parameters of tumor characteristics, including 
the normalized iodine concentration (NIC), the slope of the 
spectral Hounsfield unit curve (λHU), and the normalized 
effective atomic number (NZeff) (16-19), allowing for 
accurate differential diagnoses in head and neck neoplasms 
(20-22).

The optimal keV of VMI (+) to display the delineations 
of NPCT1 and BH is unknown but would be very useful for 
accurately delineating the target area of radiotherapy and 
for improving the prognosis of patients. Therefore, our 
study aims to explore the optimal keV of VMI (+) derived 
from DECT for the visualization of NPCT1 and BH and 
to investigate the clinical value of imaging features and 
quantitative parameters in differentiating the 2 entities.

Methods

Patients

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study was 
approved by our hospital's review committee, and written 
informed consent was obtained.

A total of 44 patients (33 males, 11 females; mean 
age, 49 years; range, 28–68 years) with NPCT1 and 47 
patients (33 males, 14 females; mean age, 42 years; range,  
23–60 years) with BH were enrolled between October 
2018 and April 2020. All patients underwent a DECT 
examination. Eligibility criteria were as follows: (I) 
histopathologically confirmed NPCT1s and BHs; (II) 
NPCT1 with the tumor confined to the nasopharynx or only 
extending to the oropharynx and/or nasal fossa according 
to the 8th edition of the American Joint Committee on 
Cancer TNM Staging System (23); and (III) no treatments 
before registration. The exclusion criteria were as follows: (I) 
DECT images were not available because of severe artifacts; 
(II) the mucosal thickness was less than 3 mm.

DECT image acquisition

Dual-phase (nonenhanced phase and contrast-enhanced 
phase) DECT scans from the bottom of the frontal sinus 
to the oral pharynx were acquired with a dual-source 
CT scanner (SOMATOM Drive, Siemens Healthineers, 
Germany). The tube voltages were set at 100 kVp and 
Sn140 kVp (adding the tin filter). Advanced model-based 
iterative reconstruction (strength, 3) and automatic current 
modulation (CARE Dose 4D, Siemens Healthineers 
Germany) were used. The detailed parameters were described 
in our previous study in nasopharyngeal dual-energy CT (24).

Iodine contrast  media  (Loversol ,  320 mg/mL, 
HENGRUI Medicine, Jiangsu, China) was administered 
through the right or left ulnar vein by a dual-head injector. 
The dosage was 1.5 mL/kg, and the flow rate was 2.5 mL/s,  
followed by 20 mL of 0.9% normal saline administered at 
the same flow rate. Contrast-enhanced phase imaging began 
30 s after a threshold of 100 HU in the aortic arch using a 
bolus-tracking technique.

DECT image reconstruction

The postprocessing of CT images was performed on a 
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syngo.via workstation (syngo.via VB20A, Dual Energy, 
Siemens Healthineers, Germany). A mix factor of 0.4 
(M_0.4; 40% of the low kV and 60% of the high-kV 
spectrum) was used for standard polyenergetic image (PEI) 
reconstruction. VMIs (+) were reconstructed at 40–80 
keV levels with an interval of 10 in the contrast-enhanced 
phase because 40–70 keV VMIs (+) were recommended 
for visualization of soft tissue lesions in previous studies 
(11,12,22). The effective atomic number maps were 
reconstructed using the nonenhanced phase images, and 
the iodine-water maps with an iodine concentration (IC) of 
100% were reconstructed using the phase of the contrast-
enhanced image. Transverse sections were reconstructed for 
all series using the following parameters: thickness, 1.5 mm;  
increment, 1.2 mm; and soft-tissue kernel, J30f. These 
series were then transmitted to the local picture archiving 
and communication systems. Two radiologists, readers 
1 and 2 with 10 and 15 years of experience, respectively, 
qualitatively and quantitatively reviewed the DECT data.

Subjective image quality assessment

Two radiologists independently analyzed 40–80 keV VMIs 
(+), PEI (M_0.4), and iodine-water maps with an IC of 
100%. Reader 1 analyzed images twice at an interval of  
1 month. The assessment of subjective image quality 
included the overall image quality and demarcation of the 
lesion margins. Using a 5-point Likert scale, the overall 
image quality (1, unacceptable; 2, suboptimal; 3, adequate; 
4, good; and 5, excellent) and demarcation of the lesion 
margin (ranging from 1 = no visual demarcation to 5 = 
perfect demarcation of contours) were respectively scored.

Objective image quality assessment

Quantitative analyses were performed on the VMIs (+) at 
40–80 keV and PEI (M_0.4). Noise, signal-to-noise ratio 
(SNR) and contrast-to-noise ratio (CNR) were analyzed by 
2 radiologists who were blinded to the histopathological and 
clinical data. Reader 1 analyzed images twice at an interval 
of 1 month. Both readers placed regions of interest (ROIs), 
avoiding any area of gross necrosis, within the following 
regions: nasopharyngeal lesion and right lateral pterygoid 
muscle on the images of the contrast-enhanced phase. The 
standard deviation (SD) of attenuation values in the right 
lateral pterygoid muscle was defined as the noise of images. 
The formulas used to assess image quality quantitatively are 
as follows: 

	Noise = SDright lateral pterygoid muscle; 
	SNR = HUnasopharyngeal lesions/SDright lateral pterygoid muscle; 
	CNR = (HUnasopharyngeal lesions − HUright lateral pterygoid muscle)/

SDright lateral pterygoid muscle.

Image features of DECT assessment

The image features of DECT, including tumor symmetry, 
density homogeneity, and degree of enhancement, were 
independently assessed by 2 radiologists. Reconstruction 
with the highest subjective image quality scores, SNR and 
CNR, in 40–80 keV VMIs (+) and PEI was used for image 
feature assessment of NPC and BH. Tumor symmetry, 
density homogeneity, and degree of enhancement were 
classified according to our previous DECT study in the 
nasopharynx (24).

Quantitative parameters of DECT assessment

Two radiologists independently analyzed iodine-water maps, 
effective atomic number maps, VMIs (+) at 40–80 keV, and 
PEI (M_0.4) data. Reader 1 analyzed images twice at an 
interval of 1 month. ROIs (mean area, 145.67±28.24 mm2; 
range, 57–358 mm2) were placed at the largest diameter 
slice of the primary lesion on the axial images and included 
as much of the lesion as possible and avoided the necrosis 
areas. The IC values of nasopharyngeal lesions and the 
internal jugular vein were measured in the “VNC” mode 
at the syngo.via workstation by using the original contrast-
enhanced images. NIC = IC value of the nasopharyngeal 
lesions/IC value of the internal jugular vein. The Zeff values 
were measured in the “Rho/Zeff” mode at the syngo.via 
workstation by using the nonenhanced phase images. NZeff 
= Zeff value of the nasopharyngeal lesions/Zeff value of the 
internal jugular vein.

The attenuation values of nasopharyngeal lesions on 
VMIs (+) at 40–80 keV (A40, A50, A60, A70, and A80) were 
measured. The λHU values of primary lesions were calculated 
with the following formula: λHU = (A40 – A80)/40. The 
attenuation values of nasopharyngeal lesions in unenhanced 
(An) and enhanced (Ae) PEIs were also measured. Ae minus 
An was ΔA.

Statistical analysis

SPSS statistics version 25.0 software (IBM, Armonk, US) 
was used for statistical analyses. The quadratic weighted 
Cohen’s kappa coefficient (κ) was used for intra- and inter-
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reader agreement of the overall image quality, demarcation 
of the lesion margins, and image feature assessment (κ=0.81–
1.00, excellent; κ=0.61–0.80, substantial; κ=0.41–0.60, 
moderate, κ=0.21–0.40, fair, κ=0.00–0.20, poor). The intra- 
and inter-reader reproducibility of the noise, SNR, CNR, 
attenuation, NIC, NZeff, and λHU values were evaluated 
by the intraclass correlation coefficient (ICC). Qualitative 
data were compared by the χ2 test. The Kolmogorov-
Smirnov test was used for the assessment of the normality 
of quantitative data distribution. The differences between 
quantitative data were compared using the independent 
sample t-test and one-way ANOVA with the Bonferroni 
post hoc test for normal distribution data and the Mann-
Whitney U test and nonparametric Kruskal-Wallis test with 
Bonferroni post hoc test for nonnormal distribution data. 
Receiver operating characteristic (ROC) curve analysis was 
performed to assess the DECT parameters’ performance 
in distinguishing NPCT1 and BH. The Youden index 
determined the optimal threshold, and the area under the 
curve (AUC), sensitivity, and specificity were calculated. 
The Delong test was used to assess the differences in AUCs. 
The independent predictive parameters for discriminating 
the 2 entities were determined by binary logistic regression 
analysis. A two-sided P value <0.05//N (N represented the 
number of groups to compare) was considered statistically 
significant in the Bonferroni post hoc test, and a two-sided 
P value <0.05 was considered statistically different in the 
other tests.

Results

Patient characteristics

Of the 111 patients, 20 patients were excluded because of 
a history of antitumor therapy before DECT examination 
(n=15), unsatisfactory image quality (n=4), and mucosal 
thickness inferior to 3 mm (n=1). The final enrolled patients 
consisted of 44 NPCT1 patients and 47 BH patients. There 
were no intergroup differences in terms of age and sex, and 
the P values were 0.061 and 0.422, respectively.

The average cumulative CT dose index (CTDIvol) and 
dose length product (DLP) for the enrolled patients were 
11.7±2.5 mGy and 106.5±24.6 mGy cm, respectively.

Subjective image quality assessment

The lesion margin's overall image quality and demarcation 
showed excellent intra- and inter-reader agreement (κ 

values ranged from 0.806 to 0.935).
The 40 keV VMI (+) in the enhanced phase yielded 

higher demarcation of the lesion margins scores and overall 
image quality scores than 50–80 keV VMIs (+) and PEI 
(M_0.4) (all P values <0.001; Table 1 and Figures 1,2). The 
40 keV VMI (+) yielded higher demarcation of lesion 
margin scores than iodine-water maps with an IC of 100% 
(P value <0.001; Table 1).

Objective image quality assessment

Intra- and inter-reader agreements were excellent for noise, 
SNR, and CNR (ICC values ranged from 0.836 to 0.935).

The 40 keV VMI (+) yielded higher noise, SNR, and 
CNR than 50–80 keV VMIs (+) and PEI (M_0.4), as shown 
in Table 2 and Figure 3 (all P values <0.001).

Image features of DECT assessment

Intra- and inter-reader agreements were excellent for 
assessing image features (κ values ranged from 0.813 to 
0.902).

Tumor symmetry showed a significant difference 
between NPCT1 and BH (P<0.001). Density homogeneity 
and degree of enhancement (high, intermediate, and low) 
showed no differences between NPCT1 and BH (P values 
were 0.245, 0.947, 0.321, and 0.325, respectively), as shown 
in Table 3.

Quantitative parameters of DECT assessment

Intra- and inter-reader agreements were excellent for the 
NIC, λHU, NZeff, A40, A50, A60, A70, A80, An, Ae, and ΔA (ICC 
values ranged from 0.809 to 0.913).

Compared with BH, NPCT1 yielded higher A40, NIC, 
λHU, and NZeff values (all P values <0.001). There were 
no significant differences in terms of A50, A60, A70, A80, An, 
Ae, and ΔA values between NPCT1 and BH, with P values 
of 0.057, 0.113, 0.068, 0.281, 0.117, 0.513, and 0.115, 
respectively, as shown in Table 4 and Figures 4,5.

Diagnostic performances of combined image features with 
quantitative parameters

Tumor symmetry successfully differentiated NPCT1 from 
BH (AUC: 0.691, sensitivity: 63.6%; specificity: 68.7%). 
The NIC yielded a higher AUC, sensitivity, and specificity 
than λHU, NZeff, and A40 (AUC: 0.825 vs. 0.744 vs. 0.732 
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Table 1 Objective image characteristics for noise-optimized monoenergetic images (40–80 keV), polyenergetic images with a mix factor of 0.4 
(M_0.4), and iodine-water maps with an iodine concentration of 100%

Score 40 keV 50 keV 60 keV 70 keV 80 keV M_0.4 Iodine-water maps P value

Overall image quality

1 0 0 0 0 0 0

2 0 0 2 5 14 11

3 0 15 17 35 54 56

4 19 25 69 51 23 24

5 72 51 3 0 0 0

Total 436 400 346 319 282 286

Mean ± SD 4.8±0.4 4.4±0.7 3.8±0.6 3.5±0.6 3.1±0.5 3.1±0.6 <0.001

Demarcation of lesion margins

1 0 0 0 0 1 1 0

2 0 0 1 5 26 30 3

3 2 17 37 68 63 59 39

4 23 39 32 13 1 1 43

5 66 35 21 5 0 0 6

Total 428 382 346 291 246 242 325

Mean ± SD 4.7±0.5 4.2±0.7 3.8±0.8 3.2±0.7 2.7±0.5 2.7±0.5 3.8±0.8 <0.001

Figure 1 Subjective image characteristics for VMIs (+) at 40–80 keV and PEI (M_0.4). The 40 keV VMI (+) reconstructed by contrast-
enhanced phase images yielded the highest overall image quality scores (A) and demarcation of lesion margins scores (B) compared with 
50–80 keV VMIs (+) and PEI (M_0.4). VMI (+), noise-optimized virtual monoenergetic images; keV, kiloelectron volt; PEI (M_0.4), 
polyenergetic images with a mix factor of 0.4.

vs. 0.727, sensitivity: 79.51% vs. 70.5% vs. 68.2% vs. 
72.7%, specificity: 74.5% vs. 68.1% vs. 68.1% vs. 61.7%, 
all P values <0.001). The multivariate logistic regression 
model combining image features (tumor symmetry) 
with quantitative parameters (A40, NIC, λHU, and NZeff) 
yielded higher AUC (0.963), sensitivity (89.4%), and 

specificity (93.2%) values than any 1 parameter alone for 
differentiating NPCT1 from BH, as shown in Table 5 and 
Figure 6. In terms of AUC, all P values were less than 0.05, 
as shown in Table 5 and Figure 6. The cutoff values of the 
above parameters for differentiating NPCT1 from BH are 
also shown in Table 5.
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Figure 2 Axial enhanced phase images of the 40–80 keV VMIs (+) and PEI (M_0.4) for a 65-year-old man with NPCT1 and a 50-year-
old woman with BH. The 40 keV VMI (+) yielded the highest subjective image quality scores compared with 50–80 keV VMIs (+) and PEI 
(M_0.4). VMI (+), noise-optimized virtual monoenergetic images; keV, kiloelectron volt; PEI (M_0.4), polyenergetic images with a mix 
factor of 0.4; NPCT1, stage T1 nasopharyngeal carcinoma; BH, benign hyperplasia.

Figure 3 Objective image characteristics for VMIs (+) at 40–80 keV and PEI (M_0.4). The 40 keV VMI (+) reconstructed by contrast-
enhanced phase images gained the highest noise, SNR, and CNR values compared with 50–80 keV VMIs (+) and PEI (M_0.4). VMI (+), 
noise-optimized virtual monoenergetic images; keV, kiloelectron volt; PEI (M_0.4), polyenergetic images with a mix factor of 0.4; SNR, 
signal-to-noise ratio; CNR, contrast-to-noise ratio.

Table 2 Objective image characteristics for noise-optimized monoenergetic images (40–80 keV) and polyenergetic images with a mix factor of 0.4 
(M_0.4)

Variable 40 keV 50 keV 60 keV 70 keV 80 keV M_0.4 P value†

Noise (HU) 20.70  
(17.80–23.95)

18.27  
(14.73–20.83)

16.13  
(14.30–17.82)

15.06  
(12.16–17.30)

13.56  
(10.34–15.55)

12.32  
(11.19–13.56)

<0.001

SNR 15.52  
(14.96–16.35)

13.44  
(13.09–14.13)

10.99  
(10.07–11.76)

8.03  
(7.63–8.79)

6.65  
(5.71–7.28)

6.80  
(5.87–7.53)

<0.001

CNR 7.39  
(7.00–7.81)

5.91  
(5.57–5.50)

4.90  
(4.55–5.28)

3.44  
(3.19–3.76)

1.95 
 (1.69–2.52)

2.13  
(1.89–2.34)

<0.001

†The non-parametric Kruskal-Wallis test, P<0.05 indicates a statistically significant difference. SNR, signal-to-noise ratio; CNR,  
contrast-to-noise ratio.
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Table 3 Image features of 40 keV VMI (+) in the enhanced phase

Parameters NPCT1 (n=44) BH (n=47) P value

Tumor symmetry 16/44 (36.4%) 35/47 (74.5%) <0.001

Density homogeneity 30/44 (68.2%) 36/47 (76.6%) 0.369

Degree of enhancement

High 3/44 (6.8 %) 3/47 (8.5%) 0.762

Intermediate 28/44 (63.6%) 28/47 (59.6%) 0.691

Low 13/44 (29.5%) 16/47 (36.2%) 0.502

Data are presented as the number (percentage). VMI (+), noise-optimized virtual monoenergetic images; NPCT1, stage T1 nasopharyngeal 
carcinoma; BH, benign hyperplasia. 

Table 4 Multiple quantitative parameters derived from DECT between stage T1 nasopharyngeal carcinoma (NPCT1) and benign hyperplasia (BH)

Parameters NPCT1 BH t value P value

NIC 0.34±0.07 0.26±0.06 6.037 <0.001

λHU (HU/keV) 2.30±0.53 1.83±0.45 4.568 <0.001

NZeff 0.84±0.04 0.80±0.04 4.175 <0.001

A40 (HU) 163.56±23.75 143.37±22.62 4.154 <0.001

A50 (HU) 125.28± 19.02 117.27±20.40 1.931 0.057

A60 (HU) 98.71±15.44 93.34±16.55 1.599 0.113

A70 (HU) 79.03±11.09 74.83±10.53 1.850 0.068

A80 (HU) 69.20±10.29 67.01±8.99 1.086 0.281

An 36.13±8.45 33.30±8.62 1.581 0.117

Ae 69.40±11.40 71.00±11.82 −0.657 0.513

ΔA 33.27±12.93 37.70±13.60 −1.591 0.115

Data are presented as the mean ± standard deviation. Independent sample t-test was used. P value <0.050 indicates statistically  
significant difference. VMI (+), noise-optimized virtual monoenergetic images; A40–80, attenuation value in 40–80 keV VMIs (+); NIC,  
normalized iodine concentration; λHU, slope of the spectral Hounsfield unit curve; NZeff, normalized effective atomic number; An, attenuation 
value in nonenhanced polyenergetic images; Ae, attenuation value in contrast-enhanced polyenergetic images; ΔA, Ae  An.

Discussion

Our findings showed that 40 keV VMI (+) provided the 
optimal visualization of NPCT1 and BH, and combined 
image features with quantitative parameters yielded the best 
performance for differentiating the 2 entities, with an AUC 
of 0.963, a sensitivity of 89.4%, and a specificity of 93.2%.

DECT could yield VMIs at  low-energy levels , 
increasing image contrast and reducing artifacts, enabling 
improvement of tumor discrimination (25-27). In our 
study, 40 keV VMI (+) in the contrast-enhanced phase 
yielded the highest subjective image quality scores, SNR 
and CNR, to detect NPCT1. Similar findings were also 

reported by previous studies (11,12), which found that  
40 keV VMI (+) obtained the highest image quality for 
tumor delineation in head and neck imaging. However, there 
were inconsistent findings in previous studies for the head 
and neck. One study reported that the subjective overall 
image quality, CNR, and tumor delineation of 60 keV  
VMI was optimal (28), while another study showed that 
the optimal image SNR was at 65 keV VMI (11). The 
reason for these differences could be that the latest VMI (+) 
reconstruction technology utilized in our study, which used 
a regional spatial frequency-based recombination of higher 
signals at lower energies and avoided the increased noise at 
lower calculated energies, might further improve the SNR 
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and CNR at 40 keV (29).
IC allowed the lesion's vascular enhancement to be 

quantifiably measured, which helped identify benign and 
malignant tumors (30). The NIC minimized the variations 
caused by the patients' different circulation statuses and 
scanning times. Our study showed that the NIC in the 
enhanced phase successfully distinguished NPCT1 from 
BH, consistent with a previous DECT study in NPC (31). 
NPCT1 was characterized by abundant tumor angiogenesis 
and incomplete vascular endothelium, resulting in higher 
iodine contrast accumulation than BH (32). In our study, 
the NIC yielded a slightly lower AUC value (0.825) than 
the AUC value (0.880) of NIC in the abovementioned 
study. This difference in results might have been due to 
differences in the sample sizes and image reconstructions of 
the 2 studies (33).

The quantitative Zeff represented the composite atom 

for a mixture or compound of various materials and helped 
distinguish benign and malignant tumors (18). Our data 
showed that NPCT1 had higher Zeff values than BH, which 
was consistent with a previous study (31). The possible 
reason was that NPCT1 was characterized by closely packed 
tumor cells with a higher nuclear-cytoplasmic ratio in 
histopathology, leading to a higher Zeff than BH (34).

The energy spectrum curves represented the change 
characteristics of CT values with the change of X-ray 
energy. In theory, each material had its specific λHU enabling 
the differentiation of benign and malignant tumors (35). 
Our results found that NPCT1 yielded higher λHU values 
than BH. This result was consistent with previous studies. 
Compared with BH, the more contrast agent leakage in 
NPCs could result in stronger spectral properties, providing 
a steeper attenuation curve and higher λHU value (31).

In our study, combined image features with quantitative 

Figure 4 Quantitative parameters derived from DECT of NPCT1 and BH. The A40, NIC, λHU, and NZeff values of NPCT1 were significantly 
higher than BH. However, the A50, A60, A70, A80, An, Ae, and ΔA showed no differences between the 2 entities. DECT, dual-energetic 
computed tomography; NPCT1, stage T1 nasopharyngeal carcinoma; BH, benign hyperplasia; NIC, normalized iodine concentration; λHU, 
slope of the spectral Hounsfield unit curve; NZeff, normalized effective atomic number; VMI (+), noise-optimized virtual monoenergetic 
images; A40–80, attenuation value in 40–80 keV VMIs (+); An, attenuation value in nonenhanced polyenergetic images; Ae, attenuation value in 
enhanced polyenergetic images; ΔA, Ae–An.
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Figure 5 The noise-optimized virtual monoenergetic images 40 keV VMIs (+) (A,E), iodine-water maps (B,F), effective atomic number 
maps (C,G), and spectral Hounsfield unit curves (D,H) for a 65-year-old man with NPCT1 and a 50-year-old woman with BH, respectively. 
NPCT1 gained the higher A40, NIC, λHU, and NZeff  values compared with BH (all P values <0.001). VMI (+), noise-optimized virtual 
monoenergetic images; NPCT1, stage T1 nasopharyngeal carcinoma; BH, benign hyperplasia; A40, attenuation value in 40 keV VMI (+); 
NIC, normalized iodine concentration; NZeff, normalized effective atomic number; λHU, slope of the spectral Hounsfield unit curve.

Table 5 Diagnostic performance of image feature and quantitative parameters in differentiating stage T1 nasopharyngeal carcinoma and benign 
hyperplasia

Parameters Cutoff value AUC Sensitivity (%) Specificity (%)

Tumor symmetry 0.500 0.691 63.6 74.5

A40 (HU) 150.301 0.727 72.7 61.7

NIC 28.385 0.825 79.5 74.5

λHU 1.900 0.744 70.5 68.1

NZeff −0.810 0.732 68.2 68.1

Combined 0.567 0.963* 89.4 93.2

*, in the multivariate logistic regression model, the combination of image feature and quantitative parameters yielded the highest AUC, 
with all P values <0.05. VMI (+), noise-optimized virtual monoenergetic images; A40, attenuation value in 40 keV VMIs (+); NIC, normalized 
iodine concentration; λHU, slope of the spectral Hounsfield unit curve; NZeff, normalized effective atomic number; combined, combined  
image feature (tumor symmetry) with quantitative parameters (A40, NIC, λHU, and Zeff).

parameters yielded the best performance for differentiating 
NPCT1 from BH, with an AUC of 0.963, a sensitivity of 
89.4%, and a specificity of 93.2%. The possible reason is 
that the image features only reflect macroscopic information 
of lesion morphology, while the quantitative parameters 

can reflect microscopic information such as blood flow and 
material composition. The combination of the 2 can more 
accurately reveal the essential characteristics of the lesions.

There were some limitations in our study. First, because 
of our study's small sample size, large sample and multi-
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center studies are needed to further improve the results' 
reliability. Second, MRI and DECT's performance in the 
differential diagnosis of BH and NPCT1 was not compared. 
This comparison should be performed in future research 
to provide better imaging methods for differentiating the 2 
entities.

In conclusion, the combination of DECT-derived 
image features and quantitative parameters contributed to 
the differentiation between NPCT1 and BH. Therefore, 
our study results will be beneficial for the treatment and 
prognosis improvement in patients with NPC.
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