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Introduction

Cancer is a major cause of death in developed countries 
and increasingly, also in developing countries. Accurate 
cancer cell identification and efficient therapy are extremely 
desirable but challenging in the clinical setting (1). In 

addition, distinguishing tumor cells from normal cells 
holds the key to precise diagnosis and effective intervention 
of tumors (2). By analyzing the images of cells, image-
based cell analytic methodologies offer a relatively simple 
and economical way to understand cell heterogeneities 
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and developments. Usually, the cell images are acquired 
through microscopy-based assays, which provide ample 
visual information that allows the investigation of cellular 
phenotypes induced by genetic or chemical treatments (3).  
Label-free cell imaging and analysis avoid the adverse 
effects of staining reagents on cellular viability and cell 
signaling. Thus, it is essential for personalized genomics, 
drug development, and cancer diagnostics (4,5). Digital 
holographic microscopy (DHM) is a well-known imaging 
technique that allows the recovery of the complex field 
information of label-free microscopic samples (6,7). The 
lensless digital holography is an emerging technology 
that has the typical configuration of DHM. It works 
without any objective lens or another intermediate optical 
component, and thus, does not carry the same limitations 
as traditional DHM in space-bandwidth product or device 
size (8). By placing the samples as close as possible to the 
imaging sensors, the lensless digital holography has unique 
advantages of a large effective numerical aperture (NA) 
approaching 1 across the native field of view (FOV) of the 
imaging sensor (tens of mm2) (9,10). The system can be 
built in a miniaturized format, providing a potential solution 
to reducing health care costs for point-of-care diagnostics 
in resource-limited environments (11). It enables a simple 
and cost-effective approach to obtain label-free cell images 
with large fields of view and microscopic spatial resolution 
due to high-resolution image sensors and high-performance 
computation processors.

Due to the escalation of computing power and the 
availability of massive datasets, the past few years have seen 
a dramatic surge of interest in deep learning (DL), which 
is a subfield of machine learning. DL allows computational 

models that are composed of multiple processing layers 
to learn representations of data with multiple levels of 
abstraction (12). DL’s unique “representation learning” 
capability enables direct training from raw images instead 
of manually extracted features. DL can discover intricate 
structures in large data sets by using the backpropagation 
algorithm to indicate how a machine should change 
its internal parameters that are used to compute the 
representation in each layer from the representation 
in the previous layer (12). Striking breakthroughs have 
occurred in the field of object recognition, detection, and 
classification. In recent years, methods based on DL have 
been introduced in the study of lensless digital holography, 
including wave field reconstruction (13-15), autofocusing 
(16,17), noise suppression (18,19), particle classification (20), 
and molecular diagnostics (21). 

In this current study, cell imaging and classification 
were performed based on recovered holographic images 
acquired by the lensless digital holography technique. 
Three cell lines, including the MCF-10A human mammary 
gland epithelial cell line, the MDA-MB-231 breast cancer 
cell line, and the EC-109 esophageal cancer cell line, were 
imaged. The lensless digital holographic imaging system 
is composed of a laser diode, a sample stage, an image 
sensor, and a laptop computer. The holograms of the three 
cell lines were recorded. The images were reconstructed 
using the angular spectrum method, and the sample to 
sensor distance was determined using the autofocusing 
criteria based on the sparsity of image edges and corner 
points. Based on the reconstructed images, three networks, 
including ResNet, DenseNet, and GoogLeNet, were used 
to classify these cells. In addition, a simple CNN was also 
configured to perform the cell classification task. 

Methods

Ethical approval was not required as there were no human 
experiments, animal experiments, or case reports included 
in this work. Only cell lines were used for stainless cell 
imaging.

Reconstruction of cell images from lensless holograms 

The schematic diagram illustrated in Figure 1 is a typical 
lensless digital holography system, which is composed of a 
laser diode, a spatial filter, a sample stage, an image sensor, 
and a laptop computer. The light emitted by the laser diode 
passes through the pinhole and illuminates the sample. In 

Figure 1 Schematic diagram of the lensless digital holography 
system.
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this configuration, all the optical components lie along a 
common axis with the sample. Part of the illumination wave 
reaching the sample is scattered and propagates to the image 
detector. The remaining waves are transmitted through the 
sample and pass to the sensor chip. The scattered wave, also 
known as the object wave, carries the information about the 
sample. The non-scattered transmitted wave can be used as 
the reference wave. A hologram results from the interference 
of the object wave and the reference wave. Usually, the 
transmitted wave is known, and the structural information 
about the sample can be recovered from the interference 
between the transmitted and the scattered waves. 

Mathematically, the interference pattern recorded in 
the hologram plane can be described using the following 
formula:

 ( ) ( ) ( )
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Here, O(x,y) is the object wave, R(x,y) is the reference 
wave, and (x,y) is the coordinate on the sensor. |R(x,y)|2 is 
a constant term, |O(x,y)|2 is usually smaller than the other 
terms and can be neglected, and the sum of two terms O(x,y)
R*(x,y)+O*(x,y)R(x,y) describes the interference pattern. 
The first two terms are called the zero-order or dc terms, 
and the last two terms are the holographic virtual and real 
images, also called the first-order terms.

In digital holography, numerical reconstruction 
approaches are used to recover the object wavefront O(x,y) 
from the recorded hologram I(x,y). The reconstruction 
algorithms are usually based on a Fresnel–Kirchhoff integral 
and can be implemented using a Fresnel approximation 
or an angular-spectrum method. As there is no minimum 
reconstruction distance constraint imposed before the 
algorithm breaks down and no pixel scaling between the 
hologram and its reconstruction, the angular-spectrum 
method (22) is used in this work. The recovered complex 
amplitude of the object is expressed as follows:

 ( ) ( ) ( ){ }1, ; , , ;U x y z F F I x y H u v z−  =    [2]

where F and F−1 represent Fourier transform and inverse 
Fourier transform, respectively, and z is the recording 
distance from the sample to the sensor. H(u,v;z) is defined as 
the transfer function, which can be expressed as follows:
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where k=2π/λ is the wavenumber, λ is the wavelength, and u 
and v are the spatial frequencies along the x-axis and y-axis, 
respectively.

Autofocusing

As shown in Eq. [2], the accurate distance from the sensor 
to the sample z should be known to recover the object 
wavefront numerically from the recorded hologram by 
the angular spectrum method. Usually, a focused image is 
considered to have the sharpest and sparsest edges. The 
sharpness or the sparsity of the image edges can be used 
as an autofocusing criterion. The tensor structure, also 
referred to as the second-moment matrix, is a widely used 
tool for corner detection, texture orientation assessment, 
and sharpness evaluation. Here, the tensor-based sharpness 
is used as the focus metric. If we let U(x,y;z) be the 
reconstructed intensity image at distance z, the 2D structure 
tensor at a pixel (x,y) can be written as follows (23):
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where ∇U(x,y)=[Ux(x,y),Uy(x,y)]T is the 2D spatial gradient, 
and G is a nonnegative convolution kernel which is 
normally selected as a 2D Gaussian function. Let Δ1 and Δ2 
be the larger and smaller eigenvalues of the matrix S(x,y). As 
S(x,y) is a symmetric and semi-positive-definite matrix, we 
have Δ1 ≥Δ2 ≥0. The structure tensor measures the geometry 
of the image structures in the neighborhood of each pixel. 
The tensor-based sharpness metric is defined as follows:
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The larger the TF value, the sharper the image. 
Autofocusing is used to find the z that leads to the maximum 
TF value. 

Cell classification based on convolutional neural networks

In the field of deep learning, convolutional neural networks 
(CNNs) are one of the most commonly used types of 
artificial neural networks. Usually, a CNN is composed 
of three basic layers: the convolutional layer, the pooling 
layer, and the fully-connected layer with a rectified linear 
activation function. The convolution layer extracts image 
features by convolving the input image with a convolution 
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kernel. The pooling layer is a down-sampling layer, which 
reduces the dimensionality of the feature map but retains 
important information. The fully connected layer is similar 
to the classical neural networks. Each node of the fully 
connected layer is connected to all pixels of all input feature 
maps. In this work, several deep CNNs were utilized for 
cell classification. The workflow is illustrated in Figure 
2, which shows the following four main steps: (I) the cell 
hologram images are obtained; (II) the object images are 
reconstructed from the holograms; (III) the individual cells 
are segmented from the recovered images; and (IV) the 
individual cells are classified.

Three popular deep CNNs were used,  namely,  
ResNet (24), DenseNet (25), and GoogLeNet (26). In 
addition, a self-configured CNN, named CNN-5, was also 

used. ResNet uses a residual structure that allows a few 
intermediate layers to be directly connected to auxiliary 
classifiers to address vanishing/exploding gradients. 
DenseNet is very similar to ResNet, except that it uses a 
dense connection instead of the addition operation that is 
used in ResNet. This allows the features in the front of the 
network to be reused in the network’s back. GoogLeNet 
introduces the inception architecture, which integrates 
convolution and pooling layers into the same layer in 
parallel, increasing the adaptability to multi-scale feature 
processing. As shown in Figure 3, the CNN-5 has five 
convolutional layers, with each layer following a batch 
normalization. The batch normalization acts as a regularizer 
that can accelerate the deep network training, resulting in 
the network being less sensitive to the initialization (27). 
The structure of the self-configured CNN-5 is listed in 
Table 1, where n=2 is for the two cell type classification and 
n=3 is for the three cell type classification.

Cell culture and imaging

A lens-free digital in-line holography system was built to 
acquire holograms of different cells. A 532 nm diode laser 
beam passes through a 20 μm pinhole and illuminates 
the sample holder. The scattered light from the sample 
interferes with the non-scattered light. A complementary 
metal-oxide-semiconductor (CMOS) sensor with 1.67 μm 
pixel size was used to record the hologram. The senor was 
placed close to the sample holder. 

The MDA-MB-231, EC-109, and MCF-10A cell lines 
were generously supplied by the Xi’an Medical College 
(Xi’an, China). Cells were incubated for 24 hours in 
Dulbecco’s modified essential medium (DMEM, Sigma-
Aldrich) containing 10% fetal bovine serum (FBS, Corning), Figure 2 Flow chart of the cell classification process.

Figure 3 CNN-5 architecture.
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100 units/mL penicillin, and 100 μg/mL streptomycin 
(Corning) in standard tissue culture conditions of 37 ℃, 5% 
CO2, and 100% humidity. Approximately 1 µL suspension 
containing several thousand cells was dropped onto a glass 
slide and imaged by the lens-free holography system. 

The precision, recall, and accuracy were used to evaluate 
the performance of the classification networks. The 
assumption was a binary classification problem where some 
samples required identification, and the samples belong to 
two classes, namely, the positive class and the negative class. 
The three metrics were defined as follows:

 TPprecision
TP FP

=
+

 [6]

 TPrecall
TP FN

=
+

 [7]

 TP TNaccuracy
TP TN FP FN

+
=

+ + +
 [8]

where TP, TN, FP, and FN represent the true positives, true 
negatives, false positives, and false negatives, respectively. 
Each was defined as the number of cases where the model 

Table 1 Detailed configuration of the CNN-5

Layer Type Filter dimension Stride Pad Date dimension

0 Input – – – 20×20×1

1 Conv 3×3×15 1 1 20×20×15

2 BNorm – – – 20×20×15

3 ReLU – – – 20×20×15

4 Conv 3×3×15 1 1 20×20×15

5 BNorm – – – 20×20×15

6 ReLU – – – 20×20×15

7 MaxPool 2×2 2 – 10×10×15

8 Conv 3×3×20 1 1 10×10×20

9 BNorm – – – 10×10×20

10 ReLU – – – 10×10×20

11 Conv 3×3×20 1 1 10×10×20

12 BNorm – – – 10×10×20

13 ReLU – – – 10×10×25

14 MaxPool 2×2 2 – 5×5×25

15 Conv 3×3×25 1 1 5×5×25

16 BNorm – – – 5×5×25

17 ReLU – – – 5×5×25

18 FConn 360×625 – – 1×1×360

19 BNorm – – – 1×1×360

20 ReLU – – – 1×1×360

21 FConn 60×360 – – 1×1×60

22 BNorm – – – 1×1×60

23 ReLU – – – 1×1×60

24 FConn n×60 – – 1×1×n

25 softmax – – – 1×1×n
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correctly predicts the positive class, correctly predicts the 
negative class, incorrectly predicts the positive class, and 
incorrectly predicts the negative class, respectively. 

Results

The recorded holograms of the MDA-MB-231, EC-109, 
and MCF-10A cells are shown in the left column of Figure 
4, and the reconstructed cell images are illustrated in the 
middle column. The single enlarged cell in the dashed 

boxes is illustrated in the right column in detail, where 
the recorded, reconstructed, and bright-field microscopic 
images are listed from top to bottom. The reconstructed 
images were cropped by a 20×20 pixel box, each of which 
is centered on a cell. To obtain the position of each cell, 
the pixels presenting a cell edge were determined based 
on the fact that the edge of an object has the lowest 
brightness along different depths of the 3D reconstruction 
space. These points were then projected onto the same 
plane, and smoothing and threshold segmentation were 

Figure 4 The recorded holograms and reconstructed images for (A) MDA-MB-231, (B) EC-109, and (C) MCF-10A cells. The left, middle, 
and right columns show the holograms, reconstructed images at the focal plane, and the typical single cell. The images from top to bottom 
represent the recorded, reconstructed, and bright-field microscopic single cell in the dashed boxes in the right column, respectively. The 
scale bars represent 50 µm.

A

B

C
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performed. Finally, all cells were extracted from the focused 
reconstruction image.

The number of segmented cells was 8,160, 6,623, 
and 6,145 for MDA-MB-231, EC-109, and MCF-10A. 
The cells were divided into two groups with a ratio of 
8:2 for the training and test sets. Training a network is 
essentially optimizing a nonlinear function concerning 
weights and biases. The Adam optimizer (28) was 
utilized to minimize the categorical cross-entropy, which 
computes the dissimilarity of the approximated output 
distribution. The learning rate is 0.01 and learns for 75 
epochs during training. All the networks were implemented 
using Python3.7 and computed using a computer with 
an Intel(R) Core(TM) i5-8400 CPU at 2.80 GHz and an 
NVIDIA GeForce GTX 1070 8GB card. To investigate the 
computation costs of ResNet, DenseNet, GoogLeNet, and 
CNN-5 training, the number of floating point operations, 
the number of parameters, and the time for MDA-MB-231 
and EC-109 classification were recorded. The results in 
Table 2 show that CNN-5 had the fewest parameters and the 
fastest learning speed. DenseNet had the most operations 
and the longest time needed for training.

During network training, the 5-fold validation strategy 
was used. Figure 5 shows the variation of the validation 
accuracy during the training process, where (I) plots 
the training results for EC-109 and MDA-MB-231 
classification, and (II) plots the training result for the three 
cell type classification. The results demonstrated that for 
both two and three cell type classifications, the ResNet and 
DenseNet models obtained higher accuracy rates than the 
GoogLeNet and CNN-5 networks.

After network training, the weights of the different 
networks were restored for testing. The precision rates and 
recall rates of testing for the two cell type classification are 
listed in Tables 3-5. Classification was performed between 
MCF-10A and MDA-MB-231, MCF-10A and EC-109, 
and EC-109 and MDA-MB-231. In these tables, the 
largest values are illustrated in bold. For the two cell type 
classification tasks, the best mean precision rates and recall 
rates were obtained by either ResNet or DenseNet, and 
GoogLeNet outperformed CNN-5. 

The performance of the networks on classifying the 
three different cell types, MCF-10A, EC-109, and MDA-
MB-231, is shown in Table 6. DenseNet demonstrated 

Figure 5 Validation accuracy vs. epoch during training. (A) Validation accuracy for EC-109 and MDA-MB-231 classification; (B) validation 
accuracy for EC-109, MDA-MB-231, and MCF-10A classification.

Table 2 Computation cost to train the networks for two cell type classification

ResNet DenseNet GoogLeNet CNN-5

Floating-point operations 2.288G 4.643G 3.431G 0.803G

Number of parameters 11.171M 6.951M 5.596M 2.912M

Time (s) 1,102.5 3,287.2 1,815.6 680.9
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superior performance, with mean precision and mean 
recall rates above 92%. The mean precision and recall rates 
obtained by the CNN-5 network were both 90.9%, which 
was the lowest among all the networks.

The accuracy rates of the networks were calculated and 
illustrated in Figure 6, where EC, MDA, and MCF represent 
EC-109, MDA-MB-231, and MCF-10A respectively. All 
the networks achieved an accuracy of higher than 91%. 

The ResNet and DenseNet networks showed similar 
classification accuracy that was higher than 95%, and they 
both outperformed GoogLeNet and CNN-5. Although 
the number of weight parameters in CNN-5 was much less 
than that in GoogLeNet, the two networks obtain similar 
accuracy rates. In addition, the accuracy of the networks for 
three cell type classification was lower than that for two cell 
type classifications, except with GoogLeNet.

Table 3 Performance of networks on MCF-10A and MDA-MB-231 classification

Measurement Cell type
Networks

ResNet DenseNet GoogLeNet CNN-5

Precision MCF-10A 0.967 0.970 0.954 0.964

MDA-MB-231 0.981 0.968 0.977 0.965

Mean 0.974 0.969 0.966 0.965

Recall MCF-10A 0.976 0.958 0.958 0.954

MDA-MB-231 0.974 0.978 0.978 0.973

Mean 0.975 0.968 0.968 0.964

Table 4 Performance of networks on MCF-10A and EC-109 classification

Measurement Cell type
Networks

ResNet DenseNet GoogLeNet CNN-5

Precision MCF-10A 0.940 0.934 0.945 0.918

EC-109 0.941 0.944 0.929 0.931

Mean 0.941 0.939 0.937 0.925

Recall MCF-10A 0.938 0.934 0.924 0.928

EC-109 0.943 0.943 0.948 0.921

Mean 0.941 0.939 0.936 0.925

Table 5 Performance of networks on EC-109 and MDA-MB-231 classification

Measurement Cell type
Networks

ResNet DenseNet GoogLeNet CNN-5

Precision EC-109 0.971 0.962 0.957 0.960

MDA-MB-231 0.968 0.980 0.978 0.956

Mean 0.970 0.971 0.968 0.958

Recall EC-109 0.960 0.975 0.974 0.945

MDA-MB-231 0.977 0.969 0.964 0.968

Mean 0.969 0.972 0.969 0.957
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Table 6 Performance of the networks on three cell type classification

Measurement Cell type
Networks

ResNet DenseNet GoogLeNet CNN-5

Precision MCF-10A 0.885 0.911 0.908 0.875

MDA-MB-231 0.959 0.948 0.932 0.935

EC-109 0.934 0.927 0.939 0.917

Mean 0.926 0.929 0.926 0.909

Recall MC-F10A 0.953 0.929 0.915 0.908

MDA-MB-231 0.934 0.948 0.965 0.950

EC-109 0.898 0.912 0.894 0.869

Mean 0.928 0.930 0.925 0.909

Figure 6 Accuracy of the networks for two cell type and three cell type classification. EC/MDA, MDA/MCF, and EC/MCF denote the two 
cell type classification. EC/MDA/MCF denotes the three cell type classification. EC, MDA, and MCF represent EC-109, MDA-MB-231, 
and MCF-10A respectively. 
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As shown in Figure 4, the cells in the reconstructed 
images were a little blurred, and there were interference 
fringes around the focused cells .  We analyzed 58 
misclassified images in the ResNet-based MDA-MB-231 
and EC-109 classification experiments to investigate 
the effects of the twin images on classification accuracy. 
Among these 58 images, 29 were MDA-MB-231 cells, and 
the other 29 were EC-109 cells. The interference fringes 
were removed manually, and the clear cell images were 
input to the trained ResNet network. Principal component 
analysis (PCA) was performed on the features of the last 
convolutional layer output, and the results are shown in 
Figure 7A, where MDA/EC indicates the MDA-MB-231 
cells that were misclassified into the EC-109 cell type. A 

total of 5 MDA-MB-231 images and 8 EC-109 images 
were incorrectly predicted after the twin images were 
eliminated. In addition, the cell images were manually 
removed, and the left interference fringe images were 
input to the trained CNNs. The PCA results in Figure 7B 
show the 23 MDA-MB-231 cells and 15 EC-109 cells that 
were wrongly predicted. These results suggested that the 
interference fringes mainly caused the misclassifications in 
the images. 

Discussion 

In this work, label-free imaging was performed using the 
digital holography system without a lens. Based on the 
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reconstructed holographic images, the cells were classified 
using four deep neural networks. To recover the wave 
amplitude of the cells, the angular spectrum method was 
used. For digital autofocusing, the sample to sensor distance 
was determined based on the sparsity of image edges and 
corner points. After reconstruction, each cell was detected 
and segmented. The images were cropped into thousands of 
sub-images with a size of 20×20 pixels, and each image was 
centered on a single cell. For cell classification, the popular 
ResNet, DenseNet, and GoogLeNet networks were used. 
In addition, a CNN containing five convolutional layers, 
named CNN-5, was configured and utilized. 

For MDA-MB-231 and EC-109 cell classification, 
the number of floating point operations during ResNet, 
DenseNet, GoogLeNet, and CNN-5 training was 2.3G, 
4.6G, 3.4G, and 0.8G, respectively. The number of network 
parameters was 11.2M, 7.0M, 5.6M, and 2.9M, respectively. 
The training time for 75 epochs ranged from 11 minutes to 
55 minutes. As the DenseNet model had the most floating 
point operations, it had the longest training time. During 
testing, the precision rates, recall rates, and accuracy 
rates were calculated to evaluate the performance of the 
networks. For two cell type classifications, ResNet and 
DenseNet showed higher mean precision and mean recall 
rates than the other two networks. The accuracy of three 
cell type classification was lower than that of two cell type 
classifications as the number of parameters increases, and 
the task becomes more difficult. For all the classification 
tasks, the CNN-5 network performed the fastest while 
achieving similar accuracy to GoogLeNet. 

The CNN-5 network was formulated directly based on 
the classical CNN. GoogLeNet introduces the inception 
module to the traditional CNNs, which allows information 
to be processed at various scales (26). The ResNet model 
uses shortcut connections to perform identity mapping (24). 
The DenseNet model connects each layer to every other 
layer in a feed-forward fashion (25). Thus, GoogLeNet, 
ResNet, and DenseNet can all alleviate the vanishing 
gradient problem in the deep networks, and the last two 
models encourage feature reuse. Although it is not easy 
to find the optimal CNNs for cell classification tasks, 
our experiments suggested that ResNet and DenseNet 
performed better than the other two networks. 

This investigation demonstrated that all four networks 
were effective at classifying two and three cell types. To 
further improve the performance of the networks and obtain 
better results, the size of the training data may be increased 
by imaging more cells and using data augmentation 
strategies. Due to the effects of the twin images, the cells 
in the reconstructed images were slightly blurred, and 
there were interference fringes around the focused cells. 
To further investigate this effect, 58 misclassified cell 
images in the ResNet-based MDA-MB-231 and EC-109 
classification experiments were analyzed. After manual 
removal of the fringes, more than half of the cell images 
were correctly predicted by the pre-trained ResNet, 
suggesting that the interference fringes mainly caused the 
misclassification in the images. Therefore, the quality of the 
reconstructed images should be improved by removing the 
twin image, thereby enhancing classification performance. 

Figure 7 Principal component analysis results of the extracted features when the trained ResNet is input with (A) cell images without 
interference fringes and (B) interference fringe images. The triangle and circle markers show the cells that were incorrectly and correctly 
predicted by ResNet, respectively. MDA/EC represents the MDA-MB-231 cell that was misclassified into the EC-109 cell type.
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Autofocusing was performed before classification as there 
were overlapping interference patterns among cells in 
the recorded holograms to extract individual cells. The 
focusing operation may be unnecessary if the cells are 
sparsely located as the cell information has been encoded in 
the holograms. Future studies should investigate whether 
cell types can be directly distinguished from the recorded 
holograms.

Conclusions

In recent years, lensless digital holography has advanced 
as a label-free modality. This has been facilitated by 
developments in inexpensive digital image sensors with 
small pixel size and high pixel counts and improvements 
in computing power and reconstruction algorithms used 
to process the captured diffraction patterns. This imaging 
technique can provide a spatial resolution of several 
hundred nanometers to several micrometers without any 
focusing lens, offering the advantages of a large field of 
view, high resolution, cost-effectiveness, and portability. 
In this study, three types of unlabeled cells, specifically, 
EC-109, MDA-MB-231, and MCF-10 cells, were imaged 
using the lensless digital holography technique, and four 
deep learning networks including ResNet, DenseNet, 
GoogLeNet, and CNN-5 were used for cell classification. 
The results demonstrated that lensless digital holography 
combined with deep CNNs could provide a powerful 
imaging modality for large field label-free cell classification. 
This combined technique can distinguish normal cells from 
cancer cells and recognize different types of cancer cells. 
This will afford enormous benefits to the field of cancer 
diagnosis and cancer biology research. 
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