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Background: Finding methods to accurately predict the final infarct volumes for acute ischemic 
stroke patients with full or no recanalization would significantly help to evaluate the potential benefits of 
thrombolytic therapy. We proposed such a method by constructing a model of ensemble deep learning and 
machine learning using diffusion-weighted imaging (DWI) only. 
Methods: The proposed prediction model (named AUNet) combines an adaptive linear ensemble model 
(ALEM) of machine learning and a deep U-Net network with an accelerated non-local module (U-NL-Net) 
to learn voxel-wise and spatial features, respectively. Of 40 patients with acute ischemic stroke who received 
thrombolytic therapy, 17 were fully recanalized, 14 were not recanalized, and nine were partially recanalized. 
The AUNet was separately trained for full recanalization conditions (AUNetR) and no recanalization 
(AUNetN) as the best and worst outcomes of thrombolysis, respectively. 
Results: AUNet performed significantly better in predicting the final infarct volumes in both the 
recanalization and non-recanalization conditions [area under the receiver operating characteristic curve 
(AUC) =0.898±0.022, recanalization; AUC =0.875±0.036, non-recanalization: Matthew’s correlation 
coefficient (MCC) =0.863±0.033, recanalization; MCC =0.851±0.025, non-recanalization] than the fixed-
thresholding method (AUC =0.776±0.021, P<0.0001, recanalization; AUC =0.692±0.023, P<0.0001, non-
recanalization: MCC =0.742±0.035, recanalization; MCC =0.671±0.024, non-recanalization), the logistic 
regression method (AUC =0.797±0.023, P<0.003, recanalization; AUC =0.751±0.030, P<0.003, non-
recanalization: MCC =0.762±0.035, recanalization; MCC =0.730±0.031, non-recanalization), and a recently 
developed convolutional neural network (AUC =0.814±0.013, P<0.003, recanalization; AUC =0.781±0.027, 
P<0.003, non-recanalization: MCC =792±0.022, recanalization; MCC =0.758±0.016, non-recanalization). 
The potential benefit of thrombolysis calculated from AUNetR and AUNetN showed large individual 
differences (from 12.81% to 239.73%)
Conclusions: AUNet improved predictive accuracy over current state-of-the-art methods. More 
importantly, the accurate prediction of infarct volumes under different recanalization conditions may provide 
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Introduction

Stroke is one of the leading causes of death worldwide, and 
almost half of stroke deaths result from ischemic stroke (1).  
Thrombolytic therapy, a procedure used for ischemic 
stroke, aims to recanalize the occluded vessel and reperfuse 
the ischemic tissue (2). However, as noted by Dr. Lyden, 
the decision to use thrombolytic therapy is “among the most 
difficult treatment decisions in medicine, given the risks involved 
and the compressed time frame available” (3). Complications 
related to thrombolysis include symptomatic intracranial 
hemorrhage, major systemic hemorrhage, and angioedema 
(4,5). Any decision to use thrombolytic therapy needs to 
take into account the risk of these complications and the 
potential benefits of thrombolytic therapy, including the 
volume of salvageable tissue. One way to quantitatively 
evaluate treatment benefit is to predict and compare the 
final infarct volume after full recanalization (best outcome) 
with that of no recanalization (worst outcome). 

Several quantitative methods have been developed to 
predict final infarct volumes from baseline neuroimaging 
data ;  however,  predict ion methods  for  d i f ferent 
recanalization levels are still lacking. The most popular 
method involves uniform thresholding on the baseline 
apparent diffusion coefficient (ADC) map, which is 
calculated from diffusion-weighted imaging (DWI) to 
determine the ischemic core (6,7). By using different 
thresholds to obtain receiver operating characteristic (ROC) 
curves classified by pixels in data from 14 stroke patients, 
it was previously found that the ADC of the final infarcted 
area was lower than that of the non-infarcted area and that 
the best segmentation threshold was 620×10−6 mm2/s (7). A 
similar approach was used with magnetic resonance imaging 
(MRI)/CT perfusion-weighted images (PWIs) to obtain 
the optimized Tmax (time point for the maximum of the 
residue function) threshold (6). The DWI/PWI mismatch 
is considered to represent salvageable tissue (8-11). 
However, tissue heterogeneity exists, and fixed thresholds 
might oversimplify the problem and limit the prediction 

accuracy. Recently, threshold-free predictive algorithms 
with the capability of including multimodal images have 
been developed, including the logistic regression (LR) 
model (12) and the general linear model (GLM) (13). These 
advanced machine-learning methods have substantially 
improved predictive accuracy. However, these methods are 
still performed pixel-by-pixel without full consideration of 
spatial information, limiting their accuracy. 

The convolutional neural network (CNN) is an emerging 
technique that provides lesion segmentation applications 
and other imaging texture-recognition applications (14-16). 
CNN has the advantage of including spatial information, 
which makes CNN a suitable candidate for stroke 
progression assessment. However, studies using CNN 
for final infarct prediction of acute ischemic stroke (17),  
especially under different treatment conditions, are still 
limited. Nielsen et al. (17) implemented several CNN 
algorithms for predicting tissue outcome and assessing 
treatment effects in acute ischemic stroke; they found 
that deep CNN performed better than other CNNs, 
fixed-threshold methods (6,7), or GLMs (8). However, 
this study used patients receiving thrombolytic therapy 
to train the CNN models but did not assess the degree 
of recanalization, which is problematic as the degree of 
recanalization significantly affects the final tissue outcomes. 
Additionally, due to the excessively deep network structure, 
this method ignores the image’s low-level information 
details, resulting in blurring the edges of the prediction area 
and overestimating the final infarct volume. 

This study aimed to develop prediction models for the 
best (full recanalization) and worst (no recanalization) 
outcomes of thrombolytic therapy in acute ischemic stroke, 
using baseline DWI only. For this reason, we used two 
groups of stroke patients, one consisting of patients who 
had undergone full recanalization (recanalization group) 
and the other consisting of patients without recanalization 
(non-recanalization group), to train the prediction 
models for the best and worst outcomes, respectively. We 
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further aimed to improve deep learning algorithms by 
incorporating different spatial scale information (e.g., fine 
structural information and long-distance information) and 
combining the U-Net network (17) with an accelerated 
non-local (NL) module (U-NL-Net) (18). Additionally, we 
combined machine learning, which has advantages in voxel-
level sorting, with deep learning, which provides spatial 
information integration. This ensemble learning was used 
to make full use of local tissue information (voxel-wise) 
and spatial distribution information to improve prediction 
accuracy. Further, we compared the prediction performance 
of our proposed method (AUNet) with other state-of-the-
art methods, including a fixed-thresholding method (6), 
GLM (12), and a CNN-based method (16) in patients with 
ischemic stroke who had full, partial, or no recanalization 
after thrombolytic therapy. 

Methods

Patients and image acquisition

In this retrospective study, 40 patients with symptoms 
consistent with acute ischemic stroke and treated with 
thrombolytic therapy within 4.5 hours after stroke onset 
were selected. Baseline DWI images were collected before 
treatment, and T2-weighted-fluid-attenuated inversion 
recovery (T2-FLAIR) images or CT images were obtained 
7 days after thrombolytic therapy. All MRIs were performed 
on a GE 3.0T scanner at the admitting hospital. Echo-
planar DWIs were obtained at a diffusion weighting (b) 
of 0 s/mm2 and 1,000 s/mm2. The b =1,000 s/mm2 images 
were acquired at 3 to 12 directions, depending on the 
scanner/vendor type at the admitting hospital. The MR 
image acquisition parameters for DWI were repetition time 
=4,000 ms, echo time =69.3 ms, b-value =1,000 s/mm2, three 
slabs, slice thickness 5.0 mm, interslice gap 1.0 mm, spatial 
resolution of 0.94 mm/pixel, field of view (FOV) =24 cm,  
and matrix size =160×160. The two DWI images were 
used to obtain the ADC images. Also, digital subtraction 
angiography (DSA)/computed tomography perfusion 
(CTP)/magnetic resonance angiography (MRA) images 
were collected after thrombolytic therapy to evaluate the 
recanalization status. Because of the sensitive nature of the 
data and compliance regulations on general data protection, 
requests to access the dataset from qualified researchers 
trained in human subject confidentiality protocols may be 
sent to Zhejiang University. The human ethics committee 
approved this study protocol at our center. The study was 

conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). Written informed consent was obtained 
from all patients or their designated proxy.

Patient groups and final infarct volume identification

After receiving thrombolytic therapy, 17 patients were 
fully recanalized [arterial occlusive lesion (AOL) score =3, 
recanalization group], 14 patients were not recanalized  
(AOL =0, non-recanalization group), and 9 patients were 
partly recanalized (AOL =2, partial-recanalization group). 
The final infarct volumes were marked by a neurologist on 
the 7-day T2-FLAIR or CT images, which were then used as 
labels for training and evaluation of the prediction models.

Image preprocessing

Because the grayscale values of DWI and ADC images differ 
greatly in magnitude, data normalization operations were 
performed on all images. Specifically, to make the model a 
better fit for the dataset’s overall distribution, the mean and 
variance used in our normalization were calculated through 
the whole dataset. For the normalization of the DWI 
images, the mean value (DWImean) and standard deviation 
(SD) (DWIsd) were computed by taking the mean and the 
SD of the brain region. The DWI signal intensity was 
normalized as the ratio of DWI signal intensity − DWImean 
to DWIsd. For the normalization of the ADC images, 
the mean value (ADCmean) was set to 600 (10−6 mm2/s),  
which is a balance value of the mean ADC in the 
infarction core (400×10−6–499×10−6 mm2/s) and that in 
the non-core brain tissue (700×10−6–799×10−6 mm2/s)  
as reported by Jonsdottir et al. (19). The SD (ADCsd) was 
computed by taking the SD of the brain region. The ADC 
signal intensity was normalized as the ratio of ADC signal 
intensity − ADCmean to ADCsd. DWI, ADC, and lesion 
mask images were resampled to a 256×256 resolution for all 
slices. All images were further co-registered onto the 7-day 
MRI T2-FLAIR or CT images using a fully automated and 
affine algorithm with FMRIB’s Linear Image Registration 
Tool (FLIRT) (20). 

The proposed prediction model: AUNet

Figure 1 shows the architecture of the proposed prediction 
model, AUNet. It is an ensemble learning method combining 
two prediction models: the adaptive linear ensemble model 
(ALEM), which is a shallow machine-learning model, and a 
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deep U-Net network with an accelerated non-local module 
(U-NL-Net); these models learn the voxel-wise and spatial 
features, respectively. The final prediction results were 
obtained by combining the results from these two methods 
to obtain the AUNet model.

ALEM for voxel-wise selection

Due to the limitations of a deep model’s learning ability 
to incorporate low-level information and data distribution 
diversity, it is not easy to find one model that can make 
accurate predictions for inputs with various distributions. 
Thus, we developed the ALEM, which combines three base 
classifiers for the voxel-wise prediction of the final infarct 
tissue: Random forest (21), extremely randomized trees (22), 
and XGBoost (23). ALEM was designed to combine these 
three different types of base classifiers with improving this 
model’s robustness for cases in which one base classifier 
could not provide correct prediction values due to the 
sparsity of the data. For the three base classifiers, each forest 
contained 100 subtrees, and the maximum split depth of 
each tree was 10. ALEM used the mean decrease impurity 

(MDI) as the evaluation index of feature importance, which 
adaptively uses feature importance to assign weights to 
different models for fitting diverse data distributions. The 
details of implementation are provided in Supplement 1. 
The model implementation was based on the Scikit-Learn 
Algorithm Library.
 

U-NL-Net prediction model for spatial features learning

By observing the brain MRI image slices, it can be seen 
that a large proportion of patients exhibit a unilateral 
distribution or clustered distribution of the final infarct 
tissue. Therefore, the long-distance information, including 
the difference between the infarct side and the mirror side, 
or infarct region and normal-appearing region distant from 
the infarct region, is an important feature in determining 
the infarct area of the stroke. However, in the conventional 
convolutional operation used in the baseline network (17), 
the convolution kernel can only process local areas such 
as 3×3 or 5×5 pixels when extracting features. Generally, 
it is impossible to consider the low-level information 
and establish a connection between opposite sides’ long-

Figure 1 The architecture of the proposed AUNet method. The inputs of AUNet are baseline DWI and ADC images and the outputs of 
AUNet are the predicted infarct volume. The upper panel represents the adaptive linear ensemble model (ALEM), in which three machine-
learning-based classifiers are combined. The lower panel illustrates the designed U-Net network with the accelerated non-local module 
U-NL-Net. The red module represents the non-local module (best viewed in color). The final prediction results were obtained by logic 
computation of the vetting results from the two channels. DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient.
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distance pixels. To include the long-distance information, 
we improved the conventional U-Net network (18) by 
adding a NL module (24,25) so that the new network, 
U-NL-Net, could efficiently model long-distance features 
while capturing low-level features that reflect the detailed 
information of the MRI images. More details of U-NL-Net 
are provided in the Supplementary information. We used 
two different pooling scales (26) to improve the NL module 
structure to create an accelerated NL module, which 
optimized the computational complexity of the original 
NL module for the current applications. The U-NL-Net 
model architecture was based on Dong’s implementation 
in PyTorch and was performed on a workstation computer  
[CentOS Linux 7, Intel Xeon (R) Processor E5-2667, 32 
CPU cores with 3.2 GHz, 254 GB RAM, 8 GB graphics 
processing unit (Tesla P4)]. The following parameters 
were chosen for the U-NL-Net model: the number of 
epochs =100, batch size =10, and Adam (27) optimizer 
with learning rate =0.01. The final loss function was the 
weighted summation of Dice Loss (28) and Focal Loss (29).  
To prevent the model from overfitting, deep neural 
network training often requires a large amount of data. 
Considering that there were fewer infarct volumes than 
normal-appearing volumes in our dataset, a series of 
image augmentation algorithms were used to enhance 
the data representation, such as random horizontal flip, 
random vertical flip, random affine change, random elastic 
transformation, random contrast adjustment, random add 
Gaussian noise and random position cropping. 

Ensemble predictive results—AUNet 

The U-NL-Net prediction network can obtain richer 
features through stacked convolutional layers, which can 
be regarded as a “deep” prediction model containing high-
level information. The prediction results were obtained 
simultaneously through one calculation. ALEM belongs to 
a “shallow” model containing low-level information, and 
the results were obtained by voxel-by-voxel prediction. 
Therefore, the two models may provide complementary 
characteristics for data. The final prediction result was 
obtained by the product of each position’s probability value 
in the two results provided by ALEM and U-NL-Net.

Predictions for best and worst outcomes and the evaluation 
of treatment benefits

The AUNet models were trained on the recanalization 

group and non-recanalization group data separately to 
predict the final infarct volume with full recanalization (best 
outcome, AUNetR) and no recanalization (worst outcome, 
AUNetN), respectively. Subjects in each group were 
randomly assigned to either the training set or the external 
testing set with a training/testing ratio of approximately 
70:30. The difference between the predicted infarct volumes 
of AUNetR (VolumeR) and those of AUNetN (VolumeN) was 
defined as the potential benefit of thrombolytic therapy, as 
follows:

     100%N R

R

Volume VolumeBenefit
Volume

−
= × 	  [1]

Statistical analysis

The infarct volume prediction accuracy was evaluated 
using the area under the ROC curve (AUC) and Matthew’s 
correlation coefficient (MCC). The AUC was calculated 
according to the method used by Jonsdottir et al. (19), which 
has the advantage of being threshold-independent and tests 
whether positives (correct predictions) are ranked higher 
than negatives (incorrect predictions). The MCC is a robust 
method to calculate metric success in unbalanced datasets. 
The calculated AUC and MCC were pairwise compared 
using paired t-tests. The AUC and MCC are presented as 
mean ± SD.

Results

The characteristics of all included patients are summarized 
in Table 1. There was no significant difference among 
patients concerning these characteristics, which included 
age (P=0.919), time of onset to MRI (P=0.973), admission 
score on the National Institutes of Health Stroke Scale 
(NIHSS) (P=0.808), DWI volume (ADC <600 μm2/s, 
P=0.5647), and PWI volume (Tmax ≥6 s, P=0.1714). 

Model comparisons

Figure 2 shows the final infarct volumes (in red) defined 
as the 7-day MRI/CT (fourth column, manually drawn by 
one neurologist) and predicted from different methods, 
including fixed-thresholding on ADC, the LR method, 
conventional CNN, ALEM, U-NL-Net, and AUNet 
(ALEM + U-NL-Net). In the final fusion result, the 
prediction error is lower. Visually, fixed-thresholding-
based predictions led to a scattered distribution of infarct 

https://cdn.amegroups.cn/static/public/QIMS-21-33-supplementary.pdf
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Table 1 Patient characteristics

Characteristics
Non-recanalization median  

(min–max)
Recanalization median  

(min–max)
Partial-recanalization median  

(min–max)

Age, years 67.2 (55–82) 67.6 (47–81) 71 (53–81)

Time, onset to MRI, minutes 247 (121–350) 248 (118–390) 163 (70–309)

Admission NIHSS 15.3 (2.0–21.0) 15.0 (3.0–23.0) 12.4 (1.0–22.0)

DWI volume, mL 45.6 (1.0–124.8) 37.0 (1.0–144.9) 34.69 (1.0–109.3)

PWI volume, mL 128.4 (37.8–356.4) 93.4 (30.2–226.3) 130.79 (14.7–238.7)

NIHSS, National Institutes of Health Stroke Scale; DWI, diffusion-weighted imaging; PWI, perfusion-weighted imaging. 

Figure 2 The final infarct volumes predicted by the different models. Patients A and B are from the recanalization group and Patients C 
and D are from the non-recanalization group. The final infarct volumes from 7-day data and predicted from different methods are labeled in 
red. For the fixed-thresholding method, the same ADC threshold was used for all patients. For other learning-based methods, the results of 
the recanalization model are illustrated for Patients A and B and those of the non-recanalization model are displayed for Patients C and D. 
Patient A is a 72-year-old woman (NIHSS =23), scanned 273 minutes after symptom onset. AUNetR shows the least overestimation of the 
final infarct volumes (none on this slice). Patient B is a 55-year-old man (NIHSS =13) scanned after 244 minutes. Patient C is an 80-year-
old woman (NIHSS =14) scanned after 193 minutes. Patient D is a 71-year-old woman (NIHSS =4) scanned after 281 minutes. LR, logistic 
regression method; Threshold, fixed-thresholding method; NIHSS, National Institutes of Health Stroke Scale; DWI, diffusion-weighted 
imaging; ADC, apparent diffusion coefficient; CNN, convolutional neural network; ALEM, adaptive linear ensemble model. 
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pixels, and the use of the machine-learning-based ALEM 
significantly improved the voxel-by-voxel sorting. The 
conventional CNN methods showed an overestimation of 
the final infarct volume, while the U-NL-Net showed a 
better performance than conventional CNN. AUNet, which 
uses ALEM to narrow the area of interest and U-NL-Net 
in negating discrete voxels, showed the best performance 
among all methods.

To further quantitatively compare the prediction 
performances of these methods, ROC and AUC results 
from the test subgroup in the recanalization group and non-
recanalization group are separately shown in Figure 3. The 
highest AUC was obtained by AUNet (AUC =0.898±0.022, 
recanalization; AUC =0.875±0.036, non-recanalization: 
MCC =0.863±0.033, recanalization; MCC =0.851±0.025, 
non-recanalization), followed by U-NL-Net (AUC 
=0.875±0.019, P=0.02, recanalization; AUC =0.844±0.052, 
P=0.037, non-recanalization: MCC =0.853±0.017, 

recanalization; MCC =0.827±0.025, non-recanalization), 
ALEM (AUC =0.866±0.021, P<0.003, recanalization; 
AUC =0.804±0.047, P=0.004, non-recanalization: MCC 
=0.841±0.008, recanalization; MCC =765±0.021, non-
recanalization), the CNN method (AUC =0.814±0.013, 
P<0.003, recanalization; AUC =0.781±0.027, P<0.003, non-
recanalization: MCC =792±0.022, recanalization; MCC 
=0.758±0.016, non-recanalization), the LR method (AUC 
=0.797±0.023, P<0.003, recanalization; AUC =0.751±0.030, 
P<0.003, non-recanalization: MCC =0.762±0.035, 
recanalization; MCC =0.730±0.031, non-recanalization), 
the fixed-thresholding method (AUC =0.776±0.021, 
P<0.0001, recanalization; AUC =0.692±0.023, P<0.0001, 
non-recanalization: MCC =0.742±0.035, recanalization; 
MCC =0.671±0.024, non-recanalization),  and the 
U-Net (AUC =0.872±0.031, P<0.003, recanalization; 
AUC =0.812±0.024, P<0.003, non-recanalization: MCC 
=0.849±0.013, recanalization; MCC =786±0.018, non-

Figure 3 Receiver operating characteristic (ROC) curves (A,B) and box plots of the areas under the curve (AUCs) for the recanalization 
and non-recanalization datasets (C,D). LR, logistic regression method; Threshold, fixed-thresholding method; CNN, convolutional neural 
network; ALEM, adaptive linear ensemble model.
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recanalization). The proposed voxel-based ALEM method 
also showed significantly higher AUCs than those obtained 
by other voxel-based methods (the LR method and the 
fixed-thresholding method). Additionally, the proposed 
U-NL-Net demonstrated better performance than the 
conventional CNN method, suggesting the NL module 
could significantly improve the prediction model. The 
further combination of ALEM and U-NL-Net, i.e., AUNet, 
also showed significant improvement over either U-NL-
Net or ALEM alone, suggesting that ensemble learning was 
responsible for the better performance of AUNet. 

The predicted benefits of recanalization

Figure 4A shows the predicted final infarct volumes 
using the recanalization model (AUNetR) and non-
recanalization model (AUNetN) on three representative 
patients from each group: the recanalization group (Patient 
A), the non-recanalization group (Patient B), and the 
partial-recanalization group (Patient C), along with the 
recanalization benefits and the final infarct volume defined 
on the 7-day data. For Patient A, AUNetR showed the best 
prediction of the final infarct volume; the predicted therapy 

Figure 4 The analysis of predicted benefits of recanalization. (A) Examples of the final infarct volume obtained from the AUNetR and 
AUNetN and the benefits calculated according to Eq. [1] on three patients. The difference of the predicted infarct volumes by the two 
models (shown as green, overlaps are shown in yellow) are displayed in the third column. The real infarct volumes are shown in the fourth 
column. Patients A, B, and C are from the recanalization, non-recanalization, and partial-recanalization groups, respectively. For recanalized 
Patient A, AUNetN shows a clear overestimation of the infarct volume and AUNetR shows a better performance. For non-recanalized 
Patient B, AUNetR shows underestimation of the final infarct volume in some regions. For partially-recanalized Patient C, the final infarct 
volume is larger than that predicted by AUNetR but smaller than that of AUNetN. (B) The statistics of the final infarct volumes obtained 
from the different prediction models and the ground truth for all the subjects in the three patient groups; the bar height represents the 
average volume of all subjects in each group.
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benefit was 40.38%. In other words, the final infarct volume 
will increase by 40.38% if no thrombolytic therapy is 
received or if there is a failure in the recanalization after 
thrombolytic therapy. For Patient B, AUNetN showed the 
best final infarct volume prediction due to recanalization 
failure, and the predicted benefit was 36.50%. For Patient 
C, the final infarct volume was smaller than that predicted 
by AUNetN but larger than that predicted by AUNetR. 
Patient C would show a predicted benefit of 239.7% due to 
the relatively small infarct volume if full recanalization were 
achieved, as predicted by AUNetR. 

Overall, as shown in Figure 4B, for all subjects in the 
recanalization group, the final infarct volume (V =36.9 mL) 
was close to the predicted volume of AUNetR (V =35.8 mL),  
but significantly smaller than that of AUNetN (V =44.9 mL)  
(P<0.0001). For the non-recanalization group, the final 
infarct volume (V =46.2 mL) was closer to that predicted 
by AUNetN (V =47.3 mL) but significantly larger than that 
predicted by AUNetR (V =38.5 mL) (P<0.0001). The partial-
recanalization group’s final infarct volume (V =38.9 mL) lay 
between the results predicted by AUNetR and AUNetN. The 
predicted therapy benefits for the recanalization, partial-
recanalization, and non-recanalization groups were 41.94%, 
39.87%, and 40.63%, respectively; there were no significant 
differences between groups. However, the predicted benefits 
showed large individual variances in all groups, from the 
smallest at 12.81% to the largest at 239.73%. 

DWI maps contain additional information compared with 
ADC maps for final infarct volume prediction 

While most existing methods (12,17) use only ADC 
maps to predict the infarct volume, we included DWI 
maps (including the b =0 and 1,000 s/mm2) in our model 
training. To prove that the fusion into DWI maps can 
provide additional information for the final infarct volume 
prediction; we further trained the AUNet model on 
ADC maps only (ADC-only AUNet). Figure 5A shows 
representative examples for the AUNet and ADC-only 
AUNet. For most images, we found that the ADC-only 
AUNet overestimated the final infarct volume in both 
the recanalization and non-recanalization models. Based 
on the AUCs of the ROC (Figure 5B,C), the AUNet  
(AUC =0.898±0.022, recanalization; AUC =0.875±0.036, 
non-recanalization) showed better performance than 
the ADC-only AUNet (AUC =0.852±0.023, P<0.003, 
recanalization; AUC =0.830±0.037, P<0.003, non-
recanalization). These results suggest that DWI images 

can provide fine-grained information to improve the 
performance of the model. 

Discussion

Current guidelines for ischemic stroke patients limit the 
time to initiate intravenous thrombolytic therapy within  
4.5 hours after stroke onset. A meta-analysis (30) showed that 
only about one-third of patients within the 4.5-hour time 
limit benefited from intravenous thrombolysis. It suggested 
that more detailed information may be needed to screen for 
more suitable thrombolytic candidates. Convenient methods 
for the accurate prediction of infarct volume and salvageable 
brain tissue are required. In this study, we demonstrated that 
the AUNet model, which is an ensemble learning method 
combining machine learning and deep learning to improve 
prediction accuracy, can predict the final infarct volume with 
full or no recanalization from baseline DWIs only. To the 
best of our knowledge, these are the first predictive models 
of the final infarct volume for different recanalization levels. 
The proposed AUNet algorithm, once trained, can be 
readily appended to automated post-processing software in 
a computationally inexpensive manner and can provide a 
convenient way to select suitable patients for thrombolytic 
therapy with only DWIs needed. 

The advantageous performance of the proposed AUNet 
model is due to several factors. First, the inclusion of long-
distance spatial information by adding the NL module 
to the U-NL-net improves the model over conventional 
CNN. This NL module may benefit the network by 
learning the infarct tissue features by comparison with 
normal long-distance tissue. Second, we adaptively used 
feature importance as weighting to combine three machine  
learning methods [random forest (21), extremely randomized 
trees (22), and XGBoost (23)], which makes the voxel-wise 
sorting of infarct tissue more accurate than an LR or fixed-
thresholding method. Third, the final AUNet ensemble 
machine-learning-based voxel sorting and deep-learning-
based image segmentation combine both shallow (voxel) and 
deep (spatial distribution) information from baseline DWIs. 
Fourth, we found that including the DWI raw images could 
significantly improve the prediction performance, suggesting 
that DWI raw images contain additional information not 
found in ADC images. Additionally, DWI raw images may 
have relatively higher signal-to-noise ratios than ADC 
images, explaining the additional fine-grained features 
learned from the DWI raw images. 

This study has several limitations. First, we only trained 
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and tested the models on a dataset from a limited number 
of patients, though proper data enhancement was used. 
However, the current AUNet model can be readily trained 
and tested with additional data. In the future, it would 
be interesting to adapt our current methods for patients 
beyond 4.5 hours, for whom CT perfusion or perfusion-
diffusion MRI is required to receive thrombolytic therapy. 
Second, we only used DWI data (and ADC data derived 
from DWI) in the model. Whether other imaging 
modalities could improve the final infarct volume prediction 
should be further investigated. However, including more 
image modalities would significantly increase the scan time, 
which is not preferred for most patients. Also, contrast 
agents in perfusion MRI/CT are restricted in some specific 
cases, e.g., an MRI contrast agent is not allowed for patients 
with kidney problems. Other patient information, such as 
age, stroke onset time, or position of the occluded vessels, 
may also be included in the model to improve prediction 
accuracy (31). Third, CT, especially CTP, is also frequently 

used for acute stroke evaluation.
Further testing of the proposed methods on CT images 

is warranted. Fourth, the U-NL-Net network portion 
of the proposed method is based on a two-dimensional 
convolution; therefore, the slice direction’s spatial 
information is not fully utilized. Using a 3D convolution 
for feature extraction operations may be considered. And 
lastly, to achieve personalized medicine, an interesting but 
more challenging direction would be to explore prediction 
models in partial-recanalization conditions further to allow 
predictions of all possible outcomes, thus creating the ability 
to predict each recanalization outcome for each patient. 

Conclusions

The proposed AUNet model demonstrates significant 
advantages over currently available methods for predicting 
final infarct volumes. Additionally, we have established 
methods to predict the final infarct volumes under different 

Figure 5 Verify the gain of DWI maps compared with ADC maps. (A) The predicted infarct volumes of the ADC-only AUNet and AUNet. 
The patient is a 74-year-old woman (NIHSS =7) from the recanalization group, scanned 164 minutes after symptom onset. The ADC-only 
AUNet always overestimates the infarct volume, as shown by the red arrows. (B,C) The receiver operating characteristic (ROC) curves of 
the non-recanalization model (B) and recanalization model (C) using the ADC-only AUNet and AUNet. NIHSS, National Institutes of 
Health Stroke Scale; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient.
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recanalization conditions to evaluate thrombolytic therapy’s 
potential benefits quantitatively. The proposed model needs 
to be validated in patients beyond 4.5 hours and may evolve 
into a quantitative framework for ischemic core diagnosis, 
therapeutic decision-making, and prognostic evaluation of 
therapeutic efficacy at an individual level. 
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Supplementary

Supplement 1

Mean decrease impurity (MDI) refers to the average Gini coefficient attenuation of this feature through all participating 
nodes. Assuming that node q is split by feature s, the impurity changes before and after the split:

 ( , ) ( ) ( ) ( )L L R Ri s q i q p i q p i q∆ = − − 	 [1]

Where i(q) represents the impurity of node q. PL and PR represent the probability that the sample is divided into the left 
and right subtrees, respectively. Based on the impurity change at a single node, the average impurity change can be calculated 
for the feature Xm:

 1( ) ( ) ( , )m q
q TT

Imp X T p q i s q
N ∈

= ∆∑ 	 [2]

Where p(q) represents the proportion of samples that are classified into node q in all samples, and sq represents the feature 
segmentation points used. 

Calculate the MDI for all features by Eq. [2], and then sort the results from large to small. The first K features are taken as 
the most important K features of the model.

The ensemble model is based on the weighting of each base model, and the weighted coefficients are determined by the 
most important K features of each model:

 

1
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K

i ij j
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w x v f x
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wi(x) is the weighting coefficient of i-th base classifier, fj(x) represents the j-th important eigenvalue of the sample x under 
the i-th base classifier. vij is a set of parameters to learn, which represents the output of the i-th base classifier, and E(x) is the 
result after ensemble. According to Eq. [3] and Eq. [4], we can solve variables by minimizing Eq. [5]:

 2

' ,
min ( ( ) ( ) ( ))v i j j i gt

x X i j
v f x b x y x

∈

−∑∑ 	 [5]

X’ is a subset of the training set used to train the ensemble model. Directly solving Eq. [5] may lead to the problem of 
overfitting. Therefore, an additional penalty L2 term for free variables vij is used to avoid the model being too complicated, 
which can be regarded as the following ridge regression problem:

 2 2

' ,
min ( ( ) ( ) ( ))v i j j i gt ij

x X i j ij
v f x b x y x vλ

∈

− +∑∑ ∑ 	 [6]

λ is the penalty term coefficient. Solving the Eq. [6] and get: 

 1( )T
opt gtv A A I yλ −= + 	 [7]

Where Aij = fj(x)gi(x).
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Supplement 2 (Table S1)

Table S1 U-Net (DWI + ADC) architecture used as the baseline

Level Layer name Channel Kernel Step Output dimension Parameters (M) Computation (GFlops)

Input – – – 2242×1 – –

Encode1 Convolution 64 3×3 1 2242×64 0.0006 0.0321

BN 64 – – 2242×64 0.0001 0.0128

Dropout – – – 2242×64 – –

Convolution 64 3×3 1 2242×64 0.0369 1.8529

BN 64 – – 2242×64 0.0001 0.0128

Dropout – – – 2242×64 – –

MaxPool – 2×2 2 1122×64 – –

Encode2 Convolution 128 3×3 1 1122×128 0.0739 0.9264

BN 128 – – 1122×128 0.0003 0.0064

Dropout – – – 1122×128 – –

Convolution 128 3×3 1 1122×128 0.1476 1.8513

BN 128 – – 1122×128 0.0003 0.0064

Dropout – – – 1122×128 – –

MaxPool – 2×2 2 562×128 – –

Encode3 Convolution 256 3×3 1 562×256 0.2952 0.9256

BN 256 – – 562×256 0.0005 0.0032

Dropout – – – 562×256 – –

Convolution 256 3×3 1 562×256 0.5901 1.8505

BN 256 – – 56^2×256 0.0005 0.0032

Dropout – – – 562×256 – –

MaxPool – 2×2 2 282×256 – –

Encode4 Convolution 256 3×3 1 282×256 0.5901 0.4626

BN 256 – – 282×256 0.0005 0.0008

Dropout – – – 282×256 – –

Convolution 256 3×3 1 282×256 0.5901 0.4626

BN 256 – – 282×256 0.0005 0.0008

Dropout – – – 282×256 – –

Docode1 Up&Concat – – – 562×512 – –

Convolution 256 3×3 1 562×256 1.1799 3.7002

BN 256 – – 562×256 0.0005 0.0032

Dropout – – – 562×256 – –

Convolution 256 3×3 1 562×256 0.5901 1.8505

Table S1 (continued)
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Table S1 (continued)

Level Layer name Channel Kernel Step Output dimension Parameters (M) Computation (GFlops)

BN 256 – – 562×256 0.0005 0.0032

Dropout – – – 562×256 – –

Decode2 Up&Concat – – – 1122×384 – –

Convolution 128 3×3 1 1122×128 0.4425 5.5507

BN 128 – – 1122×128 0.0003 0.0064

Dropout – – – 1122×128 – –

Convolution 128 3×3 1 1122×128 0.1476 1.8513

BN 128 – – 1122×128 0.0003 0.0064

Dropout – – – 1122×128 – –

Decode3 Up&Concat – – – 2242×192 – –

Convolution 64 3×3 1 2242×64 0.1107 5.5523

BN 64 – – 2242×64 0.0001 0.0128

Dropout – – – 2242×64 – –

Convolution 64 3×3 1 2242×64 0.0369 1.8529

BN 64 – – 2242×64 0.0001 0.0128

Dropout – – – 2242×64 – –

Output Convolution 1 3×3 1 2242×1 0.0006 0.0290

Sum 4.84 28.84

DWI indicates diffusion weighted imaging; ADC, apparent diffusion coefficient.
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Supplement 3 (Figure S1)

Figure S1 Developed non-local module architecture.
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