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Background: Quantitative computed tomography (QCT) imaging is the basis for multiple assessments 
of bone quality in the proximal femur, including volumetric bone mineral density (vBMD), tissue 
volume, estimation of bone strength using finite element modeling (FEM), cortical bone thickness, and 
computational-anatomy-based morphometry assessments. 
Methods: Here, we present an automatic framework to perform a multi-parametric QCT quantification 
of the proximal femur. In this framework, the proximal femur is cropped from the bilateral hip scans, 
segmented using a multi-atlas based segmentation approach, and then assigned volumes of interest through 
the registration of a proximal femoral template. The proximal femur is then subjected to compartmental 
vBMD, compartmental tissue volume, FEM bone strength, compartmental surface-based cortical bone 
thickness, compartmental surface-based vBMD, local surface-based cortical bone thickness, and local 
surface-based cortical vBMD computations.  Consequently, the template registrations together with vBMD 
and surface-based cortical bone parametric maps enable computational anatomy studies. The accuracy of 
the segmentation was validated against manual segmentations of 80 scans from two clinical facilities, while 
the multi-parametric reproducibility was evaluated using repeat scans with repositioning from 22 subjects 
obtained on CT imaging systems from two manufacturers.  
Results: Accuracy results yielded a mean dice similarity coefficient of 0.976±0.006, and a modified 
Haussdorf distance of 0.219±0.071 mm. Reproducibility of QCT-derived parameters yielded root mean 
square coefficients of variation (CVRMS) between 0.89-1.66% for compartmental vBMD; 0.20-1.82% for 
compartmental tissue volume; 3.51-3.59% for FEM bone strength; 1.89-2.69% for compartmental surface-
based cortical bone thickness; and 1.08-2.19% for compartmental surface-based cortical vBMD. For local 
surface-based assessments, mean CVRMS were between 3.45-3.91% and 2.74-3.15% for cortical bone 
thickness and vBMD, respectively. 
Conclusions: The automatic framework presented here enables accurate and reproducible QCT multi-
parametric analyses of the proximal femur. Our subjects were elderly, with scans obtained across multiple 
clinical sites and manufacturers, thus documenting its value for clinical trials and other multi-site studies.
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Introduction

The incidence and prevalence of osteoporosis increases 
with age (1). Therefore the increasingly elderly population 
and the rise in fracture incidence have made osteoporosis 
a major public health issue. The National Osteoporosis 
Foundation reported that by 2010 about 12 million people 
older than 50 years were expected to have osteoporosis 
and another 40 million to have low bone mass (2). The 
prevalence of osteoporosis in the United States is estimated 
to increase from ~10 million to more than 14 million 
people in 2020 (based on 2000 census data) (3). Although 
osteoporosis can affect any bone in the human body, 
osteoporosis-related fractures of the proximal femur are the 
most devastating outcome of the disease, often signaling an 
end to independent living in the functional elderly. A hip 
fracture usually requires hospitalization and major surgery.

Areal bone mineral density (aBMD) assessed by dual X-ray 
absorptiometry (DXA) is the standard clinical parameter for 
the diagnosis of osteoporosis (4,5). However, while DXA 
is regarded as a reliable screening tool for fracture risk, it 
provides limited information about drug effects and the role 
of different skeletal factors on fracture risk.  This situation 
is compounded by the fact that many aging people have 
diabetes (6) or history of glucocorticoid use (7), and sustain 
fragility fractures at aBMD values that are normal (8) but 
have low bone strength and altered structure as determined 
by quantitative computed tomography (QCT) (7). In the 
proximal femur, the capability of QCT to provide three-
dimensional (3D) measurements of BMD and geometry, 
coupled with its ability to distinguish between cortical 
and trabecular bone have allowed the measurement of 
compartmental measures of volumetric bone mineral density 
(vBMD) and tissue volume (9-11) thus enabling studies of 
etiology and drug effects that cannot be performed with DXA.

The multi-parametric capability of hip QCT has been 
extended beyond vBMD and tissue volume to estimates of 
bone strength using finite element modeling (FEM) (12,13), 
measurements of cortical bone thickness (14-16), and 
quantification of bone morphometry using computational 
anatomy approaches (17) such as voxel-based morphometry 
(VBM) of vBMD maps (18-20), statistical parametric 
mapping (SPM) of cortical bone thickness maps (21,22), 
tensor-based morphometry (TBM) (23), and statistical 
shape and density modeling (24). Segmentation of the 
proximal femur in the reconstructed QCT images of the 
hip is the starting point for all of the analytic parameters 
described above. This process is usually accomplished semi-

automatically on a slice-by-slice basis, where segmentation 
of the femoral head represents the most difficult task, 
especially in older subjects due to a narrow or non-
existent joint space. Noise, movement artifacts, and thin 
cortical bone are additional complicating factors leading 
to different levels of user interaction. A semi-automatic 
outlining of a single femur could take several minutes of 
user interaction. For this reason, several attempts have been 
made to automate the process. Kang et al. (25) developed 
a 3D region growing approach with local adaptive 
thresholds to segment bone from QCT scans with limited 
human interaction. Fritscher et al. (26) demonstrated the 
potential of combining statistical deformation models 
(SDMs) with statistical models of intensity and level-sets 
to automatically segment the proximal femur. Fritscher  
et al. (27) then presented a more straightforward nonlinear 
model-guided registration approach consisting of a SDM 
within the diffeomorphic demons framework; while Krcah 
et al. (28) developed an automatic segmentation approach 
based on graph cuts and filters enhancing the boundaries 
of bone. However, the clinical applicability of the previous 
fully automatic methods has not been demonstrated, in 
particular, in the elderly female population of interest.

In this work, we present an automatic framework to 
perform multi-parametric assessments of the proximal 
femur using QCT, and evaluated its performance using 
QCT scans of elderly females obtained from three clinical 
sites and two different manufacturers. The automatic 
framework relies on a multi-atlas based segmentation 
approach that incorporates poly-affine registrations (29,30) 
in front of the nonlinear transformations. The accuracy 
of the segmentation technique was determined using 
three standard set agreement and three standard distance-
based metrics. The multi-parametric reproducibility of 
the presented framework was determined based on repeat 
QCT scans with repositioning from 22 subjects obtained 
from two different manufacturers at a common clinical site. 
Reproducibility was assessed for ten compartmental vBMD 
parameters, seven compartmental tissue volume parameters, 
FEM bone strength under two loading conditions 
(12,31,32), three compartmental surface-based cortical 
bone thickness parameters, and three compartmental 
surface-based cortical vBMD parameters. Reproducibility 
was also assessed in a local manner for three surface-
based cortical bone thickness and three surface-based 
cortical vBMD parameters. The surface-based thickness 
measurements were obtained based on the fusion of the 
minimum line integral thickness technique (33) and the 
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Laplace’s equation approach (34), which are two established 
and validated techniques for image-based tissue thickness 
quantification. This is the first study to simultaneously 
show reproducibility for the most commonly studied QCT-
derived parameters in osteoporosis research—an assessment 
that is essential for the design of new clinical studies—based 
on automatic multi-parametric assessments of scan-rescan 
acquisitions with repositioning.

Materials and methods

QCT data

Bilateral hip QCT scans of 210 women were included in 
this study. Scans were acquired with CT scanners from 
two different manufacturers: GE (GE Medical Systems, 
Wakesha, WI, USA = manufacturer A; n=207) and 
SIEMENS (Siemens AG, Munich, Germany = manufacturer 
B; n=28). Scans were also acquired at three different clinical 
facilities: 155 scans were from Mayo Clinic (site A; GE 
Light Speed QX-I), 30 scans from Creighton University (site 
B; GE Light Speed 16), and 50 scans from The University 
of California, San Francisco (site C; GE Light Speed VCT, 
n=22; SIEMENS Biograph 16, n=28). Fifty scans from site 
C were comprised of 25 pairs of scan-rescan acquisitions 
with repositioning. Scans from site A, site B, and site C 
were acquired with voxel dimensions of 0.742×0.742×2.5, 
0.938×0.938×2.5, and 0.977×0.977×1 mm3, respectively. 
Scans from site A were acquired with a QCT calibration 
phantom (Mindways Inc., Austin, TX, USA) for individual 
conversion of Hounsfield units (HU) to equivalent reference 
concentrations of aqueous K2HPO4; while scans from sites B 
and C were acquired with a solid QCT calibration phantom 
(Image Analysis, Inc., Columbia, KY, USA) containing 
cells of 0, 75, and 150 mg/cm3 equivalent concentration of 
calcium hydroxyapatite. 

The study was conducted in accordance to the 
regulations of the participating institutions, informed 
consent was obtained from all participants in the study, and 
the analyses were based on de-identified data.

Segmentation algorithm

The segmentation algorithm presented here is a multi-
atlas based segmentation technique consisting of six main 
steps: (I) multi-atlas construction; (II) cropping of the 
QCT scan being segmented; (III) global affine registration 
with a minimum deformation template (MDT); (IV) poly-

affine registration with a MDT; (V) nonlinear registration 
with multiple atlases; and (VI) label-fusion of femoral 
segmentations of the registered atlases. The MDT of the 
proximal femur was previously described in the study of 
bone structure by Carballido-Gamio and colleagues (23), 
and it represents the average size, shape, and internal 
structure of the proximal femur of 94 young American 
women (mean ± std age =34±7 years; age range =21-44 years; 
site A; manufacturer A; Figure 1A). 

The key characteristic of the proposed multi-atlas based 
approach is the incorporation of the poly-affine registration 
step. The proximal femur has well-defined regions such as 
the femoral head, the femoral neck, the greater trochanter, 
the inter-trochanteric region, the lesser trochanter and the 
shaft, which individual differences in size and orientation 
between two different subjects cannot be corrected with 
a global transformation. Although a multi-atlas based 
segmentation also incorporates a nonlinear registration 
step, correction of these differences becomes problematic, 
especially in regions such as the superior aspect of the 
femoral head. In the following subsections we will provide 
the details of each step of the segmentation algorithm.

Multi-atlas construction
Ten representative QCT scans were selected from site A 
(age range =45-59 years), and each one of the ten scans 
was registered to the other nine based on multi-scale affine  
(9 degrees of freedom) and nonlinear transformations (35) 
using segmented femora represented as distance fields (20). 
The resulting transformations were then applied to the 
corresponding grey-level images yielding ten sets of ten 
registered gray-level images each. Within each set, voxel-
wise average of gray-level values was performed to generate 
ten atlases representing ten different femoral shapes with 
ten different distributions of grey-level values. 

Cropping
The left hip of a bilateral QCT scan was automatically 
cropped based on multi-scale 2D affine registrations with 
the ten atlases using axial and coronal maximum intensity 
projections. Boxes enclosing the proximal femur were 
previously prescribed in each atlas. These boxes were 
used to focus the optimization of the normalized cross-
correlation (NCC) metric to the region of the proximal 
femur in each atlas, and subsequently to define the region 
to be cropped in the QCT scan. This region was specified 
based on the bounding boxes of the best-registered atlases, 
i.e., those with a final 1-abs(NCC) less than the mean plus 
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two standard deviations of all the ten 1-abs(NCC).

Global affine registration
The first step in the global registration step addressed the 
substantial differences in bone size commonly seen between 
subjects. Therefore axial and coronal maximum intensity 
projections of the MDT and the cropped scan were used 
to get approximations of the three scaling factors based 
on multi-scale 2D affine registrations with NCC as the 
optimization metric.  Subsequently, the left hip was affine 
registered (9 degrees of freedom) to the MDT using a 3D 
global multi-scale approach and NCC as the optimization 
metric (Figure 1B). 

Poly-affine registration
The fourth step of the multi-atlas based segmentation 
algorithm was a poly-affine registration (29,30) of the 
three regions of the MDT shown in Figure 1C: (I) head 
and immediate neck zone; (II) inferior neck zone, greater 
trochanter, and inter-trochanteric region; and (III) lesser 
trochanter and superior aspect of the femoral shaft. The 
independent 3D multi-scale affine registrations were done 
by optimizing the local correlation coefficient (LCC) (36)  

only in the anatomical areas of interest (Figure 1D). 
Merging of the three affine transformations into a single 
transformation was done within the fast Log-Euclidean poly-
affine framework (fLEPT; Figure 1E) (30) (Appendix A) with 
Gaussian weighted maps for the regions shown in Figure 1C.

Nonlinear registration
The nonlinear registration component of the segmentation 
algorithm consisted of the deformation of five atlases to 
match the cropped QCT scan. For this purpose, the five 
atlases were previously affine registered (9 degrees of 
freedom) to the MDT. Then the inverse of the poly-affine 
and affine registrations computed in steps 4 and 3 were 
applied to the five atlases. The result of these steps was five 
atlases with a very close but still different alignment to the 
cropped scan. These five globally- and poly-affine registered 
atlases were then individually registered to the cropped 
QCT scan with 3D multi-scale nonlinear registrations (35). 
Five instead of ten atlases was an empirical choice to reduce 
computational time.

Label fusion
The nonl inear  transformat ions  computed in  the 

Figure 1 (A) Coronal cross-section of a MDT representing the average size, shape, and internal structure of the proximal femur of 94 young 
American women; (B) global affine transformation of a QCT scan to the MDT; (C) the three different optimization volumes (highlighted in 
white) used for the independent registrations of the poly-affine registration step; (D) concatenation of the global affine transformation with 
each one of the three local affine transformations of the poly-affine registration step; (E) concatenation of the global affine and the poly-
affine registrations; (F) the volumes of interest (H, head; N, neck; and T, trochanter) mapped from the MDT to the QCT scans; (B,D,E) 
the MDT was color-coded in cyan, and the QCT scan being segmented in red. QCT, quantitative computed tomography; MDT, minimum 
deformation template.
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previous step were applied to the corresponding femoral 
segmentations of the five atlases thus yielding five different 
segmentations for the cropped scan. In order to get 
a single segmentation, label fusion was applied in the 
form of majority voting (37), i.e., the average of the five 
segmentations. 

Volumes of interest

In order to perform conventional compartmental analysis 
of vBMD, tissue volume, and cortical bone thickness, 
corresponding volumes of interest across the population 
have to be prescribed. This was accomplished by delineating 
the head, neck, and trochanter in the MDT (Figure 1F), 
and then by mapping these regions to other scans using 
image registration. Specifically, the automatically derived 
segmentations were registered to the segmentation 
of the MDT using multi-scale affine and nonlinear 
registrations (38). The inverse of both the nonlinear and 
the affine transformations was then applied to the labeled 
segmentation of the MDT thus creating segmentations with 
corresponding volumes of interest across the population. 
The transformations mapping individual scans to the space 
of the MDT effectively enable studies of computational 
anatomy such as VBM and SPM, while the common 
volumes of interest enable compartmental analysis of bone 
parameters.

Compartmental vBMD and compartmental bone volume

In order to perform compartmental analysis of vBMD and 
tissue volume, identification of the endocortical surface was 
necessary to define the cortical bone. For this purpose the 

cropped QCT scans and their corresponding automatically 
generated labeled masks of the proximal femur were 
upsampled to isotropic spatial resolutions matching the in-
plane voxel sizes. Then a rim of bone tissue was selected, 
and for each voxel in this rim, the distance to the closest soft 
tissue voxel was calculated. These distances and the vBMD 
values were normalized to zero mean and unit variance 
and used as features to perform a soft segmentation of the 
rim of bone tissue into two groups. The classification was 
performed with an in-house implementation of the non-
local fuzzy c-means algorithm (NL-FCM) (39) (Appendix B).  
The group of voxels with membership values higher than 
or equal to 0.5 to the brightest centroid was used to identify 
the cortical bone (Figure 2A,B). 

The identification of the cortical bone provided us with 
the delineation of the trabecular bone region, which was 
eroded to avoid partial volume effects. Values of vBMD less 
than 300 mg/cm3 within the cortical bone were excluded 
from cortical vBMD calculations, and values of vBMD 
equal or larger than 300 mg/cm3 within the trabecular 
bone region were excluded from trabecular bone vBMD 
calculations (40). Integral (cortical and trabecular) mean 
vBMD was calculated for the whole femur, head, neck 
and trochanter; trabecular and cortical mean vBMD were 
calculated for the neck, trochanter, and neck ⋃ trochanter; 
integral bone volume was calculated for the whole femur, 
neck, trochanter, and neck ⋃ trochanter; and cortical bone 
volume was calculated for neck, trochanter, and neck ⋃ 
trochanter.

FEM bone strength

Strength of proximal femora was computed using FEM 

Figure 2 Voxels classified as cortical bone in a QCT scan in (A) are color-coded in red in (B). This region was utilized to perform the 
compartmental vBMD and tissue volume analyses, to extract the parameters of the fuzzy s-shaped membership function to generate the 
cortical bone membership map in (C), and to integrate the memberships using SIT. Corresponding cortical bone thickness maps calculated 
based on the lengths of the streamlines provided by the Laplace’s equation approach (D) and based on SIT (E). QCT, quantitative computed 
tomography; vBMD, volumetric bone mineral density; SIT, Streamline Integral Thickness.
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methods previously described by Keyak and colleagues 
allowing nonlinear material modeling (12,31,32). Two 
loading conditions were evaluated, one representing single-
limb stance loading, and another simulating a loading 
from a fall onto the posterolateral aspect of the greater 
trochanter.

Cortical bone thickness

Cortical bone thickness calculations started with the 
identification of the cortical bone as previously described 
above. Two triangulated surfaces were then extracted, 
one defining the periosteal surface, and another defining 
the endocortical boundary. These surfaces would allow 
cortical bone thickness quantification based on minimum 
Euclidean distances. This is the most straightforward 
approach where for each vertex in the periosteal surface, the 
closest vertex on the endosteal surface would be identified, 
and the lengths of the vectors connecting the matched 
vertices would represent the local cortical bone thicknesses. 
This approach would have the advantage of assigning 
cortical bone thickness values to the vertices of the femoral 
surface, which would facilitate not only their visualization, 
but also their vertex-wise inter-subject comparisons at 
corresponding anatomic locations. However, this technique 
would clearly overestimate the cortical bone thickness since 
the spatial resolution of the QCT scans is not enough to 
accurately depict the cortical bone in the proximal femur. 
In addition, this approach could yield vectors that cross 
between each other within the cortical bone, which is an 
undesirable characteristic. 

In this work, cortical bone thickness was measured 
based on the fusion of two established and validated 
techniques for image-based tissue thickness quantification: 
the Laplace’s equation approach (34) and the minimum 
line integral thickness technique (33). The main advantage 
of the Laplace’s equation approach is the one-to-one 
correspondence with no crossings that is computed between 
opposing tissue boundaries. The lengths of the streamlines 
connecting these correspondences are commonly used to 
represent the tissue thickness (41,42). In the minimum 
line integral approach, a set of rays traversing a soft 
segmentation of the tissue of interest is prescribed at 
each voxel. These rays are prescribed ensuring a uniform 
sampling of a spherical surface. The soft segmentation is 
integrated along each ray, and thickness at a given voxel is 
then defined as the minimum integral of all its rays. The 
main advantage of the minimum line integral approach is 

then that partial volume effects are incorporated into the 
technique.

Here, we present a Streamline Integral Thickness (SIT) 
approach that incorporates all the advantages of the thickness 
quantification techniques mentioned above: (I) incorporation 
of partial volume effects; (II) one-to-one correspondence 
between opposing tissue boundaries; and (III) simplification 
of visualization and vertex-wise inter-subject comparisons 
at corresponding anatomic locations. The details of SIT are 
presented in the following subsection.

Streamline Integral Thickness (SIT)
The SIT is a surface-based technique that works by 
integrating soft tissue segmentations along streamlines 
provided the Laplace’s equation approach and assigning 
these measurements to vertices of a triangulated surface. The 
output of the NL-FCM algorithm described above provided 
a soft segmentation of the cortical bone. However, this soft 
segmentation was not optimal for thickness quantification 
based on integrals due to the inclusion of distances to the 
closest soft tissue voxel as a second feature in the NL-FCM 
algorithm. Our goal was to obtain a soft segmentation of 
the cortical bone where high membership values reflected 
high vBMD, and low memberships reflected low vBMD, 
following in general the logic of partial volume effects, 
independently of the anatomical location. For this reason, 
the mean (mCt) and standard deviation (stdCt) of the vBMD 
values of the identified cortical bone voxels (Figure 2B)  
were used to define a fuzzy s-shaped membership function 
that fulfilled the conditions mentioned above:

 
[1]

where I(r,c,z) represents the vBMD at a given voxel, and 
Ct(I(r,c,z);a,b) represents its membership to the class of 
cortical bone (from 0=no cortical bone to 1= cortical bone) 
given parameters a (a=mCt-2.5stdCt) and b (b=mCt+stdCt). 
This fuzzy s-shaped membership function was then used to 
perform a soft classification of the whole QCT scan based 
on vBMD values (Figure 2C). The membership values of 
this soft classification were then suitable for cortical bone 
thickness quantification using SIT. Thus for each vertex in 
the periosteal surface, cortical bone thickness was defined as 
the integral of membership values along streamlines starting 
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at the periosteal surface, and ending at the endosteal surface 
(Figure 2D,E). Similar to the laminar analysis of magnetic 
resonance relaxation time values of knee cartilage described 
by Carballido-Gamio and Majumdar (42), each streamline 
was subdivided into n segments of equal length, which 
enabled the laminar encoding of vBMD values. The result 
of this step was a periosteal surface where each vertex was 
assigned a cortical bone thickness value and a vector of 
laminar cortical vBMD values.

Segmentation accuracy

One hundred thirty one scans were automatically segmented 
using the algorithm described above (the remaining scans were 
used to generate the MDT and the ten atlases). Qualitative 
assessment of the 131 segmentations was performed visually 
with overlays on a slice-by-slice basis in the axial orientation 
and coronal reformations, while quantitative validation of 
the accuracy of the segmentation algorithm was performed 
against manual segmentations of 80 scans: 50 scans from site 
A (mean ± std age =68±10 years; age range =47-89 years),  
and 30 scans from site B (mean ± std age =62±5 years; age 
range =54-69 years). Manual segmentations of the other 51 
scans were not available. Validation was performed using three 
set agreement and three distance-based metrics. The three set 
agreement metrics were the dice similarity coefficient (DSC), 
the false negative rate (FNR), and the Jaccard index (JAC). The 
three distance-based metrics included the average symmetric 
distance (SYM) (43), the root-mean-square average symmetric 
distance (RMS-SYM) (43), and the modified Hausdorff distance 
(M-HAUS) (44). 

DSC represents the size of the intersection of the gold 
standard and the automatic segmentations, divided by the 
average size of the two segmentations. Higher DSC indicates 
that the results match the gold standard better. A value of 
zero indicates no overlap between the segmentations, and 
a value of one indicates identical segmentations. The FNR 
measures the fraction of the gold-standard segmentation 
that was missed by the segmentation algorithm; therefore 
this metric must be small. JAC represents the size of 
the intersection of the gold standard and the automatic 
segmentations, divided by the size of the union of the two 
segmentations. If the segmentations have no common 
members JAC is zero; a value of one indicates that the 
segmentations are identical. As with DSC, a higher number 
indicates that the results match the gold standard better.

The average symmetric distance evaluates how close 
the voxels on the boundary of the automatic segmentation 

are to the voxels on the boundary of the gold standard 
segmentation, and vice versa. For each voxel on the 
boundary of the automatic segmentation, the Euclidean 
distance to the closest voxel on the boundary of the gold 
standard segmentation is computed and stored. The same 
process is applied from the boundary voxels of the gold 
standard segmentation to the boundary voxels of the 
automatic segmentation to provide symmetry. This metric is 
then defined as the average of all stored distances. A perfect 
segmentation would yield a value of zero millimeters. RMS-
SYM is highly correlated with SYM, however, it penalizes 
large deviations from the true contour stronger. A value 
of zero millimeters also indicates a perfect segmentation. 
The M-HAUS is a shape similarity metric that has been 
previously used for template-based image matching. As 
with the SYM and RMS-SYM metrics, a value of zero 
millimeters indicates a perfect segmentation.

The equations defining both the set agreement and the 
distance-based metrics are listed in Table 1.

Multi-parametric precision

Reproducibility was assessed with root mean square 
coefficients of variation (CVRMS) and root mean square 
standard deviations for absolute errors (45).  The 
precision of QCT-derived parameters based on automatic 
segmentations of the proximal femur was evaluated with 
22 scan-rescan pairs with repositioning (site C; 8 pairs 
from manufacturer A; 14 pairs from manufacturer B). 
Three pairs had to be discarded due to scans with field-of-
views excluding large portions of the inferior aspects of the 
femora. Subjects had a mean ± std age =69±5 years. QCT-
derived parameters included: (I) compartmental vBMD; (II) 
compartmental tissue volume; (III) FEM bone strength; 
(IV) compartmental surface-based cortical bone thickness; 
(V) compartmental surface-based cortical bone vBMD; 
(VI) local surface-based cortical bone thickness; and (VII) 
local surface-based cortical bone vBMD. For the local 
assessments, the transformations computed to prescribe 
volumes of interest provided the alignment of the 22 pairs 
of scans to the MDT. Therefore cortical thicknesses and 
vBMD from each individual surface were mapped to the 
periosteal surface of the MDT at corresponding anatomic 
locations. For each vertex in the periosteal surface of the 
MDT, CVRMS and absolute precision errors were then 
computed. Vertex-wise paired t-tests were also performed 
to compare the 22 scan and rescan pairs of cortical bone 
thickness and cortical mean laminar vBMD maps. The 
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resulting P values were corrected for multiple comparisons 
using false discovery rate (FDR) correction (q = 0.05) (46).

Results

Segmentation accuracy

Figure 1B,D,E show coronal cross-sections of partial results of 
a representative example of an automatic segmentation of the 
proximal femur. In these figures, the QCT being segmented 
has been color-coded in red, while the MDT was color-
coded in cyan, thus the MDT remains fixed in the overlays. 
Figure 1B shows the result of applying the computed affine 
transformation to the QCT being segmented. Figure 1D 
shows the results of concatenating the affine transformation 
with each one of the three independent local affine 
transformations, while Figure 1E shows the concatenation 
of the affine transformation with the poly-affine registration 
(merging of Figure 1D using the fLEPT framework). 
The accuracy of the segmentation algorithm based on the 
three set agreement and three distance-based metrics is 
summarized in Table 2 indicating a mean DSC of 0.976±0.006 
and a mean SYM of 0.203±0.057 mm. A total of ten QCT 
scans—out of 131—failed locally based on visual validation; 

all of them in the femoral head region (7.6%). Figure 3A 
shows representative automatic segmentations obtained in 
this study. In these figures, the automatically defined volumes 
of interest for the head, neck, and trochanter have been 
highlighted with different shades of red. A representative 
example of a failed segmentation is shown in Figure 3B.

Multi-parametric precision

Compartmental vBMD and compartmental tissue volume
Table 3 summarizes the reproducibility of compartmental 
vBMD and tissue volume parameters. The CVRMS for 
vBMD ranged from 0.89% for integral vBMD in the 
whole proximal femur, to 1.66% for trabecular vBMD in 
the femoral neck. All absolute precision errors were below  
9 mg/cm3. The fact that the trabecular bone compartment 
in the femoral neck showed the lowest reproducibility was 
expected due to the rich marrow fat content in this region. 
With respect to bone volume, results were also as expected, 
with higher reproducibility for integral measurements, and 
lower reproducibility for thinner cortices. Nevertheless, 
CVRMS for all compartmental vBMD and bone volume 
measurements were better than 1.83%.

Table 1 Accuracy segmentation metrics
Set agreement metrics

Dice similarity coefficient

False negative rate

Jaccard index

Distance-based metrics
Average symmetric distance

,, where 

Root-mean-square average symmetric distance

Modified Hausdorff distance

A, automatic segmentation; B, gold standard segmentation; FN, false negatives; TP, true positives; S(A) set of boundary voxels of 

A; v = voxel; ||.|| denotes the Euclidean distance.
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Table 2 Segmentation accuracy

Set agreement metrics (mean ± std) Distance-based metrics [mm] (mean ± std)

DSC FNR JAC SYM RMS-SYM M-HAUS

0.976±0.006 0.030±0.010 0.953±0.011 0.203±0.057 0.521±0.135 0.219±0.071

DSC, dice similarity coefficient; FNR, false negative rate; JAC, Jaccard index; SYM, average symmetric distance; RMS-SYM, root-

mean-square average symmetric distance; M-HAUS, modified Hausdorff distance. N=80 (50 scans from site A, 30 scans from site 

B; all from manufacturer A).

Figure 3 (A) Examples of automatic segmentations of the proximal femur obtained in this study. Automatically defined regions of interest 
for the head, neck, and trochanter have been highlighted with different shades of red; (B) example of a failed segmentation in the posterior 
aspect of the femoral head.

A B

Table 3 Reproducibility of compartmental vBMD and compartmental tissue volume

Parameters CVRMS (%) Absolute precision errors

Compartmental vBMD

Mean integral femur vBMD 0.89 2.200 mg/cm3

Mean integral head vBMD 0.96 2.217 mg/cm3

Mean integral neck vBMD 1.27 3.626 mg/cm3

Mean integral trochanter vBMD 0.96 2.416 mg/cm3

Mean trabecular bone neck and trochanter vBMD 1.34 1.171 mg/cm3

Mean cortical bone neck and trochanter vBMD 1.04 6.941 mg/cm3

Mean trabecular bone neck vBMD 1.66 1.528 mg/cm3

Mean cortical bone neck vBMD 1.33 8.911 mg/cm3

Mean trabecular bone trochanter vBMD 1.30 1.135 mg/cm3

Mean cortical bone trochanter vBMD 1.02 6.810 mg/cm3

Compartmental tissue volume

Integral femur volume 0.20 277.865 mm3

Integral neck and trochanter volume 0.27 230.849 mm3

Cortical neck and trochanter volume 0.98 181.303 mm3

Integral neck volume 0.44 65.389 mm3

Cortical neck volume 1.82 63.078 mm3

Integral trochanter volume 0.26 188.549 mm3

Cortical trochanter volume 1.05 159.000 mm3

CVRMS, root mean square coefficients of variation; vBMD, volumetric bone mineral density. N=22 scan-rescan pairs with  

repositioning (all from site C; 8 pairs from manufacturer A, 14 pairs from manufacturer B).
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FEM bone strength
Table 4 summarizes the reproducibility of FEM bone 
s trength for  the  nonl inear  s tance and nonl inear 
posterolateral fall configurations with CVRMS better than 
3.6% and absolute precision errors below 342N.

Surface-based compartmental cortical bone parameters
Reproducibi l i ty  results  based on mean values  of 
compartmental surface-based cortical bone thickness and 
mean laminar vBMD are summarized in Table 5 for the 
neck and trochanter together and individually. Although 
surface-based cortical bone parameters were also extracted 
for the femoral head, we decided not to include them due 
to the extremely thin cortices. Figure 2D shows a posterior 
view of a cortical bone thickness map calculated based on 
the length of the streamlines provided by the Laplace’s 
equation approach next to the SIT map (Figure 2E) for 
the same QCT scan. It is clear from this example that SIT 
incorporates partial volume effects into the computations. 
Scan-rescan examples for cortical SIT and mean laminar 
vBMD maps are shown in Figures 4 and 5, respectively.

Surface-based local cortical bone parameters
The local reproducibility of surface-based cortical bone 
thickness and mean laminar vBMD maps yielded the CVRMS 

and absolute precision error maps shown in Figures 6 and 7, 
respectively. As it was expected, higher reproducibility was 
observed for thick cortical bone regions like the inferior 
cortex. However, thinner regions such as the superior 
aspect of the femoral neck also showed high levels of 
reproducibility. The compartmental analysis of the CVRMS 
and absolute precision error maps shown in Figures 6 and 7 
is summarized in Table 6. 

The vertex-wise paired t-tests of spatially-normalized 
and smoothed (21,22) cortical bone thickness and mean 
laminar vBMD maps yielded nonsignificant vertices after 
FDR correction, thus indicating that the groups of scan and 
rescan cortical bone thickness and mean laminar vBMD 
maps were not significantly different from each other.

Discussion

QCT has become a  leading imaging modal i ty  in 
osteoporosis research due to its 3D nature, its ability to 
distinguish between cortical and trabecular bone, and its use 
for multi-parametric assessments of bone quality. However, 
the starting point for all QCT analyses is a segmented hip, 
a procedure that is commonly accomplished in a semi-
automated way and that requires several minutes of user 
interaction per clinical scan. Furthermore, previous QCT 

Table 4 Reproducibility of FEM bone strength

FEM bone strength CVRMS (%) Absolute precision errors (N)

Nonlinear stance 3.51 341.300

Nonlinear FPL 3.59 125.476

FEM, finite element modeling; CVRMS, root mean square coefficients of variation; FPL, posterolateral fall. N=22 scan-rescan pairs 

with repositioning (all from site C; 8 pairs from manufacturer A, 14 pairs from manufacturer B).

Table 5 Reproducibility of compartmental surface-based cortical bone parameters

Parameters CVRMS (%) Absolute precision errors

Compartmental thickness

Neck and trochanter 2.03 0.033 mm

Neck 2.69 0.042 mm

Trochanter 1.89 0.032 mm

Compartmental mean laminar vBMD

Neck and trochanter 1.30 6.479 mg/cm3

Neck 2.19 10.213 mg/cm3

Trochanter 1.08 5.118 mg/cm3

CVRMS, root mean square coefficients of variation; vBMD, volumetric bone mineral density. N=22 scan-rescan pairs with  

repositioning (all from site C; 8 pairs from manufacturer A, 14 pairs from manufacturer B).
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Figure 4 Representative example of scan-rescan automatically generated cortical bone thickness maps using SIT. SIT, Streamline Integral 
Thickness.

Scan

Rescan

>4
[mm]

0        1         2        3        4

multi-parametric hip studies have been limited to a subset 
of the parameters investigated in this study. Here, we have 
presented an automatic framework to perform multi-
parametric analyses of the proximal femur. This framework 
crops, segments, maps volumes of interest, and analyzes a 
QCT scan of the proximal femur in terms of vBMD, tissue 
volume, FEM bone strength, and cortical bone thickness. 
The accuracy of the segmentation algorithm was validated 
against manual segmentations, and the multi-parametric 
reproducibility evaluated based on scan-rescan acquisitions 

with repositioning. The QCT-derived parameters evaluated 
in this work are among the most widely studied quantitative 
outcome measures in osteoporosis research. Validation of 
the accuracy and evaluation of the reproducibility of the 
presented approaches was performed in a large dataset of 
QCT scans of older women from three clinical facilities and 
two different manufacturers yielding high fidelity to manual 
segmentations and CVRMS between 0.20-3.91% for all the 
parameters. The set of techniques and parameters presented 
in this work, along with those previously published by our 

Figure 5 Representative example of scan-rescan automatically generated maps of mean laminar cortical vBMD. vBMD, volumetric bone 
mineral density.

0             500         1000 >1000
[mg/cm3]
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group (20,23), enable comprehensive multi-parametric 
quantifications of the proximal femur in studies of etiology 
and osteoporosis treatment.

The three set agreement metrics and the three distance-
based metrics listed in Tables 1,2, which were used to 
validate the accuracy of our segmentation approach, 
perform well compared to previous fully automatic hip 
QCT segmentation approaches. In the combined shape-
intensity prior models work of Fritscher and colleagues (26),  
the authors reported a mean DSC of 0.992 and a mean 
Euclidean distance of 0.20 mm between the manually and 

automatically derived contours of scans with spatial resolution 
of 1.4×1.4×(0.6-5) mm3. However, the number of scans used 
to assess their reproducibility was quite small (n=10). In the 
model-guided demons work of Fritscher and colleagues (27)  
the authors used 47 QCT scans of the proximal femur 
to generate a SDM, and 21 QCT scans (gender and 
age were not reported) with isotropic spatial resolution  
(1.5 mm3) to test their algorithm under 120 different 
parameter configurations.  The best overall  mean 
configuration yielded an average Haussdorf distance (HAUS) 
and an average mean Euclidean distance of 3.38 mm and 

CVRMS

Absolute precision error

1    3     5    7    9

0.03      0.07

0.01      0.05      0.09

>10

>0.1

[%]

[mm]
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[mg/cm3]

[%]

Figure 6 Local reproducibility of automatically computed cortical bone thickness maps using SIT. SIT, Streamline Integral Thickness.

Figure 7 Local reproducibility of automatically computed mean cortical laminar vBMD maps. vBMD, volumetric bone mineral density.
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0.76 mm, respectively. In the graph-cuts work of Krcah and 
colleagues an average HAUS of 5.4 mm was reported (28).  
Our mean DSC of 0.976, mean SYM of 0.203 mm, and 
mean M-HAUS of 0.253 mm (HAUS =3.928 mm) indicate 
the robustness of the proposed approach, especially 
considering that our validation was performed with 80 scans 
of older women from two different clinical sites and two 
highly anisotropic spatial resolutions (0.742×0.742×2.5 and 
0.938×0.938×2.5 mm3). 

The reproducibility of compartmental vBMD and 
compartmental bone volume (Table 3) was in agreement 
with previous reproducibility studies using scan-rescan 
acquisitions with repositioning. Using rigid registration 
and mutual information, Li and colleagues described a 
technique where the manually derived analyses of “baseline” 
scans were used to automatically quantify the “follow-up” 
acquisitions (47). The authors quantified the performance 
of their algorithm with 10 pairs of scans of postmenopausal 
women (mean ± std age =63±2 years) and observed an 
improvement with respect to pure manual quantification 
yielding CVRMS between 0.6-4.53% for compartmental 
vBMD, and 2.21-3.65% for compartmental tissue volume. 
The reproducibility of our automatic quantification of 
compartmental vBMD and compartmental tissue volume 
yielded CVRMS between 0.89-1.66% and between 0.20-
1.82%, respectively. The observed improvement could be 
attributed to the cortical bone segmentation algorithm. 
While Li et al. utilized a 3D region growing approach solely 
based on voxel intensity values, a NL-FCM clustering 
algorithm using intensity and distance to the periosteal 
surface as segmentation features was used in this work. 

Reproducible estimation of bone strength determined by 
QCT-based FEM is more challenging than the precision 

of vBMD and tissue volume. Variation in the boundaries 
of the proximal femur introduces sensitivity due to the 
inclusion/exclusion of cortical bone elements, which are 
heavily mechanically weighted because of their distance 
from the neutral axis and the fact that modulus varies with 
the square of vBMD. Furthermore, partial volume effects 
play a bigger role in critical regions such as the greater 
trochanter and the superior aspect of the femoral neck. Our 
reproducibility for whole bone strength calculated for the 
single-limb stance loading condition was slightly lower than 
that of Cody and colleagues (48). The authors reported 
a CVRMS of 1.85% based on ten pairs (eight women and 
two men) of scan-rescan acquisitions with repositioning 
(mean age =55.6 years), which were segmented based 
on a combination of manual drawing and thresholding 
operations. Our reproducibility was 3.51% and 3.59% 
for the nonlinear stance and nonlinear fall configurations 
(Table 4), respectively, for a population ~15 years older and 
more than double (n=22) the size of that of Cody et al. We 
believe that these numbers might be more representative 
of what could be achieved in the clinic, where detailed 
manual segmentations as those that can be obtained 
in a University setting are not viable. Regardless, the 
reproducibility achieved in this study should be sufficient 
to generate comparable results to those obtained based on 
manual segmentations. Using the same nonlinear FEM 
approach in the single-limb stance-loading configuration 
used here, Lang et al. reported a mean ~5-year reduction 
in bone strength of −451N (−4.2%) and −669N (−8.3%) 
in men (n=111; mean ± std age =77±6 years) and women 
(n=112; mean ± std age =77±5 years), respectively (49); 
while Keyak and colleagues reported a mean difference 
of 424N (11%) in bone strength between controls (n=97) 

Table 6 Reproducibility of local surface-based cortical bone parameters

Parameters Mean CVRMS (%) Mean absolute precision errors

Local thickness  

Neck and trochanter 3.54 0.048 mm

Neck 3.91 0.055 mm

Trochanter 3.45 0.047 mm

Local mean laminar vBMD

Neck and trochanter 2.82 13.240 mg/cm3

Neck 3.15 15.293 mg/cm3

Trochanter 2.74 12.741 mg/cm3

CVRMS, root mean square coefficients of variation; vBMD, volumetric bone mineral density. N=22 scan-rescan pairs with reposi-

tioning (all from site C; 8 pairs from manufacturer A, 14 pairs from manufacturer B).
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and men with incident hip fracture (n=51) using the same 
nonlinear FEM approach in the posterolateral fall loading 
configuration used here (12). Furthermore, Keaveny et al. 
reported increases in bone strength in the order of 5.3% 
and 8.6% respectively after 12 and 36 months of treatment 
with denosumab once every 6 months for 36 months using 
nonlinear FEM in a configuration simulating a fall to the 
side of the hip (50).

Although cortical bone thickness derived from QCT 
scans has been utilized in numerous hip studies, especially 
in the femoral neck region, the reproducibility of this 
parameter has been reported few times. Kang and colleagues 
performed an intra- (3 times) and inter-operator (three 
observers) reproducibility study of vBMD, tissue volume, 
and cortical bone thickness of the femoral neck (same scan 
thus scanner instabilities and patient repositioning were not 
evaluated) in nine datasets (three women and six men; age 
range =33-73 years) with a spatial resolution of 0.3×0.3× 
1 mm3 (51). The authors reported CVRMS of 1.51% and 6.04% 
respectively for intra- and inter-operator reproducibility of 
cortical bone thickness in a spherical volume of interest. In 
a different intra-operator (3 times) reproducibility study of 
compartmental cortical bone thickness in the hip of 16 men, 
the authors reported CVRMS between 1.1% and 4.9% using 
QCT scans with a spatial resolution of 0.94×0.94×3 mm3 (10). 
Our compartmental analyses of surface-based cortical bone 
thickness using SIT (Table 5) yielded CVRMS values between 
1.89% and 2.69%. Furthermore, our reproducibility analyses 
of cortical bone thickness did not require alignment of the 
“follow-up” to the “baseline” scans.

While the resistance of the proximal femur to fracture is 
dictated by its geometry, distribution of material properties, 
and magnitude and direction of the applied forces, it has 
been shown that the distribution of cortical bone plays 
a critical role (52,53). However, the local estimation of 
cortical bone thickness in the proximal femur is challenging 
due to the limited spatial resolution of the QCT systems. 
Recently, Treece and colleagues developed techniques 
to estimate local cortical bone thicknesses, cortical 
mass surface density, and the density of trabecular bone 
immediately adjacent to the cortex in the whole proximal 
femur using QCT (14,54,55). Unfortunately, scans with 
higher spatial resolution to generate gold standard 3D 
maps of cortical bone thickness and vBMD to quantify the 
accuracy of our technique were not available. However, 
the CVRMS and absolute precision error maps shown in 
Figures 6 and 7, and the compartmental mean values of 
the local analyses listed in Table 6 show high levels of local 

reproducibility (<4%) and small absolute precision errors. 
Nevertheless, our results indicate that studies such as 
those of Poole and colleagues (21,22) are feasible with our 
cortical bone thickness quantification technique. In a study 
of osteoporosis treatment, significant local cortical bone 
thickening of ~4% or more was reported after 24 months 
of recombinant human PTH [hPTH-(1-34)] (119 femora 
from 65 women) (21); while in a cross-sectional study of hip 
fracture, significant local cortical bone thickness differences 
of at least ~15% and ~10% were observed between controls 
(n=75) and women with neck (n=36) and trochanteric (n=39) 
hip fractures, respectively (22).

In conclusion, in this study we have presented an 
automatic framework to perform accurate and precise multi-
parametric assessments of the proximal femur using QCT 
imaging. The set of QCT parameters that were evaluated 
included those most studied in osteoporosis research. 
Our subjects were typical of the elderly female population 
of interest, with scans obtained across multiple clinical 
sites and manufacturers, thus representing the conditions 
involved in clinical trials and other large-scale multi-center 
studies.
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Appendix A

Merging of the three affine registrations was done within the fast Log-Euclidean poly-affine framework (fLEPT) with 
Gaussian weighted maps for the regions shown in Figure 1C, thus yielding stationary velocity fields (SVFs):

[1]

In Eq. [1], x is a 3×1 vector,  is a 4×1 vector, m is the number of regions (m=3), wi (x) are normalized weights for region  
i ( )), and Ai is a 3×4 matrix obtained in the following way:

 
[2]

where log stands for the principal matrix logarithm, Mi is a 3×3 matrix with the linear part of an affine transformation, 
and ti is a 3×1 vector with the translation component. As proposed by Arsigny and colleagues, the exponential exp(V) 
of a smooth velocity field V(x) defines the flow at time 1 of the stationary ordinary differential equation .  
Thus the deformation can be computed within the SVF framework for diffeomorphisms by recursively using the scaling and 

squaring method, i.e., , where N is large enough so that  is close enough to zero. Intuitively 

this means that the deformations at time 1 can be computed by recursively composing 2N  times the very small deformations 
observed at time .



Appendix B

The NL-FCM algorithm minimizes the following energy function:

, [1]

In Eq. [1], uik represents the membership of the ith voxel to the kth class; C represents the number of classes; ; q 
controls the level of fuzziness of the segmentation (if q gets close to 1, the segmentation gets close to a hard segmentation); Ii 
represents the grey-level of the ith voxel in the image domain Ω; vk represents the centroid of the kth class; β controls the trade-
off between the data-term and the NL regularization term; Ni is the set of neighbors of the ith voxel; Mk={1,…,C}\{k}; and the 
weight for the ith and jth voxels wij is defined as:

 [2]

In Eq. [2], Zi is a normalization constant, h is a smoothing parameter, and the distance between patches is computed as 
follows:

, [3]

where I(Pi) is the vector containing the grey-levels of the ith patch, and I(p)(Pi) is the pth element of this vector. Intuitively, if 
patches I(Pi) and I(Pj) are similar, there might belong to the same tissue thus increasing wij, and consequently the influence 
of the NL regularization term in Eq. [1]. Conversely, if two patches are quite different, their weight should decrease, thus 
reducing the influence of the NL regularization term, since there is a lower probability that the jth voxel might have a good 
influence on the classification of the current ith voxel.


