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Background: Although the effect of pre-determined beam orientation on dose distribution of intensity 
modulated radiotherapy (IMRT) has been well-documented, its impacts on dose prediction are less 
investigated. In this study, the direction map of beam orientation was incorporated into our proposed deep-
learning network and utilized in dose prediction of IMRT plans consisting of multiple static fields.   
Methods: The direction map was used to characterize the radiation path through region of interest along 
a beam orientation. Besides, the distance map was used to characterize the spatial distribution between 
organs at risk (OARs) and planning target volume (PTV). The input of prediction model consisted of 
CT image, mask image (for PTV and OARs), distance map, and direction map. The output of prediction 
model was the estimated dose distribution in three dimensions. A 3D fully-connected network composed 
of a down-sampling encoder and an up-sampling pyramid decoder was trained based on the calculated 3D 
dose distributions obtained from a treatment planning system. The voxel-level mean absolute error (MAE), 
dosimetric metrics, and dose-volume histogram were employed to assess the quality of the estimated dose 
distribution. Performance of the prediction model was evaluated in two aspects. First, the effectiveness of 
the new features, direction map, distance maps, and pyramid decoder on prediction accuracy of model were 
assessed. Second, the proposed model was compared with the other three published prediction models, 3D 
UNet, ResNet-anti-ResNet, U-ResNet-D for inter-model evaluation.
Results: The improvement of prediction accuracy was 0.38 with the input of direction map and 0.43 with the 
input of distance map. Our proposed model achieved the least MAE (3.97±1.42) compared with the other three 
models: (5.37±1.51) for ResNet-anti-ResNet, (4.45±1.52) for U-ResNet-D, and (4.53±1.72) for Unet-3D.
Conclusions: The preliminary result demonstrated that the prediction accuracy of the proposed model was 
higher than those of the other three state-of-the-art prediction models. The introduction of direction maps, 
distance map, and pyramid decoder can effectively improve the performance of the current deep-learning 
network-based prediction models.
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Introduction

The goal of treatment planning in radiotherapy is to 
maximize uniform dose delivered to planning target volumes 
(PTVs) while minimizing the dose irradiated to surrounding 
normal tissues (1,2). However, this manual process is 
time-consuming and the quality of the resulting plan is 
inconsistent between treatment planners. To overcome this 
issue, automatic treatment planning has been proposed which 
aims to promote efficiency and quality of treatment planning 
with advanced computer and automation techniques (3-5). As 
an important component, dose prediction, is especially crucial 
in automatic treatment planning as the ideal parameters 
could be obtained from its (6). With the advancement 
in deep learning, there has been a remarkable progress 
in dose prediction in recent years following the debut of 
three-dimensional (3D) convolution neural network. The 
application of dose prediction is wide spreading, covering 
parameter optimization and quality assurance in intensity 
modulated radiotherapy (IMRT) (7-11). 

The origin of dose prediction work can be traced back 
to the study on revealing geometrical relationship between 
tumors and critical organs (12,13). The earlier prediction 
model was developed based on the assumption that the 
dose distribution is highly correlated with the geometric 
relationship between PTV and organs at risk (OARs). 
Distance-to-target histogram (DTH) was thus introduced to 
characterize the geometric relationship between PTV and 
OARs, which has become an important one-dimensional 
(1D) feature in predicting dose-volume histogram (DVH) 
curves (14). Subsequently, different types of geometric 
features were introduced to correlate with DVH parameters 
and their effectiveness was systematically analyzed (15). 
Conventionally, principal component analysis (PCA) and 
support vector regression (SVR) were used to model the 
correlation between DTH and DVH (16). Although these 
methods succeeded in dose prediction, considerable loss 
of geometric information existed during feature extraction 
or dimensionality reduction, potentially incurring larger 
deviations in prediction accuracy.    

With the emergence of deep learning, there has been 

a rapidly growing interest in implementing this high-
end technique in dose prediction. The recent prediction 
models are mostly based on U-Net (17,18), an encoder-
decoder network with skip connections used for two-
dimensional (2D)/3D image prediction. Efforts have been 
made to optimize the integration of network architecture to 
improve the performance of prediction model (19-22). The 
residual learning and dense connectivity were introduced 
to enhance feature representation ability in deep learning 
models (23,24). Fan et al. employed two independent 
encoders for PTVs and OARs separately to distinguish 
different structures in their models (25). Kearney et al. 
extended 2D U-Net to 3D U-Net with residual blocks 
to obtain an elevated amount of spatial information (26).  
There were also studies that focused on improving model 
inputs by constructing knowledge-based features (27), 
extracting contours of interested organs (28), and stacking a 
series of neighboring PTV slices (29).

Despite these recent advancements, it is still challenging 
to predict dose at border or overlapping regions of PTV. 
Apart from this, IMRT plans often contain multiple statistic 
fields, posing difficulties in incorporating information of 
beam orientations into a prediction model. To address these 
issues, in this study, the direction map representing the 
beam orientation information was proposed and jointly used 
with distance map in characterizing geometric relationship 
between PTV and OARs. In addition, pyramid blocks were 
employed in our proposed model to compensate for the 
deficiency of a widely used U-Net framework in capturing 
multi-scale information. The rest of this paper is organized 
as follows. In section “Methods”, the direction and distance 
maps are introduced, and the network framework and 
performance evaluation measures are described. In section 
“Results”, the effectiveness of the new features, direction 
map, distance map, and pyramid blocks to the prediction 
accuracy are examined. Results of comparative analysis 
between our proposed prediction model and three other 
published models, including 3D U-Net, U-ResNet-D, and 
ResNet-anti-ResNet, are demonstrated. Finally, the strengths 
and weaknesses of our proposed method are discussed, and 
future work is prospected in section “Discussion”.
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Methods

The proposed dose prediction framework is illustrated in 
Figure 1. The computed tomography (CT) image, anatomical 
structure contours, beam orientation information and dose 
map were first retrieved from treatment planning system. The 
mask images of PTV and OARs were generated by labeling 
voxels of different structures with given numbers. The distance 
map was calculated based on the distance between voxels of 
OARs and surface of PTV. The direction map was produced 
based on the paths passing through PTV and OAR along 
the beam orientation. The feature images together with CT 
images were then used as input of a deep learning network, 
3D-UNet with pyramid decoder (3D-UNet-PD), to train a 
regression model. After the training session, the 3D-UNet-PD 
can predict 3D dose distribution from CT and radiotherapy 
structures. It is worth noting that the 3D dose distribution was 
also employed as target of network for training purpose. In 
Figure 1, the workflow of the training process and prediction 
process is indicated by dot line and solid line, respectively.

Feature maps

The direction maps provide detailed per-voxel beam 
orientation effect of PTV and OARs. Given the masks of 
PTV and OARs, beam path, and voxel coordinate (x, y, z) in 
3D, the direction map (mapping R3 to R) is defined as:
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where ΩPTV and ΩOAR denote the regions (masks) of PTV 
and OAR, respectively. BPPTV (or BPOAR) denote radiation 
paths passing through PTV (or OAR). In this study, the 
IMRT treatment plans of head-and-neck cancer patients 
consists of 9 beams and thus 9 direction maps were 
generated correspondingly. Figure 2A demonstrates one 
direction map at beam angle of 40°. The radiation paths 
passing through the PTV and OARs are represented by 
red color (+1) and green color (−1), respectively. The green 
area of the direction map indicates regions of normal tissue 
which could be less affected by radiation.

The distance map provides detailed per-voxel distance 
information of regions of interest, which was introduced 
in our previous publication (30). Given the PTV mask and 
voxel coordinate (x, y, z) in 3D, the distance map (mapping 
R3 to R) is defined as:  
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Figure 1 Schematic flowchart of the proposed dose prediction framework. The flow of model training process is indicated by dot line, while 
the flow of prediction process is indicated by solid line. 
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Figure 2 Examples of two feature maps. (A) Direction map in characterizing the radiation path through PTV (green color) and OARs (red 
color) along a beam angle (40°). (B) Distance map in characterizing distance distribution of voxels to PTV surface. PTV, planning target 
volume; OARs, organs at risk.

Figure 3 Schematic architecture of the proposed 3D UNet used for dose prediction, which consists of an encoder and a pyramid decoder. 
The normalization layers and ReLUs are omitted for better visualization.

A B

where S represents the surface of PTV and p is any point at 
surface S, Ωin and Ωout denote the region inside and outside the 
PTV, respectively. As shown in Figure 2B, the distance map 
is generated based on the PTV mask. Its value represents the 
shortest distance from the voxel to the surface of PTV. Its sign 
indicates either inside or outside the PTVs. The light area of 
the distance map displays the regions of normal tissue closet to 
the PTV, which is more affected by higher radiation.

Deep learning model

As shown in Figure 3, the proposed prediction model is 
based on a 3D-UNet with pyramid decoder (3D-UNet-PD), 
which is a variant of 3D fully-connected network (FCN) (31).  
3D-UNet-PD is composed of a down-sampling encoder 
and an up-sampling pyramid decoder, along with skip 
connections to bring lower layers features from encoder to 
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decoder for preserving more feature details. As shown in 
Figure 1, the 3D-UNet-PD model is represented by a box 
and handles input from four types of images. The proposed 
model contained 19 separate input channels (1 CT image, 1 
PTV mask, 7 OAR masks, 1 distance map, and 9 direction 
maps) and the model resulted in an output of a 3D dose map. 
All the layers in FCN were able to handle volumetric data. 

Five stage width-reduced 3D VGG10 (32) was used as 
a backbone structure, considering that the 3D FCN often 
suffers from a large memory footprint. Each stage consists 
of similar modules: 3×3×3 convolutions layers followed 
by a normalization layer and a rectified linear unit 
(ReLU). The instance normalization (33), instead of batch 
normalization (34), was adopted based on the observation 
that the instance normalization performed better with small 
batch size. 3×3×3 convolutions layers with stride 2. Taking 
into account the memory footprint and sample size (194 
patients), the number of feature maps was set to 32 and it 
was doubled after each down-sampling operation.

It has been shown that incorporating additional 
information can significantly improve dense prediction 
tasks (35,36). Pyramid blocks were employed to exploit 
multi-scale features from the encoder part and gradually 
recover the spatial resolution using bi-linear up-sampling. 
Since features in the lower layer preserve accurate location 
information, the output of each stage of the encoder was 
passed to the decoder module by skip connection. In this 
work, atrous convolution was applied, which allowed us to 
effectively enlarge the receptive fields to incorporate long-
range context without additional parameters in pyramid 
blocks. As illustrated in Figure 3, the proposed module 
consists of 4 atrous convolutions with various rates. The 
dilation rates of 3×3×3 convolutions in pyramid blocks are 
{1,2,3,5}, and their corresponding receptive field could vary 
in the range of {3×3×3, 5×5×5, 7×7×7, 11×11×11}. 

L1 loss was applied as the loss function in this study. 
Adam (37) was used as an optimizer with a batch size of 
2. The initial learning rate was set to 0.0003 and weight 
decay was set to 0.0001. Whenever the training loss did 
not improve within the last 5,000 iterations, the learning 
rate was dropped by a factor of 0.1. The training procedure 
ultimately stopped at 80,000 iterations. All the experiments 
were conducted with Pytorch (version 1.2.0) using two 
NVIDIA GTX 1080 TI Graphics Processing Units (GPUs).

Experiments

The official OpenKBP dataset at https://github.com/

ababier/open-kbp was used in this study, which was 
structured in a way to facilitate the development and 
validation of dose prediction models. IMRT treatment plans 
delivered at 6 mega-voltage (MV) for a total of 194 head-
and-neck cancer patients were retrospectively analyzed. All 
IMRT plans consist of 9 static fields with beam angles equally 
spaced at 0°, 40°, 80°, 120°, 160°, 200°, 240°, 280°, and 
320°. CT images, mask images, feature maps, and dose maps 
were all resized to 128×128×128 with a resolution of 4 mm ×  
4 mm × 2.5 mm. PTVs include PTV70, PTV63, and PTV56. 
Primary OARs include the brainstem, spinal cord, right 
parotid, left parotid, esophagus, larynx, and mandible. 

The prediction accuracy of 3D dose distribution was 
evaluated by using the mean absolute error (MAE), which is 
the averaged error across all voxels of a structure (PTV or 
OARs) (30). It is defined as follows:
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Where Nk is the number of total voxels belonging to the 
k-th structure. DP and DT are the predicted and ground-truth 
(or calculated) doses of the i-th voxel. The voxel doses were 
normalized by the value of prescription dose. It is worth 
noting that MAE is a measurement of difference between 
two images (such as dose distributions), it doesn’t reflect 
the dosimetric effect on a structure or partial volume of a 
structure. For clinical use, the performance of prediction 
models was also evaluated based on dose-volume metrics 
(D0.1cc, Dmean for OARs and D1, D95, D99 for PTVs) and DVH.

Our experiments were conducted in two parts. First, 
ablation experiments were performed to evaluate the effect 
of feature maps, distance map, and pyramid decoder on 
prediction accuracy. In the context of machine learning, an 
ablation study has been widely adopted to investigate the 
impact of removing specific “feature” or component of the 
model on the network performance. In this study, specific 
feature maps (distant map, direction map) were eliminated 
from the input and the pyramid decoder was excluded from 
the learning network to examine their impacts on network 
performance in aspects of prediction accuracy. Second, the 
proposed model was compared with three state-of-the-art dose 
prediction models, including: (I) 3D U-Net (17), which is a 
3D encoder-decoder network that takes the full labeled PTVs 
and OARs as input; (II) ResNet-anti-ResNet (25), which is 
a dual encoder model that takes labeled PTVs and OARs 
from a single slice as input; (III) U-ResNet-D (29), which is 
a residual U-Net that takes labeled PTVs and OARs from 
adjacent five slices as input.



4747Quantitative Imaging in Medicine and Surgery, Vol 11, No 12 December 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(12):4742-4752 | http://dx.doi.org/10.21037/qims-20-1076

A five-fold cross-validation procedure was employed 
for model training and evaluation. Each fold contained 
approximately 40 patient cases. Among the five folds, one 
was selected as the test data, and the remaining four folds 
were deployed as training data. Taking average on the 
prediction accuracy across the five folds yielded the overall 
accuracy estimate of our proposed method. In each fold 
of cross-validation, the selected networks were trained on 
the same 4/5 of patients and tested on the remaining 1/5 
of patients. After completing the five-fold cross-validation, 
different models were inter-compared by using the average 
score over the 194 patient cases.

Results

Ablation experiment

Table 1  summarizes the effect of each new feature 
on prediction accuracy by using the MAE scores. In 
accordance with a previous work (38), we developed the 
baseline model (BL) and adjusted the model parameters 
for fitting data dimension. The features of direction map, 
distance map, and pyramid decoder are represented by their 
acronyms DRCTN, DIST, and PD, respectively in Table 1. 
With these feature maps included in the BL model, the 
prediction accuracy was improved especially for spinal cord, 
esophagus, and larynx, which has long extension in length. 
In comparison to the BL model, the prediction errors of BL 
+ DRCTN model and BL + DIST model were decreased 
by 0.43 and 0.38, respectively. If both types of feature maps 

were applied, the prediction error of BL + DRCTN + DIST 
model was decreased by 0.44. If all the three new features 
were applied, the prediction error of BL + DRCTN + 
DIST + PD model was further decreased by 0.56.  

Model comparison

Table 2 summarizes the results of prediction accuracy of 
four types of prediction models in terms of MAE scores. 
Our proposed 3D-UNet-PD achieved the least MAE 
(3.97±1.42) comparing with the three comparing models: 
3D-Unet (4.53±1.72), ResNet-anti-ResNet (5.37±1.51), 
and U-ResNet-D (4.45±1.52). For OARs, the prediction 
error of 3D-UNet-PD was decreased by 0.37 for brainstem, 
0.51 for spinal cord, 0.07 for right parotid, 0.75 for left 
parotid, 0.69 for esophagus, 0.59 for larynx, and 0.38 for 
mandible, in comparison to the comparing model that had 
the least prediction error. For PTV, ResNet-anti-ResNet 
achieved the least MAE (2.25±0.81) while 3D-UNet-PD 
yielded comparable prediction error (2.47±0.69). However, 
for several OARs, the prediction errors of 3D-UNet-PD 
were more than 3%. They are right parotid (4.43±1.11), 
left parotid (4.31±1.04), larynx (4.90±4.25), and mandible 
(5.60±1.71).   

The dose distributions predicted by the four prediction 
models and the ground-truth dose distribution of one 
representative patient case are illuminated in Figure 4. The 
doses on three typical slices are illustrated and the area 
with large dose discrepancy is indicated by dashed box. 
Results demonstrated that the dose distribution predicted 

Table 1 Performance of baseline models with different features map and pyramid decoder

Structures BL BL + DRCTN BL + DIST BL + DRCTN + DIST BL + DRCTN + DIST + PD

All 4.53±1.72 4.10±1.40 4.15±1.26 4.09±1.45 3.97±1.42

Tumor 3.33±1.37 2.58±0.69 2.47±0.74 2.62±0.63 2.47±0.69

Brainstem 2.25±1.59 2.24±1.43 1.85±1.14 1.97±1.20 1.82±1.03

Spinal Cord 3.25±1.81 3.16±1.31 2.64±1.27 2.71±1.16 2.40±1.12

Right Parotid 4.50±1.19 4.62±1.27 5.01±1.28 4.53±1.33 4.43±1.11

Left Parotid 5.13±2.36 4.72±1.09 4.48±1.13 4.82±1.21 4.31±1.04

Esophagus 3.35±1.67 3.03±1.17 3.20±1.35 2.74±1.13 2.64±1.18

Larynx 5.99±6.13 5.28±4.73 5.58±5.41 5.38±4.39 4.90±4.25

Mandible 5.98±1.78 5.86±1.73 5.81±1.62 5.71±1.45 5.60±1.71

BL represents the 3D UNet baseline model; DRCTN represents the direction map; DIST represents the distance map; PD represents  
pyramid decoder. All represents the total region including PTV and OARs. PTV, planning target volume; OARs, organs at risk.
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Table 2 Performance of 3D-UNet-PD model and the other three deep-learning based dose prediction models

Structures 3D-Unet ResNet-anti-ResNet U-ResNet-D 3D-UNet-PD

All 4.53±1.72 5.37±1.51 4.45±1.52 3.97±1.42

Tumor 3.33±1.37 2.25±0.81 3.39±0.68 2.47±0.69

Brainstem 2.25±1.59 4.01±2.54 2.19±1.72 1.82±1.03

Spinal Cord 3.25±1.81 3.35±1.25 2.91±1.06 2.40±1.12

Right Parotid 4.50±1.19 5.98±1 .57 4.79±1.37 4.43±1.11

Left Parotid 5.13±2.36 5.37±1.84 5.06±1.97 4.31±1.04

Esophagus 3.35±1.67 6.34±3.06 3.82±1.69 2.64±1.18

Larynx 5.99±6.13 6.34±5.58 5.45±4.42 4.90±4.25

Mandible 5.98±1.78 6.16±1.65 6.15±1.95 5.60±1.71

by our proposed 3D-UNet-PD was the closest one to the 
ground-truth dose distribution, particularly in regions 
indicated in the dashed box on each slice. The predicted 
accuracy of dose distribution generated by 3D UNet and 
U-ResNet-D ranked the second and third, respectively, 
among the all the four models. The prediction accuracy by 
Resnet-anti-Resnet was the worst as reflected by the larger 
dose discrepancy of PTV and low dose areas. This could 
partly be explained by the characteristics of 2D convolution 
neural network in Resnet-anti-Resnet, which is deficient in 
learning 3D spatial correlation.

Dosimetric metrics

The comparison between DVHs generated from our 
proposed 3D-UNet-PD and that from the ground-truth 
dose distribution of one representative patient is shown 
in Figure 5. Minor dose difference for high-dose region 
of small volume in right parotid, esophagus, and larynx 
was observed. Besides, apparent dose difference for low-
dose region of large volume in esophagus and mandible 
was observed. For PTV, the prediction errors of three 
dosimetric metrics (D1, D95, and D99) were 1.51±1.27, 

Figure 4 Comparison of predicted dose distributions at three axial slices provided by Resnet-anti-ResNet (A), U-ResNet-D (B), 3D-UNet 
(C), 3D-UNet-PD (D), and the calculated dose distribution (ground-truth) (E). 

A B C D E
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1.81±1.56, and 2.16±1.67 for PTV70, 1.31±1.02, 1.62±1.28, 
and 1.55±1.38 for PTV63, and 1.47±1.15, 1.17±1.2, and 
1.37±1.2 for PTV56. The largest dose discrepancies for D1, 
D95, and D99 were 1.51%, 1.81%, and 2.16% at PTV70. For 
OARs, the prediction errors of two dosimetry metrics (D0.1cc 

and Dmean) were 2.16±1.62 and 0.68±0.55 for brainstem, 
1.98±2.03 and 0.74±0.73 for spinal cord, 1.72±1.41 and 
1.48±1.15 for right parotid, 1.33±1.11 and 1.47±1.13 for left 
parotid, 2.05±1.69 and 0.89±0.8 for esophagus, 1.71±2.0 and 
1.94±3.36 for larynx, 1.23±0.85 and 1.76±1.23 for mandible. 
The largest dose discrepancies for D0.1cc and Dmean were 
2.16% for brainstem and 1.94% for larynx.   

Discussion

In this study, a novel deep learning model called 3D-UNet-
PD for 3D dose distribution prediction was developed 
and its performance was evaluated. The proposed model 
demonstrated superior prediction accuracy, compared 
with the other three state-of-the-art prediction models. 
In the border of PTV and low dose region of OARs, the 
predicted dose from our proposed 3D-UNet-PD was closer 
to the ground truth, compared to other studied models. 
The incorporation of direction map into the prediction 
model was demonstrated to be crucial in improving model 
prediction accuracy, as shown in Table 1. When additional 
feature maps were included, such as distance map, the 
prediction accuracy was further strengthened. Notably, 

although the proposed model achieved the least MAE 
among the four studied prediction models, there was more 
than 3% prediction error for several OARs. This could 
be partially ascribed to the large variation in these regions 
and inadequate training samples, which will be improved 
in the future work. On the other hand, the current work 
can be easily extended to other treatment sites, treatment 
techniques [such as volumetric modulated arc radiotherapy 
(VMAT)], and prediction tasks (such as position of multi-
leaf collimator and segment of radiation beam).

The effect of the feature maps on the accuracy of 
prediction model is critical. The importance of distance 
map has been investigated in previous studies and 
demonstrated to be effective in reducing dose prediction 
error (30). The effect of beam orientation is crucial for dose 
distribution, but less investigated in predictive modeling. 
The main reason lies to the difficulty in characterizing 
this information in digital form, for example image or 
matrix. In this study, we proposed a way to characterize it 
by incorporating direction map, of which the effectiveness 
was tested on the predicted dose. Our results showed that 
it was effective and comparable to other features, such as 
distance map. However, the expression of the direction map in 
Eq. [1] is relatively simple. In Figure 2A, the radiation path 
is represented by a parallel-shape beam from a line source. 
While, in reality, it was a cone-shaped beam originating 
from a point source. This simplification could have certain 
impacts on the predicted dose accuracy. The beam shape 
will be taken into account to mimic the real setting of on-
board imager geometry in our future work. 

Although capability of the 3D-UNet in dose prediction 
has been extensively reported in the body of literature, 
there still exist deficiencies in numerous aspects, such as the 
arrangement of convolution layers in decoder. The stacking 
of multiple convolution layers in decoder would increasingly 
enlarge receptive field, while it also restricted capability of 
the network in capturing features in multi-scale resolution. 
As the dose at a given voxel is not only dependent on the 
neighboring voxels, but also influenced by the spatial 
relationship between the PTV and OARs. Therefore, the 
incorporation of the pyramid blocks was necessary in this 
study for the sake of extracting multi-scale features from 
image simultaneously. We also performed experiments on 
arranging the modules in cascade or in a parallel manner. 
It was found that stacking them in a cascade way would be 
better in dose prediction task. The effectiveness of pyramid 
decoder on prediction accuracy was demonstrated, as shown 
in Table 1. It implied that it would be necessary to optimize 

Figure 5 DVH comparison between the predicted dose and the 
calculated dose of one patient case. The dashed lines are DVH 
of the predicted dose by 3D-UNet-PD while the solid lines are 
DVH of the calculated dose by treatment planning system. PTV, 
planning target volume; DVH, dose-volume histogram.
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3D-UNet structure for each specific task. 
There are several limitations in this study. First, the 

introduction of pyramid decoder increased the complexity 
of the prediction model, GPU memory consumption and 
the time required for model training. Nevertheless, this only 
affected the training process, its influence on prediction 
process during testing and clinical application should be 
minimal. As tested, the time required on dose prediction 
(excluding pre-processing and post-processing) was within 
1.6 s for each patient on a workstation equipped with two 
NVIDIA GeForce 1080Ti GPUs. Second, the effectiveness 
of direction map might be compromised by improper 
selection of IMRT plans. Since the beam orientations in 
this study were equally spaced, the advantage of direction 
map might not be fully manifested. The beam orientation 
with irregular spacing would be more suitable for this new 
feature map. In the future, we will test our proposed model 
on more complex IMRT plans with non-equally-spaced 
beams. 

Conclusions

The proposed 3D-UNet-PD model improved the accuracy 
of dose prediction for both the PTVs and OARs, compared 
to the three UNet-based models. The introduction of 
direction maps and distance map effectively reduced the 
prediction error near the border of the PTV and low-
dose regions. The application of pyramid decoder resulted 
in less prediction error, compared to the baseline model. 
In general, our 3D-UNet-PD model was more accurate 
in predicting dose distribution of IMRT treatment plans 
in comparison with the three studied state-of-the-art 
prediction models, providing. It provides an effective dose 
prediction alternative as a supplementary tool to assist in 
current quality assurance and automated treatment planning 
tasks in radiotherapy.
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