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Background: Multi-energy computed tomography (MECT) is a promising technique in medical imaging, 
especially for quantitative imaging. However, high technical requirements and system costs barrier its step 
into clinical practice. 
Methods: We propose a novel sparse segmental MECT (SSMECT) scheme and corresponding 
reconstruction method, which is a cost-efficient way to realize MECT on a conventional single-source CT. 
For the data acquisition, the X-ray source is controlled to maintain an energy within a segmental arc, and 
then switch alternately to another energy level. This scan only needs to switch tube voltage a few times 
to acquire multi-energy data, but leads to sparse-view and limited-angle issues in image reconstruction. 
To solve this problem, we propose a prior image constraint robust principal component analysis (PIC-
RPCA) reconstruction method, which introduces structural similarity and spectral correlation into the 
reconstruction. 
Results: A numerical simulation and a real phantom experiment were conducted to demonstrate the 
efficacy and robustness of the scan scheme and reconstruction method. The results showed that our proposed 
reconstruction method could have achieved better multi-energy images than other competing methods both 
quantitatively and qualitatively.
Conclusions: Our proposed SSMECT scan with PIC-RPCA reconstruction method could lower kVp 
switching frequency while achieving satisfactory reconstruction accuracy and image quality.
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Introduction

Since Hounsfield proposed the first computerized transverse 
axial scanning (1), X-ray computed tomography (CT) has 
been well studied and widely applied in clinical practice. 
However, the polychromatic X-ray spectra can cause 
beam hardening and poor tissue contrast in conventional 
CT imaging. Moreover, different materials with different 
elemental compositions can be represented by the same CT 
numbers, which makes it difficult to classify different tissue 
types. Alvarez and Macovski (2) first proposed two linear 
combinations of attenuation coefficient to use dual-energy 
information to allow the differentiation of materials. In 
the past decades, material decomposition or differentiation 
techniques by using dual-energy CT (DECT) were well 
studied. Nowadays, four DECT configurations have been 
commercially used: dual-energy scans (3), dual-sources 
technique (4), dual-layer detector technique (5) and rapid 
kVp switching technique (6,7). The DECT has proven to be 
a promising application in medical imaging with the ability 
of material differentiation, chemical composition analysis, 
automatic subtraction, and pseudo-monochromatic imaging 
(5,8-10).

Inspired by the success of DECT in the clinic, multi-
energy CT, with more than two energy levels, has been 
put forward to seek deeper insights into a material. Multi-
energy computed tomography (MECT), as well as DECT, 
has a large range of diagnostic applications: automated bone 
removal in CT angiography, urinary stone characterization, 
perfused blood volume, virtual non-contrast-enhanced 
images and so on. These MECT applications show great 
image quality improvement and clinical advantages over 
current single-energy CT. Recently, two categories of MECT 
have been proposed, one is discriminating multi-energy 
signals based on photon counting detectors (PCD) (11-13), 
and the other is scanning objects under multiple kVp levels 
(14-17). Although PCD-based MECT has shown promising 
applications in clinics (13,18), it is still in the research stage 
and commercially unavailable because of the limitations 
in pulse pile-up effect, charge sharing and other hardware 
problems (5,8,19). Some alternative methods were proposed 
to implement MECT on a conventional single-source CT 
machine. Lee et al. (20) proposed a many-view undersampling 
framework that exploits a multi-slit filter to realize single-
scan dual-energy low-dose cone-beam CT imaging. To 
cope with high noise level due to the beam filtration, they 
developed a new reconstruction algorithm that exploits the 
joint sparsity between the low and high-energy CT images. 

To enable some standard and non-standard configurations 
of MECT, Chen et al. (21) developed a new adaptive 
steepest descent non-convex projection-onto-convex-set 
(ASD-NC-POCS) algorithm, which could solve the non-
convex reconstruction problem. Kim et al. (14) proposed a 
sparse-view kVp-switching based MECT framework with 
a conventional energy-integrated detector, where tube 
voltage switches among triple-energy levels rapidly in a 
gantry rotation. A penalized maximum likelihood method 
was proposed to reconstruct images using spectral patch-
based low-rank penalty. However, this system requires tube 
voltage switching frequency to be above kHz, which could 
be extremely difficult to be realized on a conventional CT 
platform. To reduce this technical difficulty of kVp switching-
based MECT, Shen et al. (15) proposed a segmental 
scanning protocol (SegMECT) with an iterative quotient 
total variation (Q-TV) based reconstruction method. In 
their scanning configuration, a circular trajectory is divided 
into multiple arcs with different X-ray tube voltages, thus 
its switching frequency is reduced to Hz magnitude. Their 
iterative reconstruction algorithm was specifically developed 
to address the severe limited-angle artifacts induced by the 
segmental scan. However, some residual artifacts and noise 
remained and the image quality was not satisfactory in some 
cases.

In this study, we propose a novel sparse segmental 
MECT (SSMECT) scan scheme, which is a cost-efficient 
and no-extra dose induced way to realize multi-energy 
data acquisition on a conventional single-source CT 
platform. Distinct from previous kVp-switching systems, 
the X-ray source is controlled to maintain an energy 
within a segmental arc, and then switch to another voltage 
alternately in the sparse segmental scan. Thus this scan 
could reduce the voltage switching frequency to several 
Hz, which is much easier to be implemented on a single-
source CT machine compared with the conventional kVp-
switching scan. Nevertheless, the sparse-view and limited-
angle artifacts could also be induced by the sparse segmental 
scan when utilizing conventional reconstruction methods. 
To specifically address this problem, we then propose a 
prior image constraint robust principal component analysis 
(PIC-RPCA) regularization based reconstruction method 
with prior image constraint. The PIC-RPCA based method 
regularizes multi-energy images on the low rank component 
and sparse component, to adaptively preserve the detailed 
structure information of heterogeneous tissues and improve 
the smoothness of homogeneity. The prior image is also 
introduced, which is reconstructed by filtered back-projection 
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(FBP) method with the full-scan data, to fully utilize the 
structural similarity between different energy channels. A 
numerical simulation and a real experiment are conducted 
to demonstrate the feasibility of our scan scheme and the 
effectiveness of our reconstruction method. 

The rest of this paper is organized as follows. Section 
Methods will present the proposed SSMECT data 
acquisition and RPCA based reconstruction method. 
A detailed description of the implementation and the 
configuration of our method will also be given in this section. 
Results are shown and evaluated by comparing the proposed 
method with some state-of-the-art methods. Finally, Section 
Discussion draws the discussion and conclusions of our study. 

Methods

Data acquisition

For SSMECT data acquisition, the X-ray source is 
controlled to maintain an energy within a segmental arc, 
and then switch to another kVp level alternately with 
segmental arc angle θ equal to

( )2 / Nθ π= Ω× 	 [1]

where N is the total number of energy channels and Ω is 
a positive integer. For the multi-energy subsets, each subset 
has 360/N projections in total with Ω number of θ-angle-
covered projection data. Thus, we only need to switch 
tube voltage a few times to complete data acquisition. We 
refer to this scheme as sparse segmental scan, which can 
greatly decrease voltage switching frequency and easy-
to-implement on a conventional CT machine without 
introducing extra dose. Figure 1 shows an example of a 
tri-energy SSMECT data acquisition when Ω=3, θ=2π/9,. 

There are three multi-energy subsets, each subset has 120 
projections in total with three 2π/9-covered projection data.

Especially, when N=3, if Ω=120 and θ=π/180, this scan 
mode can be seen as sparse MECT scan (14) with three 
energy channels, each channel has 120 projections in total 
with one hundred twenty π/180-covered projection data; if 
Ω=1 and θ=2π/3, this scan mode can be seen as SegMECT 
scan (15), each subset has 120 projections in total with one 
2π/3-covered projection data.

Reconstruction method

The sparse segmental scan leads to sparse-view and 
limited-angle issues, which poses great challenges to the 
reconstruction. Sparse-view and limited-angle artifacts can 
be severe when using conventional methods to reconstruct 
images from these multiple limited-angle covered projections. 
Many studies have been published to deal with sparse-view 
and limited-angle problems (14-16,22-24). In this work, 
we proposed a prior image constraint RPCA method to 
reconstruct SSMECT images from these sparse-view and 
limited-angle projections.

PIC-RPCA reconstruction
For SSMECT system, multi-energy CT images X can be 
written mathematically as { }X ;nX n N= ≤  with totally N 
spectra, and l

nX ∈R . The acquired multi-energy projections 
can be expressed as { }Y ;nY n N= ≤  and m

nY ∈R . A multi-
energy CT system can be generally defined as

{ }  ,n n nY Y A X n N= = ≤ 	 [2]

where l m
nA ×∈R  is the system matrix of n-th spectrum. 

The multi-energy CT reconstruction is to recover X from 

Figure 1 Illustration of a tri-energy SSMECT’s ideal tube voltage change in a complete data acquisition (left), with system schematic view 
(middle) and acquired projections (right). SSMECT, sparse segmental multi-energy computed tomography.
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Y. Note that this equation takes an approximation that 
neglecting the measurement errors in Y.

In a typical CT data acquisition, the system matrix A 
is often overdetermined and the projection Y is always 
contaminated by noise. In addition, our proposed sparse 
segmental scan poses a challenge on reconstruction with 
sparse-view and limited-angle problem. To solve the ill-
conditioned problem, a RPCA regularization was utilized 
to hold image structural information and plugged into 
multi-energy CT reconstruction, which suggests that the 
representation of these images can be further sparsified by 
considering the rank-and-sparsity decomposition (25-27).  
A multi-energy image X  can be decomposed to a 
background component XL and variation componentXS. 
The decomposition is performed by solving the following 
minimization problem:

* 1min . .L S L SX TX s t X X Xλ+ ⋅⋅ = +‖ ‖ ‖ ‖ 	 [3]

where *‖‖ is a nuclear norm that is calculated by the sum 
of singular values of the input matrix. 1‖‖ is the l1-norm 
as the sum of absolute values of the entries, with the trade-
off parameter λ. T represents a sparsifying transform, such 
as total variation (TV) (28,29), or tight framework (TF) 
(30,31). Here we used TV as the sparsifying basis.

Based on the traditional RPCA regularization, we 
then proposed a reconstruction method with a PIC-
RPCA regularization, which introduces a prior image 
reconstructed from all the spectral projections, to fully 
utilize the structural similarity among the whole energy 
channels. The overall objective function of our proposed 
method is as follows:

( )2
2

1argmin ,
2

ˆ
P

X
X AX Y R X X= − +‖ ‖ 	 [4]

with PIC-RPCA regularization: 

( ) ( ) ( )( )
( )

1 1

* 1

, 1

       
P P P

L L S L

R X X TX T X X

X T X X

λ α α

λ λ

= + − −

+ + −

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖
	 [5]

where A is a diagonal block matrix that contains all 
the system matrix An of different spectral channels. The 
low rank component XL contains the principal stationary 
structure and the sparse component XS=X−XL contains the 
spectral differences. XP is the prior image set reconstructed 
by conventional FBP method from a weighted combination 
of the whole spectral projections, which will be explained 
in detail in the following section. This regularization term 
consists of two sub-terms: the first term of Eq. [5] is a 
conventional prior image constraint compressed sensing 
(PICCS) regularization (32) and the last two terms represent 

a regular RPCA regularization. λP, λL, λS are three model 
parameters that balance the data fidelity and regularization. 
λP is the weight of PICCS regularization, which fully 
introduced the prior information in this method. Parameter 

[ ]0.1a∈  modulates the dependence on prior image in the 
PIC constraint. λL and λS balanced the spectral differences 
and the structural details in the reconstruction image. 

To solve this constrained optimization problem of Eq. [4], 
the ASD-POCS framework (29) is adapted to alternatively 
minimize the terms of data fidelity and regularization. First, 
we utilized the conjugate gradient least square (CGLS) 
method (33) to solve the data fidelity problem. Second, we 
used a gradient descent method (29) to solve the TV based 
optimization problem iteratively as

1
i

i i i
TVx

x x xβ+ = − ∇ ‖ ‖ 	 [6]

where i is the iteration number, β is the step size. x is a 
discrete two-dimensional image, which is one slice of the 
three-dimensional image Xn.   TVx‖‖  is the TV of x. This TV 
norm can be defined as

( ) ( )2 2
1 , 1, , , 1,TV s t s t s t s ts t

x x x x x x− −= ∇ = − + −∑‖‖ ‖ ‖ 	 [7]

where s and t are the row and column locations of x. 
Hence, the derivative of   TVx‖‖  are

( ) ( )
( ) ( ) ( )

, 1, , , 1 1, , , 1 ,TV
TV

, , 1, , 1

s t s t s t s t s t s t s t s t
x

s t s t s t s t

x x x x x x x xxx
x F x F x F xρ ρ ρ

− − + +

+ +

− + − − −∂
∇ = ≈ − −

∂ + + +

( ) ( )
( ) ( ) ( )

, 1, , , 1 1, , , 1 ,TV
TV

, , 1, , 1

s t s t s t s t s t s t s t s t
x

s t s t s t s t

x x x x x x x xxx
x F x F x F xρ ρ ρ

− − + +

+ +

− + − − −∂
∇ = ≈ − −

∂ + + +

	 [8]

where ( ) ( ) ( )2 2
, , 1, , , 1s t s t s t s t s tF x x x x x− −= − + −  and ρ  i s  a  small 

positive value to keep the denominator not equal to zero. 
As XL can be decomposed by singular value decomposition 
XL=UƩV*, the minimization of the nuclear norm *LX‖ ‖, can 
be explicitly calculated by the singular value thresholding 
(SVT) method as

( ) ( ) *
LSVT X U Vγ γ= Λ Σ 	 [9]

where { }idiag aΣ =  is a diagonal matrix containing 
singular values a of XL, and ( ) ( ){ },0idiag max aγ γΛ Σ = −  is 
the shrinkage operator with a threshold parameter γ. The 
singular values would become sparser and this low rank 
component gradually approaches to the optimal solution 
in an iterative fashion. The sparse component Xs can be 
regularized by minimizing the S TVX‖ ‖  where =S LX X X− ,  
using a gradient descent method (29). Then the new X is 
updated by enforcing non-negative constraint to make it 
physically meaningful.

In a sparse segmental scan, a full circular scan consists 
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of multiple limited-angle covered projection sets from 
different energy spectra. A natural idea to deal with 
sparse-view and limited-angle problems is to combine all 
the segmental data together, which could contain all the 
structural information even though it varies in intensity. 
A prior image could be obtained by combining all the 
normalized projections to mitigate the influence of intensity 
variation. Hence, we combine all the segmental data into 
a full 2π-coverage projection, and then get normalized 
projection YP through normalizing all the projections value 
into [0 1].

( )1 1 , , ,
TT T

P n nY wY w Y=  

	 [10]

where 11/n nw Y= ‖ ‖, which is a normalization operator 
using the reciprocal of l1-norm of the projection in n-th 
spectra. Then the prior image XP can be reconstructed 
through a conventional FBP method. Although the FBP 
method is not comparable to regularized reconstruction for 
obtaining the prior image, it is a feasible way to reconstruct 
the prior image in this study when considering the 
reconstruction efficiency and applicability.

The purpose of this PIC-RPCA method is to use the 
structural similarity among multi-energy images to remove 
most of the noise and improve its smoothness, and then 
to regularize the low-rank component and the sparse 
component of the images to preserve the detailed structure 
information.

Detailed implementation
Figure 2 summarizes the pseudo-code of this proposed 
PIC-RPCA method. For the simulation and experimental 
studies, initialization of X, XS are set to be zero matrix. 
The parameter α in PIC constraint is selected to be 0.8 
by comparing reconstruction performance in terms of 
quantitative metrics mentioned below. The step size β1 
and β2 are chosen to be 0.2, which kept the same as those 
used in the conventional ASD-POCS algorithm (29). The 
shrinkage threshold γ is 10−5, which is empirically chosen 
and the same as the previous study by Otazo et al. (24). The 
stopping criterion in the main iteration reaches the max 
iteration number or the relative image difference between 
two adjacent iterations 1 2 2

2 2/k k kX X X ε−− <‖ ‖‖ ‖ , where ε is 
a very small value and set to be 10−5 in our study. The 
iteration number of the inner loop is determined by trial-
and-error. We tried different iteration numbers ranging 
from 10 to 500 and found that 50 iterations produced the 
best performance. Then we empirically chose the iteration 
number to be 50 in our experiments.

The proposed method consists of three main steps: 
(I) combine all the segmental data together into a full 
2π-coverage projection, then get YP through Eq. [10] and 
utilize FBP method to reconstruct prior images XP; (II) 
perform an iteration with the sparse segmental projections 
and prior images. This iteration contains three sub-steps: 
first, reconstruct with the incomplete projections by the 
CGLS method; second, take the intermediate image and 
prior image into PIC-RPCA regularization to fully utilize 
the structural similarity of multi-energy images and prior 
images; third, use non-negative constraint to make the 
reconstructed attenuation coefficient physically meaningful; 
(III) loop until the iteration meets the stopping criteria. 
During the iteration loop, the previous iteration result is 
utilized as the initial value of the current step. 

Evaluation

To evaluate the performance of the proposed SSMECT 
scan with the PIC-RPCA reconstruction method, we 
conducted a numerical simulation and a real experiment on 
a tri-energy SSMECT system.

Scan configuration
The simulation study was conducted with a numerical 
NCAT phantom and projections were generated using 
Siddon’s ray-tracing algorithm (34) (Figure 3A). The real 
experiment was performed with a Catphan 600 phantom 
(Figure 3B) on a Varian TrueBeam linear accelerator on-
board imaging cone-beam CT (Varian Medical System, Palo 
Alto, CA). We narrowed the source blade to greatly reduce 
scattering signal to mimic a CT scan. The energy channels 
were empirically chosen to scan under 80, 100 and 120 kVp 
spectra (shown in Figure 3C). We modulated the tube current 
and exposure time for 80, 100 and 120 kVp to 1.4, 0.8 and 
0.5 mAs respectively. The source to rotation center is 100 cm 
and to detector is 150 cm. The detector has 384 pixels. The 
resolution of NCAT and the real phantom image is 512×512 
and their physical sizes are 25.6×25.6 cm2. 

For the full-scan MECT, three full 360° scan datasets 
were collected, each dataset consists of 360 projections 
acquired with 1° angular increment. As for the SegMECT, 
one segmental dataset of an energy channel consists of 120 
projections acquired with 120° angular increment. For the 
sparse segmental scan, tube voltage was held unchanged 
in a segmental arc and switched alternately among 80, 100 
and 120 kVp in a full-scan. In our study, we chose θ equal 
to 2π/15 (shown in Figure 3D) and π/3 (shown in Figure 3E)  
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respectively, to better implement our data acquisition 
and image reconstruction in the simulation and real case 
experiments. There are three subsets in total, when θ equal 
to 2π/15, each subset has 120 projections with five 2π/15-
covered projection data; when θ equal to π/3, each subset 
has 120 projections with two π/3-covered projection data. 
Hence, we collected these datasets in the above sequence 
from the full-scan datasets. 

Quantitative evaluation
The following three figures of merit are utilized to evaluate 
image quality of different reconstruction methods. The 
contrast-to-noise ratio (CNR) is defined as,

( )2 2
 

/ 2
S BG

S BG

CNR
µ µ

σ σ

−
=

+
	 [11]

S and BG are the two image windows of a specific area 
and background respectively. μ is the average values and σ2 
is the standard deviation. The mean square error (MSE) is 
defined as,

( )2

, ,1
/M

g i r ii
MSE x x M

=
= −∑ 	 [12]

xr is the reconstructed image, xa is the phantom image 
used as ground-truth, M is the total number of image pixels. 
The structural similarity (SSIM) is defined as (35):

( ) ( )( )
( )( )

1 2 1 2

1 2 1 2

1 2
1 2 2 2 2 2

1 2

2 2
, x x x x

x x x x

c c
SSIM x x

c c

µ µ σ

µ µ σ σ

+ +
=

+ + + +
	 [13]

where x1, x2 are two images for comparison. c1, c2 are two 
variables to stabilize the division with weak denominator, 
which are empirically chosen to be 0.01 and 0.03 respectively.

Line profiles and HU linearity analysis (36) are also 
assessed on Catphan phantom for quantitative evaluation. 

Methods for comparison
We first compare our PIC-RPCA method with the PICCS 
method:

( ) ( )2
1 12

1argmin 1
2 P

X
X AX Y X X Xα α= − + ∇ + − ∇ −‖ ‖ ‖ ‖

( ) ( )2
1 12

1argmin 1
2 P

X
X AX Y X X Xα α= − + ∇ + − ∇ −‖ ‖ ‖ ‖

	 [14]

and RPCA method, respectively:

2

2 * 1

1argmin
2 L L S S

X
X AX Y X TXλ λ= − + + 	 [15]

. .X L Ss t X X= + 	 [16]

Then we also evaluate the performance of three different 
scan protocols: a full MECT scan (5) as reference, and a 

Figure 2 The pseudo-code of proposed PIC-RPCA method. PIC-RPCA, prior image constraint robust principal component analysis.

Initialization: images , ,L SX X X ; algorithm parameters 1 2, , , ,α β β β γ ;
Input: system matrix A, projection data Y , iterations K,I;
-prior image generation-

( )1 1 , , , ; ?
TT T

P n nY wY w Y=  

( );p pX FBP Y=

Main loop:

for 1,2, ,k K= …
       -CGLS update-

( ), , ;k k
CX CGLS A X Y=
0 1;k k
L C SX X X −= −

 
0 ;k
R CX X=

for   1, 2, ,i I= …
-PIC–RPCA update loop-

( )-1 -1
-1 -1 -1

1 1 ;i i
R R

i i i i
R R R TV R PTVX X

X X X X Xβ α α = − ⋅∇ + − ⋅∇ − 
( )-1i i

L LX SVT Xγ= ;
( ) ( )2 i i

R L

i i i i i
S R L R L TVX X

X X X X Xβ
−

= − − ∇ −‖ ‖ ;
end for

1
2

k I I
L SX X X

+
= + ;

k I
S SX X= ;

-non-negative constraint-
1

1 2max ,0
kkX X
++  

=  
 

;

end for
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SegMECT scan (15) for comparison with our SSMECT 
scan.

Results

Segmental arc range

For the choice of segmental arc range, a natural idea is to 
avoid projection overlap of each energy channel. Note that 
different energy numbers will have different optimal ranges 
to avoid the overlap. The segmental arc angle  would be 
better chosen to be subject to the following equations:

12 / *Nπ θ = Ω 	 [17]

2/ *Nπ θ ≠ Ω 	 [18]

where Ω1,Ω2 are positive integers. For example, if 
N=3, to achieve low kVp frequency in Hz level and avoid 
projection overlap, θ is better equal to 2π/15, 2π/9 or 2π/3. 
We performed a simulation study on NCAT phantom to 
test our point. We chose N=3and 360 projections in total. 
The segmental arc angles were selected to be: π/18, 2π/15, 

π/6, 2π/9, π/3, 2π/3. When θ equal to π/18, π/6 or π/3, they 
are not satisfied Eq. [17] and [18] and exist overlap. θ should 
equal to 2π/15, 2π/9 or 2π/3to satisfy Eq. [17] and [18]. 

We first performed a simulation study to test our 
SSMECT scan and the corresponding reconstruction 
method. The projections of numerical NCAT phantom 
were generated by using the ray-tracing method. 
The forward operator is the same as that used in the 
reconstruction. In the simulation study, we considered an 
ideal measurement that didn’t add noise into the primary 
data, and only focused on dealing with the limited-angle and 
sparse-view artifacts. Image reconstruction was performed 
by the following five strategies: FBP with full scan data, 
prior image constrained compressed sensing (PICCS) 
reconstruction with SegMECT data, and PICCS, RPCA 
and PIC-RPCA regularizations with the SSMECT data for 
comparison. 

For  the PICCS method,  v i sual  inspect ion can 
consistently find that reconstructed images suffered from 
severe distortion while θ not satisfied Eq. [17] and [18], but 

Figure 3 The scan configuration in simulation and real experimental studies. Images of (A) a numerical NCAT phantom; (B) a Catphan 600 
phantom; (C) spectral distribution of 80, 100 and 120 kVp; (D) schematic view when θ equal to 2π/15 and (E) schematic view when θ equal 
to π⁄3. 
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the images showed better suppression on noise and artifacts 
when θ satisfied Eq. [17] and [18], as shown in Figure 4. For 
the RPCA method, we can find that the results suffer from 
less steak artifact but noisy problem still remain regardless 
of the choice of θ, as shown in Figure 5. For the PIC-
RPCA method, visual inspection of Figure 6 can find the 
reconstructed images always showed good performance on 
noisy and artifact suppression, which may not be affected 
by the segmental arc range. The quantitative performance 
of average MSE and SSIM are shown in Figure 7. These 
figures of merits also demonstrate the consistent findings 
with the visual inspection. The proposed PIC-RPCA 
method showed robust reconstruction performance and was 
less sensitive to the choice of segmental arc range than the 
other compared methods. 

Simulation case

The setup of the simulation case has been reported in the 
above section. The zoom-in images of the rectangle region 
in Figure 8 are shown in Figure 9, to better demonstrate 
the detail of reconstructed images. For SSMECT scan, 
visual inspection can consistently find that PICCS method 
induces streak artifacts, and the RPCA method suffers 

from severe noise problem. Meanwhile, Our PIC-RPCA 
method shows a better streak-artifacts suppression and edge 
restoration than the other comparison methods. Compared 
with the SegMECT method, our SSMECT scan with PIC-
RPCA method also shows a better suppression on noise and 
artifacts.

The CNR results are shown in Figure 10 and quantitative 
evaluation of the SSIM and MSE are shown in Table 1. 
These figures of merits demonstrate that the proposed 
SSMECT method could generate multi-energy images with 
satisfactory quality. Specifically, PIC-RPCA regularization 
can increase SSIM from ~0.85 to 0.98, while decreasing 
MSE by about 56% and increasing CNR by about 5 times 
compared with RPCA regularizations.

Real case

We then test our method with a real Catphan phantom 
experiment on a single-source platform. As shown in Figure 11,  
the sparse-view and limited-angle data of SSMECT scan 
can result in severe blurry artifacts if conventional methods 
were used, especially on the edge of the reconstructed 
images. In contrast, our proposed PIC-RPCA method 
suppresses sparse-view and limited-angle artifacts with 

Figure 4 The reconstructed images using PICCS constraint with different segmental arc ranges. PICCS, prior image constraint compressed 
sensing.
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Figure 5 The reconstructed images using RPCA constraint with different segmental arc ranges. RPCA, robust principal component 
analysis.

Figure 6 The reconstructed images using PIC-RPCA constraint with different segmental arc ranges. PIC-RPCA, prior image constraint 
robust principal component analysis.
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good edge recovery. The zoom-in images show the detail 
of reconstructed images in Figure 12. For the PICCS 
method with SegMECT data, there are some blurry 
artifacts and edge distortion that degrade image quality. 
For the PICCS and RPCA methods with SSMECT data, 
their reconstruction results were affected by some residual 
noise and artifacts. Instead, the PIC-RPCA method could 
suppress most noise and streak artifacts, while preserving 

the edge of these contrast rods well.
Quantitative evaluation in Figure 14 and Table 2 also 

validates that our method can achieve better reconstruction 
accuracy than the other comparison methods. Specifically, 
PIC-RPCA regularization can increase SSIM from ~0.64 to 
0.90, while decreasing MSE by 46.07% and increasing CNR 
by about 3 times compared with RPCA regularizations. 
The results of θ=2π/15 were used to assess the HU fidelity. 
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Figure 7 MSE and SSIM of different reconstruction methods with different segmental arc ranges scan on NCAT phantom. MSE, mean 
square error; SSIM, structural similarity.

Figure 8 The reconstructed image of 80, 100, and 120 kVp. First column: full scan MECT with FBP for reference. Second column: SegMECT 
with PICCS. Rest of columns: the proposed SSMECT scan with different reconstruction methods. Display window is [0 0.45] cm−1. The 
dashed box indicates a region of interest as shown in Figure 9. MECT, multi-energy computed tomography; FBP, filtered back-projection; 
PICCS, prior image constraint compressed sensing; SegMECT, segmental multi-energy computed tomography; SSMECT, sparse segmental 
multi-energy computed tomography; PIC-RPCA, prior image constraint robust principal component analysis.
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Figure 9 The zoom-in image of 80, 100, and 120 kVp as shown Figure 8. FBP, filtered back-projection; PICCS, prior image constraint 
compressed sensing; SegMECT, segmental multi-energy computed tomography; SSMECT, sparse segmental multi-energy computed 
tomography; PIC-RPCA, prior image constraint robust principal component analysis.

Figure 10 CNRs of different MECT systems and reconstruction methods on NCAT with energy channel of (A) 80 kVp, (B) 100 kVp, (C) 
120 kVp. CNR, contrast to noise ratio; MECT, multi-energy computed tomography.
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Table 1 SSIM and MSE of different methods in numerical NCAT simulation

Metrics
80 kVp 100 kVp 120 kVp

SSIM MSE (×10−2) SSIM MSE (×10−2) SSIM MSE (×10−2)

SegMECT (PICCS) 0.94 10.55 0.96 8.44 0.94 9.70

SSMECT (PICCS) 0.94 8.21 0.94 7.32 0.94 7.78

SSMECT (RPCA) 0.85 19.38 0.85 19.06 0.86 17.06

SSMECT (PIC-RPCA) 0.98 5.70 0.98 4.30 0.98 4.60

SSIM, structural similarity; MSE, mean square error; PICCS, prior image constraint compressed sensing; PIC-RPCA, prior image constraint 
robust principal component analysis.

The line profiles in Figure 13 show that the reference 
FBP images are still contaminated with severe noise while 
the PIC-RPCA reduces the noise on the homogeneous 
region and preserves higher HU value fidelity than other 

competitive methods. HU linearity analysis in Figure 15 
demonstrates that these iterative regularization approaches 
could maintain the linearity of the reference data as assessed 
by the R2 value.
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Figure 11 The reconstructed image of 80, 100, and 120 kVp. First column: full scan MECT with FBP for reference. Second column: SegMECT with 
PICCS. Rest of columns: results of the proposed SSMECT scan with different reconstruction methods. Display window is [0 0.35] cm−1. The solid box 
indicates a region of interest that are shown Figure 12. The dashed box with a line draws the image profile as shown in Figure 13. MECT, multi-energy 
computed tomography; FBP, filtered back-projection; PICCS, prior image constraint compressed sensing; SegMECT, segmental multi-energy computed 
tomography; SSMECT, sparse segmental multi-energy computed tomography; PIC-RPCA, prior image constraint robust principal component analysis.

Discussion 

In this work, we proposed a novel SSMECT scan scheme to 
realize a multi-energy scan on a conventional CT platform 

with low tube voltage switching frequency. A PIC-RPCA 
reconstruction method was specifically developed to deal 
with the SSMECT induced sparse-view and limited-angle 
problem. Both numerical and experimental experiments 
were conducted to validate our SSMECT scan with the 

Figure 12 The zoom-in image of 80, 100, and 120 kVp as indicated in Figure 11. MECT, multi-energy computed tomography; FBP, filtered 
back-projection; PICCS, prior image constraint compressed sensing; SegMECT, segmental multi-energy computed tomography; SSMECT, 
sparse segmental multi-energy computed tomography; PIC-RPCA, prior image constraint robust principal component analysis.
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PIC-RPCA reconstruction method. Results showed that 
our proposed method could realize MECT with high-
quality images on a single-source CT platform.

The main advantage of SSMECT is that, by controlling 
the X-ray source to maintain an energy within a segmental 
arc, the kVp switching frequency can be down to Hz level 
and this can greatly reduce technical difficulties and costs 
without introducing extra dose in practice. To facilitate 
rapid multi-energy data acquisition and imaging, under-
sampling strategies are commonly used (37). A many-view 
under-sampling framework (20) was proposed to achieve 

low dose single-scan dual-energy imaging on a cone beam 
CT platform with a multi-slit filter and an iterative image 
reconstruction algorithm was also proposed to reduce noisy 
artifacts due to the beam filtration. Without introducing 
any hardware, a sparse-view kVp-switching based tri-energy 
CT system (14) was developed, where the source energies 
are rapidly switched during gantry rotation. The switching 
frequency of such a scan scheme could be high to above 
kHz and is extremely difficult to realize on a common 
single-source platform. A SegMECT scan scheme (15) was 
developed to divide a circular trajectory into multiple arcs 
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Figure 13 Line profiles of different reconstruction algorithms on energy channel of: (A) 80 kVp, (B) 100 kVp, (C) 120 kVp. MECT, multi-
energy computed tomography; FBP, filtered back-projection; PICCS, prior image constraint compressed sensing; SegMECT, segmental 
multi-energy computed tomography; SSMECT, sparse segmental multi-energy computed tomography; PIC-RPCA, prior image constraint 
robust principal component analysis.

Figure 14 CNRs of different MECT systems and reconstruction methods on Catphan 600 with energy channel of (A) 80 kVp, (B) 100 kVp, 
(C) 120 kVp. CNR, contrast to noise ratio; MECT, multi-energy computed tomography; MECT, multi-energy computed tomography; FBP, 
filtered back-projection; PICCS, prior image constraint compressed sensing; SegMECT, segmental multi-energy computed tomography; 
SSMECT, sparse segmental multi-energy computed tomography; PIC-RPCA, prior image constraint robust principal component analysis.
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Figure 15 HU linearity analysis of different reconstruction algorithms on energy channel of: (A) 80 kVp, (B) 100 kVp, (C) 120 kVp. Lines 
1−5 represent the linearity of the above ordered algorithms. HU, Hounsfield unit. MECT, multi-energy computed tomography; FBP, 
filtered back-projection; PICCS, prior image constraint compressed sensing; SegMECT, segmental multi-energy computed tomography; 
SSMECT, sparse segmental multi-energy computed tomography; PIC-RPCA, prior image constraint robust principal component analysis.
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with different tube voltages, thus its switching frequency is 
reduced to Hz magnitude. Our proposed SSMECT scan 
slightly increases switching frequency in Hz level, but still be 
available on a traditional single-source CT platform. Note 
that the sparse-view kVp-switching and SegMECT are two 
special cases of this scan scheme, as discussed in the Method 
section. The generalization of this SSMECT scan would 
make it suitable for various scenarios in clinical practice. As 
our SSMECT scan narrows the range of limited-angle arc, it 
could greatly alleviate noise and artifacts in the reconstructed 
images. For the reconstruction method, the proposed PIC-
RPCA method utilized global spectral information of the 
prior image and structural similarity among different energies 

to solve the sparse-view and limited-angle problem induced 
by the SSMECT scan. 

In a practical scan, tube voltage will have a transition region 
from high to low (or low to high) voltage (as shown in Figure 16),  
as discussed in the previous study by Shen et al. (15).  
Because of these transition regions, the summation of the 
segmental arc coverage for E1…EN will be less than 2π. A 
compensation for this sum could be applied,

( ) ( )( )1 1 1 1 1 1, , , , ,
TT Tprac T T tran tran tran tran

P N N N NY wY w Y w Y w Y− −= … … 	 [19]

Here, 1 1, ,tran tran
NY Y −…  are projections from transition 

reg ions .  1 1, ,tran tran
Nw w −…  a re  weights  appl ied  to  the 

projection from transition regions. By applying  prac
PY to 

adjust the prior image, the contribution from transition 

Table 2 SSIM and MSE of different methods in Catphan 600

Metrics
80 kVp 100 kVp 120 kVp

SSIM MSE (×10−2) SSIM MSE (×10−2) SSIM MSE (×10−2)

SegMECT (PICCS) 0.88 5.75 0.85 5.94 0.87 5.45

SSMECT (PICCS) 0.87 6.03 0.86 5.30 0.87 5.28

SSMECT (RPCA) 0.64 19.84 0.68 15.50 0.69 14.69

SSMECT (PIC-RPCA) 0.90 4.88 0.89 4.33 0.9 4.21

SSIM, structural similarity; MSE, mean square error; SegMECT, segmental multi-energy computed tomography; SSMECT, sparse 
segmental multi-energy computed tomography; PIC-RPCA, prior image constraint robust principal component analysis.
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regions ( ) ( )1 1 1 1, ,
T Ttran tran tran tran

N Nw Y w Y− −…  is incorporated. The only 
difference of this segmental arc range would be slightly 
smaller compared with that of the ideal case. In the paper, 
we studied two scan schemes with the segmental arc angle 
θ=2π/15 and θ=π/3. As different values of θ yield different 
reconstruction results, the optimal scan strategy needs 
further investigation for different tasks. As we stated in 
the Method, our experiment was conducted on a linear 
accelerator on-board imaging cone-beam CT rather than 
a commercial CT machine. This is mainly due to the fact 
that this cone-beam CT is easily controlled to realize our 
proposed scheme, while this cannot be done currently on a 
CT scanner without the help from manufacturers. Although 
it is beyond the scope of this study, we would like to realize 
our proposed technique on the diagnostic CT scanner and 
do a series of real patient studies by cooperation with the 
manufacturers.

For the proposed PIC-RPCA reconstruction method, 
we implemented and adapted an adaptive-steepest-descent 
projection-onto-convex-sets (ASD-POCS) framework 
that has been developed by Sidky and Pan (29). This 
framework is proven to be effective and robust for CT image 
reconstruction purposes (15,21,22). We do not exclude the 
possibilities to investigate more advanced algorithms that 
can reconstruct images more accurately. Especially, some 
deep-learning based approaches (36,38,39) have shown 
their superiority for such sparse and/or limited view CT 
reconstruction. One of our future work is to explore some 
more advanced reconstruction algorithms on our proposed 
sparse segmental multi-energy acquisition scheme. Proper 
selection of regularization parameters is a crucial task to 
achieve superior image quality for all iterative reconstruction 
algorithms. Four regularization parameters are involved in 
the objective function of the proposed PIC-RPCA method. 

In our work, a trial-and-error strategy was utilized to select 
optimal parameters. However, in real clinical practice, all the 
parameters should be predetermined or adaptively adjusted 
on-the-fly. Especially for prior-image-based reconstruction, 
one major challenge with PIBR methods is how to optimally 
determine the strength of prior image information that would 
be introduced into the reconstructed images (40). Several 
strategies have been investigated for optimal parameter 
selection based on the data property or specific clinical task 
(41-43). A deep insight into adaptive parameter selection for 
our approach would be a topic for future work. In this study, 
some commonly used metrics were chosen for evaluation 
such as CNR, SSIM, line profiles and HU linearity. The 
quantitative metrics MTF and NPS were not included in this 
study but would be evaluated in further investigation. These 
figures of metrics can provide some quantitative measures, 
but they may not predict performance of human observers 
who interpret CT images. To overcome the limitation of 
these metrics, some task-based evaluation methods have been 
reported and remain an active area in the medical imaging 
field (44-46). As this paper reports an initial study that 
mainly focus on developing a novel MECT acquisition and 
reconstruction method, we would like to apply a task-based 
evaluation to validate the effectiveness and applicability for 
clinical practice.

This study mainly focuses on the novel MECT scan 
scheme design and its corresponding reconstruction method 
development. As material decomposition technique is 
one main advantage of MECT over conventional single-
energy CT (5,8), our future work will incorporate a material 
decomposition method into our SSMECT system. Another 
potential improvement of our reconstruction method is the 
computation time, which is an important factor of SSMECT 
to be applied in clinical use. In our study, the reconstruction 
time with 360 projections to reconstruct an image matrix is 
about 250 s in Matlab R2016a on a regular desktop computer 
with an Intel Core i7-7700 CPU. Recently, graphics 
processing units (GPUs) based parallel computing techniques 
have been successfully implemented in the reconstruction 
process (33,47,48). The reconstruction time of our method 
could be greatly shortened by this technique in the future 
work. 
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