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Abstract: Radiomics research is rapidly growing in recent years, but more concerns on radiomics reliability 
are also raised. This review attempts to update and overview the current status of radiomics reliability research 
in the ever expanding medical literature from the perspective of a single reliability metric of intraclass 
correlation coefficient (ICC). To conduct this systematic review, Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines were followed. After literature search and selection, a 
total of 481 radiomics studies using CT, PET, or MRI, covering a wide range of subject and disease types, 
were included for review. In these highly heterogeneous studies, feature reliability to image segmentation 
was much more investigated than reliability to other factors, such as image acquisition, reconstruction, post-
processing, and feature quantification. The reported ICCs also suggested high radiomics feature reliability 
to image segmentation. Image acquisition was found to introduce much more feature variability than image 
segmentation, in particular for MRI, based on the reported ICC values. Image post-processing and feature 
quantification yielded different levels of radiomics reliability and might be used to mitigate image acquisition-
induced variability. Some common flaws and pitfalls in ICC use were identified, and suggestions on better 
ICC use were given. Due to the extremely high study heterogeneities and possible risks of bias, the degree of 
radiomics feature reliability that has been achieved could not yet be safely synthesized or derived in this review. 
More future researches on radiomics reliability are warranted. 
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Introduction

Radiomics has become one of the most popular research 
areas in medical imaging, in particular for clinical oncology, 
since its first introduction by Lambin et al. in 2012 (1). 
According to Gillies et al., radiomics is defined as “the 
conversion of images to higher dimensional data and the 
subsequent mining of these data for improved decision 
support” (2). These higher dimension data are normally 
understood as the information contained in a large number 
of quantitative radiomics features derived from the 
original or transformed medical images, which are usually 
artificially engineered with mathematical definition and 
have continuous values. By utilizing the radiomics models 
built on the selected radiomics features, radiomics promises 
to increase diagnosis accuracy and precision, assessment of 
prognosis, and therapy response prediction for different 
clinical applications, bridging between medical imaging 
and personalized medicine (3,4). A tremendous number of 
papers on radiomics have been published in recent years (5).  
However, despite the promising results reported, the 
broad validity, and generality of radiomics are still much 
hindered by the concerns on its reliability (6-11). Variability 
and uncertainty of radiomics can be introduced in many 
procedures of its complicated workflow. These procedures 
include but not limited to imaging hardware configuration, 
patient setup, image acquisition, reconstruction, image 
post-processing (filtering, segmentation and registration, 
etc.), radiomics feature quantification (such as feature 
definition, calculation setting like image discretization, 
software implementation, calculation result harmonization, 
etc.), and radiomics modeling. 

The term reliability is commonly used with other terms 
like agreement, repeatability, stability, reproducibility, 
accuracy/precision, and robustness in varying degrees of 
consistency in the medical literature. In this study, a general 
and mathematically expressible definition of reliability (R) 
is adopted to be the extent to which measurements can 
be replicated. It is expressed as the ratio of true (error-
free) variance (σT2) over true variance plus error variance 
(σE

2), i.e., R=σT
2/(σT

2 + σE
2). This definition of reliability 

is compliant with the classical definition of intraclass 
correlation coefficient (ICC), using the between-subject 
variance in the trait of interest to represent the true variance 
since it cannot be directly measured in reality. 

   
     

between subject varianceICC
between subject variance within subject measurement variance

=
+ 

[1]

ICC is one of the most widely adopted reliability indexes 
based on the analysis of variance (ANOVA) in medical 
literature (12). ICC is applicable for all radiomics features 
that have continuous values. In addition, ICC is a ratio 
index ranged from 0 to 1, so it is useful in the cross-study 
reliability comparison. For these reasons, ICC is chosen 
in this study as the single statistical metric for radiomics 
feature reliability assessment. We adopted the ICC forms 
in McGraw and Wong Convention, including three 
components of model (one-way or two-way, random-effects 
or mixed-effects), type (single or multiple measurements/
raters), and definition (absolute agreement or consistency), 
following the guideline proposed by Koo et al. (13). 

Reliability of radiomics has to be carefully and 
rigorously measured and assessed prior to its real clinical 
deployment, but generic radiomics reliability is still not yet 
fully explored, so not well known. An excellent systematic 
review on repeatability and reproducibility of radiomics 
features was published in 2018 (14), in which the qualitative 
synthesis on 41 studies revealed the status of radiomics 
reliability research until April 2017. Since then, the status of 
radiomics reliability research has not been timely updated 
in the pace of an ever fast increasing number of radiomics 
publications. Few strongly evident consensus has been 
reached and well-acknowledged so far. 

Thus, this review attempts to serve multi-fold purposes: 
(I) to have a timely updated overview on the current 
status of radiomics reliability research, mainly from the 
perspective of ICC use in the medical literature; (II) to 
survey what ICC was used for, and what were the major 
findings of radiomics reliability as revealed by the reported 
ICCs; (III) to critically review how ICC was used, reported 
and interpreted; (IV) to give some suggestions on ICC 
use to mitigate the flaws and pitfalls, if applicable, so as to 
improve radiomics reliability assessment for future studies. 

 

Methods

Systematic search strategy

The major research question for the literature search was 
described as: ‘‘What are the known radiomics studies that 
used ICC as a radiomics feature reliability index, and reported 
the quantitative ICC results (as either major or secondary 
outcome)”. Thus, a comprehensive literature search was 
conducted by two authors (JY and CX) to identify the relevant 
published studies in the database of MEDLINE/PubMed 
(National Center for Biotechnology Information, NCBI), 
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from 1 January 2012 to 8 December 2020 (ePub date). 
A combination of the following terms and their common 

variations: “CT/PET/MRI”, “radiomics/radiomic/texture 
analysis/quantitative (heterogeneity) feature”, “ICC/intraclass 
correlation” were comprehensively used for literature search. 
Imaging modalities other than CT, PET, and MRI, such as 
ultrasound, X-ray, cone-beam CT, and Megavoltage CT, 
were not included in this search due to their relative minority 
and immaturity in the radiomics research. Image analysis 
based solely on the gray level histogram, i.e., histogram 
analysis, does not provide any voxel positional/distributive 
information on the images, so it was not included. 

Study selection

Only full-text journal or conference articles written in 
English were eligible and included. Conference abstracts, 
case reports, (systematic) reviews, editorials/commentaries, 
expert opinion papers, and non-English papers were 
excluded from selection. 

After article type exclusion, all publications that involved 
the use of ICC for feature reliability assessment were 
identified through full text (and Supplementary materials 
if needed) examination in the searching results. If a study 
mentioned the ICC use in the method but reported no ICC 
results, it was also excluded. 

Three authors (JY, CX, and OW) worked jointly 
on the study selection procedures as described above. 
Disagreements were resolved by consensus. Reasons for 
exclusion were documented.

Data extraction

Four authors (JY, CX, OW, and YZ) jointly performed 
record extraction. The study information on publication 
date, imaging modality, study design, study subject 
(phantom, animal or human), organ, disease, radiomics 
feature type/number was extracted. In terms of ICC use 
and reporting, the purpose of using ICC, the sample size 
for ICC calculation, ICC form, ICC reporting format, 
and major ICC results were extracted. Despite the high 
heterogeneity of ICC result reporting in different studies, 
we attempted to extract, synthesize, or harmonize the ICC 
results in the form of satisfactory feature rate (SFR), i.e., 
the percent of features showing satisfactory (determined 
by excellent, good, or other ICC criteria in each individual 
publication) ICC in the total investigated features, as 
much as possible. In this way, cross-study ICC comparison 

might become feasible to some extent. Radiomics quality 
score (RQS) of the extracted studies were not individually 
appraised since RQS might not be applicable for many of 
these studies because they were not completely clinical 
application studies (4). The quality of ICC use and reporting 
was not scored either. QUADAS-2 was not applied for 
study appraisal either since the diagnostic accuracy was not 
the common purpose of the included radiomics studies (15). 

Outcomes and prioritizations

The primary outcome of interest in this review was 
radiomics feature reliability in different aspects as 
assessed by ICC. Quality of ICC use and reporting was 
the secondary outcome. Other statistic metrics used in 
combination with ICC were only noted but not further 
analyzed. The outcome was not prioritized on specific 
imaging modality or disease type. 

Risk of bias analysis

Two authors (CX and JY) jointly assessed the possible risk 
of bias in the included studies from the extracted study 
information with consensus in the following perspectives. (I) 
study characteristics such as the study design (retrospective 
or prospective), cohort, sample size and feature number; (II) 
appropriateness of methodology, and sufficiency of method 
description and disclosure, such as the details of imaging 
acquisition, post-processing, segmentation, as well as 
feature definition (standardization) and quantification; (III) 
the quality of ICC use and reporting, such as the ICC form 
selection, confidence interval reporting, threshold values, 
and interpretation. 

The TRIPOD (Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or Diagnosis) 
Statement (16) was not applied for two major reasons. First, it 
was not applicable for many studies because the investigation 
of radiomics feature reliability did not necessarily lead to the 
final prognosis or diagnosis performance report. Second, 
the clinical purposes were beyond the scope of this review, 
and they were also highly heterogeneous, including but not 
limited to prognosis or diagnosis. 

 

Results

Literature search and selection 

The PubMed search yielded 2,596 records. Records were 
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reduced to 2,580 after duplicates were removed. The 
subsequent article type, title, and abstract screening excluded 
182 records. Then the remaining 2,398 records underwent 
full text (and Supplementary materials) examination, and 
1,917 records were further excluded. Finally, 481 studies 
were included in this systematic review. The selection 
process is illustrated in Figure 1.

Statistics of the included publications 

Figure 2 shows the increasing number of published 
radiomics studies in which ICC was used for radiomics 
reliability assessment from 2012 to 2021. In recent years 
since 2017, MRI articles show a much faster increase than 
CT, and PET. 

In terms of publication number, CT, PET and MRI 

Figure 1 Flowchart of the study selection process. 

Figure 2 Publication number based on imaging modality in recent years. 
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account for 50.73% (n=244), 9.77% (n=47), and 42.20% 
(n=203) of the total publications (N=481), respectively. Note 
that some publications involved multi-modality radiomics, 
so the sum was slightly over 100%. 

In the included articles, 18.09% (87/481) and 81.91% 
(394/481) of them assessed reliability using ICC as the 
major study outcome and secondary (partial) outcome, 
respectively. 5.82% (n=28) and 94.18% (n=453) studies were 
prospective and retrospective (including those studies using 
prospectively acquired imaging data for clinical purposes 
other than radiomics) in nature. 

The numbers of studies based on subject type and 
anatomical region are illustrated in Figure 3.

Clinical  oncology is  the most common clinical 
application in these studies, accounting for 86.69% 
(417/481) of the total publications. Lung cancer is the 
most common type, followed by head and neck cancer and 
neuro-oncology. Imaging modality reflects variation in 
predominant type of cancer, as PET and CT studies showed 
a higher proportion of lung and head and neck patients, 
while MRI studies comprised more neuro-oncology, breast 

cancer, cervical cancer, and prostate cancer. The publication 
distribution based on cancer types, and imaging modalities 
is illustrated in Figure 4.

The characteristics of human radiomics studies

The use of ICC in the included human radiomics studies 
was categorized by the ICC purpose. The characteristics 
of the studies were summarized in the following tables. If a 
study involved more than one ICC purpose, each purpose 
was separately listed in the corresponding table. SFR was 
directly extracted or synthesized from the original data 
from each study as much as possible. However, in many 
cases, SFR was not available or could not be clearly and 
reliably extracted, which was thus labeled NA in the tables. 
One common reason was that ICC was reported in other 
forms like mean ± SD. Another reason was that ICC was 
applied for some but not all features, e.g., for those features 
after correlation assessment or clustering. Meanwhile, for 
some other studies, very comprehensive ICC results were 
reported. The SFRs could not be simply extracted and 

Figure 3 Study number based on subject type and anatomical region. The study number is counted repeatedly if multiple subject types or 
anatomical regions were involved in a study. 
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listed. They were labeled as NE. 

Radiomics feature reliability due to image acquisition
The use of ICC in the included human radiomics studies 
to assess the feature reliability due to image acquisition was 
summarized in Table 1.

Radiomics feature reliability due to image 
reconstruction
The use of ICC in the included human radiomics studies to 
assess the feature reliability due to image reconstruction was 
summarized in Table 2.

Radiomics feature reliability due to image segmentation
There were 416 out of 481 studies reported the ICC 
results regarding the feature reliability influenced by 
image segmentation. Only those studies that substantially 
investigated the radiomics feature reliability to image 
segmentation as the primary study endpoint were listed 
in Table 3. For other studies, most simply mentioned the 

ICC use for intra-/inter-observer agreement, and reported 
a very short ICC (usually optimistic) result, in which SFR 
was extracted from 206 studies. The SFR distribution was 
provided by the histogram in Figure S1, showing no apparent 
differences between imaging modalities (Figure S2). 

Radiomics feature reliability due to image processing
The use of ICC in the included human radiomics studies 
to assess the feature reliability due to image processing was 
summarized in Table 4.

Radiomics feature reliability due to feature 
quantification
The use of ICC in the included human radiomics studies 
to assess the feature reliability due to feature quantification 
was summarized in Table 5.

The characteristics of phantom and animal radiomics 
studies 
The study characteristics in the included phantom and 

Figure 4 Distribution of oncological patient studies. The study number is counted repeatedly for each type of cancer if a study investigated 
more than one cancer type. 
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Table 1 Summary of human radiomics studies using ICC for image acquisition

First author, year Disease
Patient number/feature 

number/ICC sample size
Acquisition factors

Satisfactory feature 
rate

ICC  
threshold

CT

Aerts et al., 2016 (17) Lung cancer 47/183/31 Test-retest NA NA

Hu et al., 2016 (18) Rectal cancer 40/775/40 Test-retest 64.00% 0.8

Hyunh et al., 2016 (19) Lung cancer 113/1605/31 Test-retest 53.27% 0.8

Hyunh et al., 2017 (20) Lung cancer 112/644/31 Test-retest 44.41% 0.8

Hosny et al., 2018 (21) Lung cancer 1194/NA/32 Test-retest NA 0.8

Soufi et al., 2018 (22) Lung cancer 162+143/432/31 Test-retest NE 0.75

Dou et al., 2018 (23) Lung cancer 200/2175/31 Test-retest 33.15–51.17% 0.85

Huang et al., 2019 (24) Lung cancer 54/203/31 Test-retest 65.02% 0.9

Khorrami et al., 2019 (25) Lung cancer 125/1542/31 Test-retest 76.00% 0.8

Khorrami et al., 2019 (26) Lung cancer 90/1542/31 Test-retest 67% 0.85

Osman et al., 2019 (27) Prostate cancer 342/1618/20 Test-retest 32.26% 0.8

Zwanenburg et al., 2019 
(28)

Lung cancer, HNC 31+19/4032/31+19 Test-retest 57.3% (lung cancer), 
14.4% (HNC)

0.9

Kadoya et al., 2020 (29) Lung cancer 287/107/31 Test-retest 79.44% 0.8

Khorrami et al., 2020 (30) Lung cancer 350/133/31 Test-retest NA 0.75

Ligero et al., 2021 (31) Colorectal/kidney 
cancer

43 (97 liver mets)/93/43 
(97 liver mets)

Acquisition voltage 65.59–81.72% 0.8

Prayer et al., 2021 (32) Lung disease 60/86/30 Test-retest, inter-scanner 75.6% (test-retest), 
NE (inter-scanner)

0.9

Vuong et al., 2020 (33) Lung cancer 124/1404/10+11 Motion, contrast 41.30% (motion), 
29% (contrast)

0.9

Yamashita et al., 2020 (34) Pancreatic cancer 37/266/37 Inter-scanner, contrast agent NE 0.8

MRI

Fiset et al., 2019 (35) Cervical cancer 62/1761/8+20 Test-retest, inter-scanner 22.6% (test-retest), 
6.2% (inter-scanner)

0.9

Li et al., 2019 (36) Hippocampus 60/55/60 Test-retest NE 0.4

Zinn et al., 2018 (37) GBM 79/300/79 Inter-scanner NA NA

Bologna et al., 2020 (38) NPC 142/1072/142 Imaging parameters,  
geometrical transformation

24.72% 0.75

Jang et al., 2020 (39) Healthy, cardiac 
referral

10+51/1023/61 Test-retest 2.6-28.8% (healthy), 
8.9–34.8% (patient)

0.8

Test-retest (repositioning) 0.7–3.1%

Merisaari et al., 2020 (40) Prostate cancer 112/1694/34 Test-retest NA 0.75

Pandey et al., 2021 (41) Healthy 87+4+8/93/4+8 Test-retest ~71.04% 0.5

Inter-scanner 18% (GM),  
21.5% (WM)

Table 1 (continued)
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Table 1 (continued)

First author, year Disease
Patient number/feature 

number/ICC sample size
Acquisition factors

Satisfactory feature 
rate

ICC  
threshold

Gutmann et al., 2020 (42) Diabetes 310/684/310 Test-retest 26.5% 0.85

Scalco et al., 2020 (43) Prostate cancer 14/91/14 Test-retest repositioning 7–11% 0.9

Shiri et al., 2020 (44) GBM 17/26295192/17 Test-retest NE 0.95

Ta et al., 2020 (45) Healthy 6/22/6 Test-retest, inter-scanner NE 0.75

Zhang et al., 2020 (46) Brain cancer 1728/1595/50 Inter-scanner 100% 0.75

Han et al., 2021 (47) GBM 57/45/57 Test-retest NA 0.75

PET

Leijenaar et al., 2013 (48) Lung cancer 34/106/11 Test-retest 71% 0.8

Willaime et al., 2013 (49) Breast cancer 15/28/9 Test-retest, tissue ~46.43 (test-retest), 
~64.29% (across 

tissue)

0.7

van Velden et al., 2014 (50) Colorectal carcino-
ma

29/18 /29 Test-retest 83.33% 0.7

Cheng et al., 2016 (51) Lung cancer 56/12/56 Different tracer NA 0.95

van Rossum  et al., 2016 
(52)

HNC 217/80/7 Test-retest NE 0.9

Carvalho et al., 2018 (53) Lung cancer 215/118/215 Test-retest 65.25% 0.85

Jiang et al., 2018 (54) Gastric cancer 214/80/30 Inter-scanner NA 0.8

Lin et al., 2019 (55) Prostate cancer 18/47/18 Test-retest 83% 0.75

Manabe et al., 2019 (56) Cardiac disease 89/36/33 Inter-scanner 47.22% 0.8

Vuong et al., 2019 (57) Lung cancer 10+9/1,355/10 Test-retest  
(inhale, exhale phase)

55.6% (shape),  
39.3 (wavelet)

0.9

Inter-scanner  
(PET/CT vs. PET/MRI)

61% (shape and 
intensity),  

28% (wavelet)

0.9

PET, CT

Desseroit et al., 2017 (58) Lung cancer 73/40/73 Test-retest NE NA

PET, MRI

Jiang et al., 2017 (59) Healthy 86/NA/66 Test-retest NA 0.75

NA, not available or not clear; NE, could not be simply extracted due to comprehensive results, see the reference for detail; HNC, head 
and neck cancer; liver mets, liver metastases; GBM, glioblastoma multiforme. NPC, nasopharyngeal carcinoma. GM, gray matter. WM, 
white matter. 
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Table 2 Summary of human radiomics studies using ICC for image reconstruction

First author, year Disease
Patient number/feature  

number/ICC sample size
Reconstruction factors

Satisfactory feature 
rate

ICC  
threshold

CT

Ahn et al., 2019 (60) Liver lesion and 
renal cyst

1,462/11/1,462 Inter-method NE 0.75

Kolossváry et al., 2019 (61) Vascular disease 60/171/60 Inter-method ~97.04% 0.9

Koo et al., 2017 (62) Lung cancer 194/10/194 Reconstruction intervals ~70% 0.8

Lee et al., 2019 (63) Lung nodule 194 patients (260 scans) 
/252/114 patients (180 scans)

Voxel size 9.13% 0.7

Ligero et al., 2021 (31) Colorectal/kidney 
disease

43 (97 liver mets)/93/43 (97 
liver mets)

Voxel size 48.40–78.49% 0.8

Slice spacing 43.01–86.02% 0.8

Slice thickness 75.25–88.17% 0.8

Convolution kernel 55.92–97.85% 0.8

Prayer et al., 2021 (32) Lung disease 60/86/60 Reconstruction kernel 
and slice thickness,

NE NE

Vuong et al., 2020 (33) Lung cancer 124/1,404/23 Convolution kernel 17.20% 0.9

Yamashita et al., 2020 (34) Pancreatic cancer 37/266/37 Voxel size NE 0.8

MRI

Suter et al., 2020 (64) GBM 63+76/8,327/19 K-space subsampling NE 0.85

PET

Altazi et al., 2017 (65) Cervical cancer 88/79/8 Inter-method NE NA

van Velden et al., 2016 (66) Lung cancer 11/105/11 Inter-method 63% (segmentation 
or reconstruction)

0.9

NA, not available or not clear; NE, could not be simply extracted due to comprehensive results, see the reference for detail; liver mets,  
liver metastases; GBM, glioblastoma multiforme. 

Table 3 Summary of human radiomics studies using ICC for image segmentation

First author, year Disease
Patient number/

feature number/ICC 
sample size

Segmentation factors Satisfactory feature rate
ICC  

threshold

CT

Parmar et al., 2014 (67) Lung cancer 20/56/20 Intra-/inter-observer 51.8% (manual), 0.8

Software 73.2% (software)

Echegaray et al., 2015 (68) Liver cancer 29/745/29 Inter-observer 78.39% 0.8

Echegaray et al., 2016 (69) Lung cancer 100/94/100 Semi-automatic 89% 0.7

Qiu et al., 2017 (70) Liver cancer 15/71/15 Intra-/inter-observer, 
semi-automatic

81% (GrowCut), 77% 
(GraphCut), 73% (manual)

0.75

Owens et al., 2018 (71) Lung cancer 10/83/10 Intra-/inter-observer,  
software

NE 0.75

Table 3 (continued)
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Table 3 (continued)

First author, year Disease
Patient number/

feature number/ICC 
sample size

Segmentation factors Satisfactory feature rate
ICC  

threshold

Pavic et al., 2018 (72) Lung cancer, HNC 11+11+11/1, 
404/11+11+11

Inter-observer 90% (NSCLC); 59% (HNC);  
36% (MPM)

0.8

Kocak et al., 2019 (73) Kidney cancer 47/828/25 Inter-method 86.2% (contour-focused); 
93.2% (margin shrinkage)

0.9

Kocak et al., 2019 (74) Kidney cancer 30/744/30 Intra- observer 84.4–92.2% (CT);  
85.5–93.1% (CECT)

0.75

Inter-observer 76.7% (CT); 84.9% (CECT)

Moltz et al., 2019 (75) Liver cancer 13/110/13 Inter-observer 13.64% 0.9

Mori et al., 2019 (76) Pancreatic cancer 31/69/31 Inter-observer 94.20% 0.8

Qiu et al., 2019 (77) Liver cancer 106/71/26 Semi-automatic 79% (GrowCut); 73% 
(GraphCut); 69% (manual)

0.75

Sung et al., 2019 (78) Liver disease 58/5/58 Intra- inter- observer NE 0.75

Uthoff et al., 2019 (79) Lung cancer 71/101/71 Intra- inter- observer NA NA

Caballo et al., 2020 (80) Breast cancer 69/672/35 Automatic 90% 0.75

Haarburger et al., 2020 (81) Lung, kidney,  
liver tumors

1,536/92/1,536 Automatic 84% (PHiSeg); 88% (expert) 0.8

Kakino et al., 2020 (82) Lung cancer 256/93/31 Inter-observer 64.52% 0.5

Kulkarni et al., 2021 (83) Pancreatic cancer 128/14/128 Inter-method NA 0.9

Liu et al., 2020 (84) HNC 436/109/436 Inter-observer,  
inter-method

NE 0.9

Nguyen et al., 2020 (85) Kidney cancer 165/25/165 Inter-observer NE 0.8

Ren et al., 2020 (86) HNC 47/1032/47 Intra-observer 21.6% (2D) 30.4% (3D) 0.9

Inter-observer 14.1% (2D) 31.4% (3D)

MRI

Adduru et al., 2017 (87) Healthy 38/NA/38 Software NE 0.56

Lee et al., 2017 (88) GBM 45/180/45 Inter-observer, software ~91.1% (tumor Prism 3D),  
90% (3D slicer)

0.8

Bologna et al., 2018 (89) Sarcoma, HNC 18+18/69/18+18 Inter-method ~78.26% (HNC),  
85.5% (sarcoma)

0.78

Saha et al., 2018 (90) Breast cancer 50/529/50 Inter-observer NE 0.9

Duron et al., 2019 (91) Lachrymal gland 
tumors, breast 

cancer

74+30/69/74+30 Intra-/inter- observer NE 0.8

Fiset et al., 2019 (35) Cervical cancer 62/1,761/62 Inter-observer 95.2% 0.9

Koçak, 2019 (92) GBM 25/1,116/25 Inter-method ~25% 0.9

Lecler et al., 2019 (93) Breast cancer 37/510/37 Intra-/inter- observer 53% 0.8

Table 3 (continued)
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Table 3 (continued)

First author, year Disease
Patient number/

feature number/ICC 
sample size

Segmentation factors Satisfactory feature rate
ICC  

threshold

Tixier et al., 2019 (94) GBM 90/108/90 Semi-automatic NE 0.9

Traverso et al., 2019 (95) Cervical cancer 81/552/81 Inter-observer NE 0.9

Alis et al., 2021 (96) Healthy cardiac 59/352/59 Inter-observer 92% 0.8

Chen et al., 2021 (97) Cervical cancer 20/105/20 Intra- inter- observer NE 0.8

Granzier et al., 2020 (98) Breast cancer 129 (tumors)/1,328 
(Radiomix), 833 

(pyradiomics)/129

Inter-observer,  
software

41.6% (RadiomiX); 32.8% 
(Pyradiomics); 41.1%  

(unfiltered RadiomiX); 16.2% 
(unfiltered Pyradiomics)

0.9

Jang et al., 2020 (39) Healthy, cardiac 
referral

10+51/1,023/15 Intra-observer 61–73% 0.8

Inter-observer 32–47%

Lin et al., 2020 (99) Cervical cancer 169/51/169 Automatic NA NA

Gutmann et al., 2020 (42) Diabetes 310/684/310 Inter-observer 82.9% 0.85

Pati et al., 2020 (100) GBM 31/11,700/31 Inter-observer NE 0.8

Scalco et al., 2020 (43) Prostate cancer 14/91/14 Inter-observer NE 0.9

Suter et al., 2020 (64) GBM 63+76/8,327/19 Inter-observer NE 0.85

PET

Leijenaar et al., 2013 (48) Lung cancer 34/106/23 Inter-observer 91% 0.8

Lu et al., 2016 (101) NPC 40/88/40 Inter-observer,  
inter-method

50% (18F-FDG), 62% 
(11C-choline)

0.8

van Velden et al., 2016 (66) Lung cancer 11/105/11 Inter-method 63% (segmentation or  
reconstruction)

0.9

Bashir et al., 2017 (102) Lung cancer 53/83/53 Inter-observer,  
inter-method

NE 0.85

Belli et al., 2018 (103) HNC, pancreatic 
cancer

25+25/72/25+25 (Semi)-automatic 19% (HN-N); 19% (HN-T); 
47% (pancreas)

0.8

Manabe et al., 2019 (56) Cardiac disease 89/36/33 Inter-observer 77.78% 0.8

PET, MRI

Yang et al., 2020 (104) NPC 21/540/21 Inter-method 85.74% (PET), 84.81% (T2), 
89.07% (DWI)

0.95

NA, not available or not clear; NE, could not be simply extracted due to comprehensive results, see the reference for detail; HNC, head 
and neck cancer; NSCLC, non-small-cell lung carcinoma; MPM, malignant pleural mesothelioma; CECT, contrast-enhanced CT; GBM, 
glioblastoma multiforme; HN-N, head and neck cancer-positive lymph node; HN-T, head and neck cancer-tumor; NPC, nasopharyngeal 
carcinoma. 
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Table 4 Summary of human radiomics studies using ICC for image processing

First author, year Disease
Patient number/feature  

number/ICC sample size
Image processing factors

Satisfactory 
feature rate

ICC  
threshold

CT

Bogowicz et al., 2016 (105) Lung cancer, HNC 11+11/315/11+11 HU threshold ~35% 0.9

Voxel size resampling ~5%

Temporal resolution ~30%

Artery contouring ~45%

Noise threshold ~52.5%

Ger et al., 2018 (106) Lung cancer HNC 20+30/49/20+30 Voxel size resampling 71–79.6% 0.9

Shafiq-Ul-Hassan et al., 
2018 (107)

Lung cancer 18/24/18 Gray level normalization 100.00% 0.8

Lee et al., 2019 (63) Lung nodule 194 patients (260 
scans)/252/114 patients 

(180 scans) 

Voxel size resampling 15% 0.7

Zwanenburg et al., 2019 
(28)

Lung cancer HNC 31+19/4,032/31+19 Noise 95.0–97.4% 0.9

Rotation ~75–80%

Translation, volume adaptation, contrast 16.6–32.9%

Rotation, volume adaptation, contrast 16.8–33.3%

Noise, translation, volume adaptation, 
contrast

16.7–33.7%

Rotation, noise, volume adaptation, 
contrast

16.7–34.2%

Other NE

Defeudis et al., 2020 (108) Colorectal cancer 14/35/14 Standardization ~36–60% 0.9

Park et al., 2020 (109) Bladder cancer 83/55/83 SNR, and outlier inclusion NE 0.75

MRI

Kim et al., 2019 (110) GBM 167/356/167 Pertubation 77.20% 0.75

Li et al., 2019 (36) Hippocampus 60/55/60 Normalization ~36.36–
56.36%

0.4

Schwier et al., 2019 (111) Prostate cancer 15/1,120/15 Normalization NE 0.85

Traverso et al., 2020 (95) Cervical cancer 81/552/81 Normalization NE 0.9

Fan et al., 2020 (112) Breast cancer 322/107/322 Voxel size resampling NE 0.7

Moradmand et al., 2020 
(113)

GBM 65/107/65 Noise 21.4% 0.9

Noise + bias field 20.4%

Bias field 23.2%

Bias field + noise 22.5%

Scalco et al., 2020 (43) Prostate cancer 14/91/14 Normalization ~12–14% 0.9

Shiri et al., 2020 (44) GBM 17/26,295,192/17 Transformation, bias field removal NE 0.95

Table 4 (continued)
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Table 4 (continued)

First author, year Disease
Patient number/feature  

number/ICC sample size
Image processing factors

Satisfactory 
feature rate

ICC  
threshold

Suter et al., 2020 (64) GBM 63+76/8,327/19 Perturbation 42.5% 0.85

PET

Branchini et al., 2019 (114) Pediatric 21/106/21 Activity reduction simulation NE 0.9

Whybra et al., 2019 (115) HNC 441/141/441 Voxel size resampling 66% 0.9

PET, MRI

Yang et al., 2020 (104) NPC 21/540/21 Pixel size resampling 55.74% (T2), 
60.37% (DWI), 
58.33% (PET)

0.95

Slice thickness 24.07% (T2 
and DWI), 

23.89% (PET) 

NA, not available or not clear; NE, could not be simply extracted due to comprehensive results, see the reference for detail; HNC, head 
and neck cancer; HU, Hounsfield unit; SNR, signal-to-noise ratio; GBM, glioblastoma multiforme; NPC, nasopharyngeal carcinoma; DWI, 
diffusion-weighted imaging. 

animal radiomics studies were summarized in Table 6.

Quality of ICC use and reporting 

Generally speaking, the quality of ICC use and reporting was 
found unsatisfactory in many publications, associating with 
various flaws and pitfalls. Only 63 studies (13.10%) explicitly 
and precisely reported the selected ICC form, in which the 
ICC definition of absolute agreement rather than consistency 
on feature values predominated. The rationale of ICC form 
selection was seldom explained. In the remaining 418 articles, 
the ICC form was either unavailable, implicit (e.g., giving 
the general ICC formula not specific to a certain ICC form), 
or incomplete. The available ICC forms described in the 
studies, either completely or not, were summarized in the 
Table S1. Very few studies tested the normal distribution 
of data prior to ICC use (as ICC was based on ANOVA). 
The adopted reliability criteria/level and the corresponding 
threshold ICC values could be found in most studies but were 
heterogeneous. The reliability levels could be binary (low/
high, acceptable/unacceptable, stable/unstable, repeatable/
unrepeatable, etc.), three (e.g., poor/moderate/good), four 
(e.g., poor/moderate/good/excellent), five (e.g., poor/fair/
moderate/good/excellent) and even six. The thresholds of 
>0.7, >0.75, >0.8, and >0.9 were frequently used to determine 
the highest reliability level. The thresholds of <0.2, <0.4, 
and <0.5 were frequently adopted to determine the lowest 
reliability level. The reported ICC values were normally 

presented in the mean (± SD), median, range, or interquartile 
range (IQR). Confidence interval (usually 95% CI) was 
reported along with ICC only in 64 studies. Many studies 
seemed to interpret reliability levels based on the estimated 
ICC values without giving or referring to the reported ICC 
confidence interval.

Notable findings of radiomics feature reliability as revealed 
by ICC

The reported ICC results were highly heterogeneous, 
varying by imaging modality, ICC purpose, disease, lesion 
type, sample size, as well as feature types. Meanwhile, they 
were also frequently reported with pitfalls. Therefore, it was 
impractical to conduct quantitative data synthesis and meta-
analysis based on the reported ICCs to reliably estimate the 
achievable absolute radiomics reliability levels for different 
modalities, purposes, or diseases. But there were still a few 
notable consistent findings observed on the report ICCs 
even in the presence of high study heterogeneities. 

High satisfactory feature rates were reported for most 
intra/inter-observer segmentation studies, indicating 
the high robustness of many radiomics features to 
intra/inter-observer segmentation variability
In the hundreds of articles using ICC for assessing intra/
inter-observer segmentation reliability of radiomics 
features, only a small number reported relatively negative 

https://cdn.amegroups.cn/static/public/QIMS-21-86-supplementary.pdf


4444 Xue et al. Systematic review of radiomics feature reliability assessed by ICC

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(10):4431-4460 | https://dx.doi.org/10.21037/qims-21-86

Table 5 Summary of human radiomics studies using ICC for feature quantification

First author, year Disease
Patient number/feature  

number/ICC sample size
Quantification factor

Satisfactory  
feature rate

ICC  
threshold

CT

Bogowicz et al., 2016 (105) Lung cancer, HNC 11+11/315/11+11 Discretization ~40% 0.9

Foy et al., 2018 (116) HNC 39/12/39 Radiomics  
calculation

33% 0.9

Soufi et al., 2018 (22) Lung cancer 162+143/432/305 Discretization NE 0.75

Lee et al., 2019 (63) Lung nodule 194 patients (260 scans) 
/252/114 patients (180 scans) 

Discretization ~9.5–11.5% 0.7

Zwanenburg et al., 2019 
(28)

Lung cancer, HNC 31+19/4,032/31+19 Discretization ~10–65% (FBW); 
10–40%(FBN)

0.9

Park et al., 2020 (109) Bladder cancer 83/55/83 Discretization NE 0.75

MRI

Duron et al., 2019 (91) Lachrymal gland tumors, 
breast cancer

74+30/69/74+30 Discretization NE 0.8

Schwier et al., 2019 (111) Prostate cancer 15/1,120/15 Discretization NE 0.85

Traverso et al., 2020 (95) Cervical cancer 81/552/81 Discretization NE 0.9

Pandey et al., 2021 (41) Healthy 87+4+8/93/4+8 Harmonization 60.33% (GM);  
62% (WM)

0.5

Shiri et al., 2020 (44) GBM 17/26,295,192/17 Discretization NE 0.95

Suter et al., 2020 (64) GBM 63+76/8,327/19 Discretization NE 0.85

PET

Tixier et al., 2012 (117) HNC 16/25/16 Discretization NE NA

Leijenaar et al., 2015 (118) Lung cancer 35/44/35 Discretization NE NA

Lu et al., 2016 (101) NPC 40/88/40 Discretization 23% (18F-FDG), 
21% (11C-choline)

0.8

Altazi et al., 2017 (65) Cervical cancer 88/79/80 Discretization 18% (GLCM and 
GLRLM)

0.9

Bogowicz et al., 2017 (119) HNC 128+50/649/178 Feature  
implementation

12% 0.8

Lv et al., 2018 (120) NPC 106/57/106 Averaging,  
symmetry, distance

NE 0.8

Branchini et al., 2019 (114) Pediatric 21/106/21 Discretization NE 0.9

PET, MRI

Yang et al., 2020 (104) NPC 21/540/21 Discretization 12.96% (PET and 
T2), 11.30% (DWI)

0.95

NA, not available or not clear; NE, could not be simply extracted due to comprehensive results, see the reference for detail; HNC, head 
and neck cancer; FBW, fixed bin width; FBN, fixed bin number; GM, gray matter; WM, white matter; NPC, nasopharyngeal carcinoma; 
GBM, glioblastoma multiforme; GLCM, gray level co-occurrence matrix; GLRLM, gray level run length matrix; DWI, diffusion-weighted  
imaging. 
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Table 6 Summary of phantom and animal studies

First author, year Phantom or animal ICC purpose Factors
Satisfactory 
feature rate

ICC  
threshold

CT

Panth et al., 2015 
(121)

Animal (mice) Acquisition,  
segmentation

Test-retest, inter-observer NE NA

Berenguer et al.,  
2018 (122)

Anthropomorphic pelvic 
phantom, multi-material  

phantom 

Acquisition Test-retest 93.80% 0.9

Imaging parameters 69.89% 0.9

Ger et al., 2018 (106) Credence Cartridge 
Radiomics phantom 

Processing Resampling 71.43% 0.9

Mannil et al., 2018 
(123)

Human urinary stones Segmentation Intra-/inter-observer 29.87% 0.8

Li et al., 2020 (124) Anthropomorphic  
thoracic phantom

Acquisition, 
reconstruction, 
segmentation, 
quantification

Effective dose and pitch 86.90% 0.8

Slice thickness and filter 89.75%

Intra-observer 89.80%

Inter-observer 92.00%

Gray-level range (HU) 86.40%

Bin size (HU) 58.00%

Nardone et al., 2020 
(125)

Commercial phantom 
(CIRS model 467)

Acquisition Inter-scanner 0% 0.75

Inter-scanner (delta) 45.90%

MRI

Song et al., 2014 (126) Animal (rats) Acquisition,  
segmentation

Test-retest, Intra-observer NE 0.75

Baeßler et al., 2019 
(127)

Fruits Segmentation Intra-observer 100.00% 0.75

Inter-observer 62.22%

Bologna et al., 2019 
(128)

Phantom (virtual) (brain-
web)

Acquisition,  
processing

Varying TE and TR 76.00% 0.75

Normalization 81.00% 0.75

Bologna et al., 2019 
(129)

Virtual phantom  
(brainweb)

Acquisition,  
processing

Varying TE and TR, denoising,  
voxel size resampling, bias field correction  

(sequence dependent T1 & T2)

59.80% 0.75

Cattell et al., 2019 
(130)

Fruits Segmentation, 
processing

Erosion and dilation (normalized mean ±3SD) 75.89% 0.9

Erosion and dilation (normalized 0-max) 90.18%

Denoising (normalized mean ± 3SD) 34.78%

Denoising (normalized 0-max) 47.82%

Voxel size resampling (normalized mean ± 3SD) 64.28%

Voxel size resampling (normalized 0-max) 83.92%

Bianchini et al., 2020 
(131)

Customised female 
pelvis phantom

Acquisition Test-retest (T1) 74.76% 0.9

Test-retest (T2) 95.26%

Table 6 (continued)
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Table 6 (continued)

First author, year Phantom or animal ICC purpose Factors
Satisfactory 
feature rate

ICC  
threshold

Dreher C et al., 2020 
(132)

DWI phantom and fruits Acquisition,  
segmentation

Test-retest 84.78% 0.9

Intra-observer 97.80%

Inter-observer 95.65%

Eresen et al., 2020 
(133)

Animal (mice) Segmentation Intra-observer ~58.33% (T2), 
~61.74% (T1)

0.75

Jang et al., 2020 (39) Fruits and vegetables Acquisition Test-retest ~43.44% 0.8

Test-retest re-positioning ~9.82%

Rai et al., 2020 (134) Customized phantom 
printed by a Connex 260 

polyjet printer

Acquisition Inter-scanner 53.62% 0.8

Phantom dependence 55.07%

Bianchini et al., 2021 
(135)

Pelvic-shaped  
container (NEMA IEC 
Body Phantom Set: 

Spectrum Corporation)

Acquisition Test-retest 82.90% 0.9

Test-retest re-positioning 58.33%

Inter-scanner 3.30%

PET

Gallivanone et al., 
2018 (136)

Anthropomorphic  
Alderson Thorax  

phantom

Acquisition Test-retest 53.45% 0.6

Ger et al., 2019 (137) 3-dimensional  
Hoffman brain  

phantom

Processing,  
reconstruction

Pixel size resampling ~97.00% 0.9

Filter cutoff ~82.30%

Effective iteration ~86.16%

Time per bed position alteration ~92.00%

Q.clear 92.00%

Pfaehler et al., 2019 
(138)

NEMA NU 2-2012 IQ 
phantom 

Acquisition, 
reconstruction, 
quantification

Scan duration (noise) NE 0.8

High uptake 32.00%

Low uptake 21.00%

Point-spread-function (PSF) 53.00%

Osem 30.00%

Time-of-flight 32.00%

Discretization (FBW) 89.00%

Discretization (FBN) 35.00%

Pfaehler et al., 2020 
(139)

3D printed phantom 
inserts in NEMA NU 
2-2012 IQ phantom 

Acquisition, 
quantification

Test-retest (statistically equal replicates) (FBN) 90.70% 0.9

Test-retest (statistically equal replicates) (FBW) 97.30%

Test-retest (FBN) 79.13% 0.6

Test-retest (FBW) 89.96%

Multicenter (FBN) 45.60%

Multicenter (FBW) 62.97%

Table 6 (continued)
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Table 6 (continued)

First author, year Phantom or animal ICC purpose Factors
Satisfactory 
feature rate

ICC  
threshold

Yang et al., 2020 (140) Digital phantom  
(Zubal anthropomorphic 

phantom) 

Segmentation, 
quantification

Inter-observer (bin number 32 or 64) 84.00% 0.9

Inter-observer (bin number 128 or 256) 88.00%

NA, not available or not clear; NE, could not be simply extracted due to comprehensive results, see the reference for detail; HU, Hounsfield 
unit; TE, echo time; TR, repetition time; DWI, diffusion-weighted imaging; OSEM, ordered subset expectation maximization; FBW, fixed bin 
width; FBN, fixed bin number. 

reliability results. For instance, Jang et al. (39) showed that 
in the inter-observer segmentation reproducibility study 
in cardiac patients, only 32.1%, 46.7%, and 35.5% of 
MRI radiomics features were reproducible with the cine 
bSSFP, T1 mapping, and T2 mapping, worse than the 
corresponding 73.1%, 66.8%, and 61.1% reproducible 
features in the intra-observer segmentation. Liu et al. (84)  
investigated 109 radiomics features on 436 contrast-
enhanced CT images of oropharyngeal cancer patients 
and found that “most radiomic features in this study 
varied a lot when the ROIs were not well segmented. 
For both the representation agreement and predictive 
agreement, the ICC and CCC were below 0.5 for all the 
features.” Uthoff et al. (79) reported that “observers had 
perfect intra-repeatability (ICC =1.0)” but “demonstrated 
fair inter-reader variability (ICC =0.52)” for 4 observers  
(2 radiologists, 2 pulmonologists) in 100 cases of non-small 
cell lung cancer CT scans. Many other studies generally 
reported high SFRs, implying excellent robustness to intra/
inter-observer segmentation disagreement, independent of 
modalities and diseases, although different ICC thresholds 
were applied. Meanwhile, radiomics feature robustness to 
inter-observer segmentation seemed not notably inferior to 
intra-observer segmentation. 

Comparable or better radiomics feature reliability was 
reported for (semi-)automated segmentation than manual 
segmentation with much shorter segmentation time
Manual image segmentation in radiomics analysis 
involved intensive labor work of clinicians and was time-
consuming, and also suffered from intra-/inter-observer 
segmentation disagreement, leading to the low cost-
effectiveness/efficiency of radiomics so greatly hampering 
its wide application in clinical practice. Thus, lots of efforts 
were taken to develop (semi-)automated segmentation as 
a potential alternative in radiomics research. Moreover, 
(semi-)automatic segmentation was frequently reported 

useful to further reduce the intra-/inter-observer radiomics 
feature variability induced by manual segmentation in the 
included studies in addition to its advantage in segmentation 
time, suggesting the future role of (semi-)automated 
segmentation in more reliable and cost-effective/efficient 
radiomics analysis (67,69,70,77,80,99,103,141,142).

Acquisition had substantial impacts on radiomics feature 
values, and their impact on feature reliability was larger 
than the impact by intra-/inter-observer segmentation
Based on the reported ICC results, image acquisition had 
substantial impacts on the radiomics feature values for all 
imaging modalities and acquisition protocols. Regarding 
modality dependence, the reported SFRs seemed to be 
highest in PET and lowest in MRI [excluding the outlier of 
100% inter-scanner SFR reported by Zhang J et al. (46)],  
which might be partially explained by the relatively smooth 
low-resolution PET image and the multi-contrast high-
resolution MRI images with considerable anatomical 
details acquired by different sequences. The simple intra-
scanner test-retest could introduce considerable feature 
value variations(17,18,24,28,32,36,40,44,139). The 
inter-scanner (or inter-center) acquisition (with similar 
imaging protocols or imaging parameter changes) induced 
even more radiomics feature variability than the intra-
scanner test-retest (32,35,45,135,137,139). In the studies 
investigating both acquisition and segmentation, acquisition 
was consistently reported to have much larger impacts on 
feature variability (always smaller ICCs) than segmentation 
(35,39,42,44,48,56,126,132) for all modalities. 

Feature reliability and ICCs were heterogeneous for 
post-processing and feature quantification; optimized 
post-processing and feature quantification could 
be used to mitigate acquisition-induced radiomics 
variability
Image post-processing and feature quantification were 
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usually used to explore the robustness of radiomics 
features and improve feature reliability by optimized 
or standardized approaches. Among these approaches, 
image intensity discretization and normalization were 
most frequently investigated. Actually, there could be 
tremendous types of image post-processing and feature 
quantification methods, algorithms, and tools that were 
applicable to the acquired original images and thus 
had remarkable influences on feature values. In many 
studies, various post-processing and feature quantification 
approaches were conducted and optimized to mitigate the 
possible radiomics feature variability introduced in the 
acquisition procedure (28,31,36,41,44,111,114,129). The 
results suggested that comprehensive image perturbation 
and quantification might be helpful to improve radiomics 
reliability, in particular for those retrospective radiomics 
studies in which existing imaging data were used without 
control on imaging acquisition protocol. For example, in a 
study by Zwanenburg et al. (28), image perturbation chains 
were proposed to be used as an alternative to test-retest 
imaging to assess feature robustness. Most robust features 
in acquisition test-retest were successfully identified by 
comprehensive image perturbations. In another study by 
Suter et al. (64), single-center MRI data was perturbed 
to simulate unseen multi-center MRI data with greater 
variabilities, which generated and conducted over 16 
million tests of typical perturbations and to identify robust 
radiomics features for multi-center radiomics study. In 
contrast, post-processing and feature quantification were 
seldom proposed for mitigation or compensation for the 
radiomics feature variability affected by segmentation.

Shape and first-order (FO) radiomics features were 
frequently reported to be more robust to various 
variability factors than texture features in the original 
image domain
Different types of radiomics features could subject to 
different levels of variability influenced by different 
factors. Among the heterogeneous reported results, it was 
noticed that shape or first-order (FO, or named histogram) 
features in the original image domain were often reported 
to be more robust than texture (also named second-order 
or higher-order) features to different variability factors 
of acquisition (18,36,44,57,134), post-processing and 
quantification (36,115,116,128,130,132), and segmentation 
(94,99,104,142-145). In different types of texture features, 
GLCM (gray-level co-occurrence matrix) features were 
observed to be more robust than other texture features in a 

few studies (18,44,94,116,128,143,145). On the other hand, 
opposite or deviant results on the low reliability of shape 
features were also occasionally reported. For instance, Rai 
et al. reported that none of the shape features exhibited 
high inter-(MRI) scanner stability (ICC >0.8), the lowest 
among all feature types (134). Tixier et al. showed that 
shape features in MRI (ICC =0.74) were among the most 
impacted feature types by the choice of segmentation 
method, with poorer reliability than first-order and GLCM 
features (ICC >0.96) (94). Beyond the radiomics features 
in the original image domain, radiomics features in the 
transformed domains, most frequently in the Laplacian of 
Gaussian (LoG) filtered domain and wavelet domain, were 
also investigated in many studies. No uniform robustness 
of these transformed features compared to those original 
features could be derived from the included studies. 

Other statistical metrics in conjunction with ICC 

A variety of statistical metrics were used in conjunction with 
ICC for different purposes. For segmentation purposes, 
dice similarity coefficient (DSC) was often reported. 
Bland-Altman analysis was conducted in some studies 
involving paired comparison of two observers/acquisitions/
measurements. Other types of statistical metrics such as 
concordance correlation coefficient (CCC), coefficient of 
variation (CV), Pearson/Spearman correlation coefficient, 
false discovery rate (FDR), (normalized) dynamic range, 
Krippendorff’s alpha, percentage difference, and between-
class distance (BD) were also used in combination with ICC. 
 

Risk of bias 

There were different levels and aspects of potential risks of 
bias in the included studies for many reasons. Many clinical 
studies were limited in their retrospective study nature and 
were usually conducted without phantom validation and 
control on acquisition protocol. Many technical studies 
utilized public imaging data, and the heterogeneity in these 
data might not be well understood or compensated. Very 
few studies described the imaging protocol sufficiently to 
the desired level of detail, as suggested in (4). Similarly, 
details in the intra-/inter-observer segmentation process 
were normally insufficiently described. For many clinical 
studies aiming for radiomics diagnosis or prognosis 
performance, the possible publication bias on the very high 
feature reliability to intra/inter-observer segmentation 
might not be neglected in that much lower ICC and SFRs 
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were reported in the studies that substantially assessed 
feature robustness to segmentation as the primary study 
endpoint. The statistical power of the calculated ICC 
might not be strong enough due to the limited sample 
size and observer/acquisition/measurement number. The 
investigated radiomics features in many studies might have 
different definitions even with the same or similar name. 
They might not have been well standardized due to the 
different implementations in a variety of software and in-
house built programs, in particular in the studies before the 
proposal of feature standardization by the image biomarker 
standardization initiative (IBSI) (146). Besides, risks of bias 
could also be induced by the flaws and pitfalls of using and 
reporting ICC as identified in the articles.

Discussion

Radiomics research is experiencing an increasing explosive 
rate both in publication volume and diversity in recent  
years (5). However, along with the soaring publication 
numbers of radiomics, more concerns, questions, and/or 
criticisms on radiomics reliability are also increasingly raised 
in the last few years (11,147,148). Some recent systematic 
review papers (149-153) also showed that many radiomics 
publications had suboptimal or poor study quality, as 
revealed by the low RQS.

Reliability is highly correlated to RQS criteria. For 
instance, image protocol quality (+1 point), phantom 
study on all scanners (+1 point) and imaging at multiple 
time points (+1 point) are all related to acquisition 
reproducibi l i ty/repl icabi l i ty/rel iabi l i ty ;  Mult iple 
segmentations (+1 point) is related to intra-/inter-observer 
agreement analysis; Feature reduction or adjustment 
for multiple testing (+3 point if implemented or −3 if 
not implemented) is related to feature correlation and 
redundancy analysis. ICC could be used to fulfill these 
criteria on RQS to improve radiomics study quality. 

The increasing publication number with time reflects the 
fact that much more efforts have been taken to investigate 
radiomics reliability in recent years, in particular for MRI. 
Clinical oncology is still the major arena of radiomics 
research as revealed in this review, consistent with a recent 
bibliometric review (5), while different imaging modalities 
have substantially different roles in different cancers, as 
reflected in the proportions of the publications. 

Regarding the ICC purpose, it is within the expectation 
that ICC was most frequently used for segmentation 
reliability assessment, particularly for intra-/inter-observer 

agreement. This could be mainly explained by the large 
fractions of retrospective studies. It also reflects the 
common interests and concerns on radiomics reliability 
from clinicians. It is interesting to notice that many intra-/
inter-observer agreement studies reported high ICC values 
or SFRs, which might suggest that many radiomics features 
are quite robust to (manual) lesion segmentation. In other 
words, radiomics reliability to lesion segmentation might 
not be much concerned. 

Although segmentation dominated the ICC use, the 
importance of radiomics reliability in other aspects could 
not be overlooked or underestimated. Image acquisition 
and reconstruction are at the very front-end of the complex 
radiomics workflow, and greatly impact the quality of the 
original imaging data for radiomics reliability assessment. 
Indeed, image acquisition and reconstruction were 
strongly suggested to impact much more on radiomics 
reliability than segmentation. However, the influence 
of image acquisition and reconstruction on radiomics 
feature reliability was still much underexplored relative to 
segmentation studies. There are still many unknowns about 
how image acquisition and reconstruction affect radiomics 
reliability. Much research work is warranted in the future, 
in particular for MRI, due to its semi-quantitative image 
intensity nature, various image contrasts, and much 
greater variability in image acquisition and reconstruction 
compared to CT and PET. 

ICC was also frequently used for reliability assessment 
attributed to post-acquisition image processing and feature 
quantification. The reported ICCs were heterogeneous in 
these studies, much dependent on the various processing 
types and different implementations. In theory, there could 
be infinite types of post-processing methods applicable to 
original images, so potentially lead to even bigger radiomics 
feature variability than acquisition and reconstruction. 
But, in practice, post-processing and feature quantification 
are investigated and utilized to mitigate acquisition 
and reconstruction-related feature variability by taking 
advantage of comprehensive and powerful computation 
capability for robust feature selection, without the need for 
prior knowledge on image acquisition variability. However, 
the evidence is so far not strong enough. More rigorous 
validation and evaluation are definitely warranted.

Some common pitfalls of using and reporting ICC were 
frequently identified in the articles. First, the information 
on ICC form and its selection was missing, ambiguous 
or incomplete in a large number of articles. Meanwhile, 
relevant information like scanner/observer/measurement 
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numbers sometimes was not clarified to facilitate ICC 
form selection. When ICC is used as a reliability metric, 
it is important for researchers to carefully select the most 
appropriate ICC form. The inappropriate selection of ICC 
form might mathematically yield similar ICC values but 
could lead to substantially different and even misleading 
interpretations. No article conducted sample size estimation 
for ICC calculation, which could be helpful, although might 
not be necessary, for ICC precision estimation. In terms 
of ICC reporting, ICC values were often reported without 
the confidence interval. Without reporting the confidence 
interval, the precision of ICC could not be known. For 
instance, a very high ICC value but associating with a very 
wide width of confidence interval (large uncertainty and 
low precision) could not guarantee the high reliability. 
Heterogeneous ICC thresholds were used for reliability 
assessment, also hampering rigorous data synthesis for cross-
study comparison. Occasionally, ICC threshold values were 
only implicitly indicated or unavailable. The reliability levels 
of poor (ICC <0.5), moderate (ICC: 0.50–0.75), good (ICC: 
0.75–0.90), and excellent (ICC >0.90) as suggested in (13)  
were frequently adopted. But, on the other hand, the 
conditions under which the criteria were suggested were 
usually neglected, i.e., “As a rule of thumb, researchers should 
try to obtain at least 30 heterogeneous samples and involve at 
least 3 raters whenever possible when conducting a reliability 
study.” (13). The reliability levels were also seemed to be 
inappropriately determined on the basis of the ICC value 
itself rather than its confidence interval. ICC was normally 
interpreted without further quantifying the underlying 
true variance (σT

2) and error variance (σE
2). Actually, a high 

ICC value might mainly reflect the high between-subject 
heterogeneity (such as malignant tumors) in the sampled 
population but does not guarantee the accuracy or precision 
of radiomics feature quantification. Vice versa, a low ICC 
might probably be resulted from the high homogeneity 
(such as normal tissues) in the subjects, even with high 
measurement accuracy and precision. 

Some suggestions could be given to mitigate the 
identified pitfalls for future radiomics studies. Overall, 
if radiomics reliability itself is the major purpose of a 
radiomics study, guidelines for reporting reliability and 
agreement studies (GRRAS) should be helpful in the study 
planning (154). In order to facilitate ICC form selection, 
the model, type, and definition of the ICC form should be 
justified or explained. Relevant information like scanner/
observer/measurement numbers need to be sufficiently 
disclosed. The guideline proposed by Koo et al. is an 

excellent reference and is easy to follow (13). It would be 
very helpful to conduct sample size estimation for ICC 
calculation in order to assure that the study could have an 
adequate chance of achieving the desired ICC precision 
(155,156). After ICC form selection, the tool used for ICC 
calculation should be reported with software name, version, 
and setting. The ICC calculation results should be reported 
along with the confidence interval. Meanwhile, the criteria 
for ICC appraisal should be clearly described. It should also 
be kept in mind that it is the estimated CI forms the basis 
to evaluate the reliability level, but not the ICC value itself. 
Along with ICC, the joint use of other statistical metrics 
could strengthen the study quality and statistical power. For 
instance, if paired observers/acquisitions/measurements 
were involved, Bland-Altman analysis is anticipated and 
beneficial. For segmentation reliability assessment, dice 
similarity coefficient (DSC) is desirable. Last but not least, 
the acceptability of ICC should be determined on the 
requirements by each specific study and clinical application, 
rather than simply on the calculated values from the specific 
sample populations and pre-defined thresholds. 

There are some limitations to this study. First, the 
literature search in a single database was one limitation, 
although partially compensated by the prior knowledge on 
additional papers. Meanwhile, even in a single database, 
there are tremendous numbers of publications relevant to 
radiomics, but it is not uncommon that a variety of terms are 
used instead, which makes the precise localization of these 
publications even more difficult. So, there might still be 
potentially eligible studies missed for analysis. The ICC use 
and its result reporting had to be recognized and extracted 
through full text (and even Supplementary materials) 
examination rather than title and abstract screening. This 
procedure involved tremendous work and might slightly 
affect the inclusion and exclusion of papers. Nonetheless, 
the large sample size of 481 studies should not considerably 
weaken or bias the statistics in this review. Second, this 
review concentrated on a single metric of reliability, i.e., ICC, 
which tackles only a very narrow topic on general radiomics 
reliability. ICC is only applicable to continuous variables, so 
the radiomics reliability revealed by ICC is usually on the 
level of radiomics feature values. The role of ICC is relatively 
minor in the reliability aspects of radiomics feature reduction 
and modeling, as well as model outcome/performance 
assessment. It is acknowledged that many other statistical 
metrics could be applicable or more suitable in radiomics 
reliability assessment in various scenarios, providing 
complementary or additional information on radiomics 
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reliability beyond ICC. Thus, the current status of radiomics 
reliability could only be partially reflected in the included 
papers. This study by no means formed a systematic review 
and meta-analysis on the diagnostic accuracy of radiomics, 
so study quality was not individually assessed in each article 
by following QUADAS-2 (15), TRIPOD (16) or RQS (4), 
but PRISMA statement was followed (157). Third, there 
were great difficulties in study quality normalization, data 
synthesis, and harmonization on the highly heterogeneous 
study characteristics along with the pitfalls in ICC use and 
reporting. It was of great difficulty to conduct quantitative 
analysis on cross-study ICC assessment. The use of SFR 
slightly mitigated this issue, but SFR itself also had pitfalls 
such as different ICC thresholds. Therefore, the consensus 
on the degree of radiomics reliability that has been achieved, 
or could be achievable in radiomics research could not be 
safely derived. Fourth, radiomics feature reliability has been 
suggested to be dependent on imaging modality, organ, 
disease, and other factors, which was also noticed in some 
included individual studies (72,89,91,103,104,158). But 
these dependencies could not be further generalized in this 
review. Our study collected, analyzed and presented data in 
a modality-neutral and disease-neutral way. Moreover, we 
also recognized that it was still an extremely difficult task 
for this dependency investigation in the presence of high 
heterogeneities of study characteristics even though hundreds 
of studies had been included. But, on the other hand, it 
should be cautioned that there might be a potential risk of 
bias by trying to present modality-neutral or disease-neutral 
common findings in the study. The validity of these findings 
might be violated if applied to some fewer common diseases 
or other modalities. Therefore, future research efforts on 
disease-specific and modality-specific feature reliability are 
desirable. Fifth, some flaws and pitfalls in selecting, reporting, 
and interpreting ICC were identified in many radiomics 
studies, so some suggestions were given. But we did not 
intend to specifically propose a standardized form of ICC 
use for future radiomics studies. The standardization of QIB 
metrology (159), the IBSI radiomics feature standardization 
(146,160), the guidelines for reporting reliability and 
agreement studies (GRRAS) (154), the general guideline of 
selecting and reporting ICCs (13), and statistical methods 
for clinical reliability in different aspects (121,161-164), have 
been well established in the medical literature. They could 
act as excellent guidelines or references for radiomics study 
planning. But, consensus toward the standardized radiomics 
reliability assessment and reporting is yet to be reached by 
the whole community.

Conclusions

This study attempted to have an updated overview on the 
current status of radiomics reliability research from the 
perspective of using and reporting ICC in the ever-fast-
expanding radiomics literature. The 481 eligible CT, PET, 
and MRI radiomics studies yielded from the literature 
search partially revealed the fact that much more efforts 
have been taken to rigorously assess radiomics reliability 
for clinical use, in particular in the recent two years. 
ICC was used for assessing different aspects of radiomics 
feature reliability in these studies, but feature reliability 
with respect to image segmentation was much more 
reported than reliability to other factors such as image 
acquisition, reconstruction, post-processing, and feature 
quantification. As indicated by the reported satisfactory 
ICCs in intra/inter-observer segmentation agreement, 
manual segmentation seems to be the least influential 
factor on radiomics reliability, but the risk of bias might 
be cautioned. The (semi-)automated segmentation may 
further increase segmentation agreement to further increase 
radiomics feature reliability with better cost-effectiveness/
efficiency in the future. Image acquisition could introduce 
much more feature variability than image segmentation. 
More research on radiomics reliability with respect to image 
acquisition and reconstruction is desired. Comprehensive 
image post-processing and feature quantification techniques 
could be applied for radiomics analysis and yield different 
levels of radiomics reliability. Optimized comprehensive 
image post-processing and feature quantification could 
be used to mitigate image acquisition-induced variability 
and thus improve reliability. There were some common 
flaws and pitfalls in ICC use, as identified in many studies. 
Thus, some suggestions were given in order to mitigate 
them and to improve radiomics reliability research quality 
for future studies. Unfortunately, it was also recognized 
that the included studies were highly heterogeneous in 
characteristics and quality, greatly hampering the reliable 
data synthesis for further meta-analysis. Therefore, no 
consensus on the degree of radiomics reliability that has 
been achieved or could be achievable in radiomics research 
could be safely derived and reached by this review. More 
research works are warranted in the future. 
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Supplementary

Figure S1 Satisfactory feature rate distribution in the studies reported ICC results regarding the feature reliability due to image 
segmentation for intra-/inter-observer agreement. 

Figure S2 The difference of satisfactory feature rate in different imaging modality in the studies reported ICC results regarding the feature 
reliability due to image segmentation for intra-/inter-observer agreement. 

MRICT PET
Imaging Modality



© Quantitative Imaging in Medicine and Surgery. All rights reserved. https://dx.doi.org/10.21037/qims-21-86

Table S1 The available ICC forms described in the studies

PMID/doi First author Publication year Disease or organ
Patient 
number

ICC purpose ICC form described in the article
ICC  

model
ICC  
type

ICC  
definition

23807457 van Velden FHP et al. 2014 Colorectal cancer 29 Acquisition 2-way random single measure model Yes Yes No

24047337 Leijenaar RTH et al. 2013 Lung cancer 34 Acquisition ICC(1,1) for test -retest reliability and ICC(3,k) 
for inter-rater simulation

Yes Yes Yes

25025374 Parmar C et al. 2014 Lung cancer 20 Segmentation Inter-observer segmentation (two-way mixed 
effect model, case 3A(McGraw), absolute 
agreement), intra-observer segmentation  

(one-way model, case 1(McGraw),  
form-specific formula given

Yes Yes Yes

26163091 Panth KM et al. 2015 Phantom 23 Segmentation ICC(1,1), ICC(2,1) Yes Yes Yes

26242464 Leijenaar RTH et al. 2015 Lung cancer 35 Quantification Formula given, but cannot be specified to a 
certain form

No No No

26587549 Echegaray S et al. 2015 Liver cancer 29 Segmentation A1 method (McGraw) Yes Yes Yes

26795288 Rossum PSNR et al. 2016 HNC 217 Acquisition An absolute agreement definition in a 2-way 
mixed-effects model 

Yes No Yes

26920355 van Velden FHP et al. 2016 Lung cancer 11 Reconstruction One-way random single-measure Yes Yes No

27669756 Hu P et al. 2016 Colorectal cancer 40 Acquisition  Two-way mixed effect model, with formula 
given

Yes Yes Yes

27893446 Bogowicz M et al. 2016 HNC and lung cancer 22 Processing Two-way mixed model, consistency Yes No Yes

28612050 Echegaray S et al. 2016 Lung cancer 100 Segmentation A1 method (McGraw) Yes Yes Yes

29122358 Bogowicz M et al. 2017 HNC 178 Quantification Two-way mixed single measures Yes Yes Yes

29494598 Carvalho S et al. 2018 Lung cancer 215 Acquisition ICC(1,k) Yes Yes Yes

29513054 Pavic M et al. 2018 HNC and Lung Cancer 11 Segmentation ICC(3,1), consistency Yes Yes Yes

29520429 Lv W et al. 2018 NPC 106 Quantification Formula given, but cannot be specified to a 
certain form

No No No

29633002 Shi Z et al. 2018 Vascular disease 96 Segmentation Two-way random model with absolute  
measurements

Yes Yes Yes

29663411 Saha A et al. 2018 Breast cancer 50 Segmentation ICC(3,1), consistency Yes Yes Yes

29725965 Bologna M et al. 2018 HNC 36 Segmentation Two-way mixed effect model Yes No No

30002441 Hassan M et al. 2018 Lung cancer 18 Processing Form-specific formula given Yes Yes Yes

30135549 Bibault J et al. 2018 Colorectal cancer 95 Segmentation Two-way mixed effect model, formula given Yes Yes Yes

30158540 Ger RB et al. 2018 HNC and lung cancer 50 Processing ICC (2, 1) (two-way random effects, absolute 
agreement, single ratter/measurement) and 

ICC (3, 1) (two-way random effects,  
consistency, single rater/measurement) 

Yes Yes Yes

30230556 Soufi M et al. 2018 Lung cancer 305 Acquisition Two-ray random effect model, absolute  
agreement condition

Yes No Yes

30286184 Owens CA et al. 2018 Lung cancer 10 Segmentation Two-way mixed-effects model Yes No No

30463529 Zheng B et al. 2018 Liver cancer 319 Segmentation A two-way random, single measure  
(absolute agreement)

Yes Yes Yes

Table S1 (continued)
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Table S1 (continued)

PMID/doi First author Publication year Disease or organ
Patient 
number

ICC purpose ICC form described in the article
ICC  

model
ICC  
type

ICC  
definition

30506687 Pfaehler E et al. 2019 Phantom 1 Reconstruction, 
segmentation

Two-way single measure model for  
consistency

Yes Yes Yes

30679599 Alex Z et al. 2019 HNC and Lung Cancer 50 Acquisition ICC(1,1) Yes Yes Yes

30714158 Vuong D et al. 2019 Lung cancer 19 Acquisition ICC(1,1) for 4DPETMR, ICC(3,1) for 
PETCT-PETMR

Yes Yes Yes

30738530 Mori M et al. 2019 Pancreatic cancer 31 Segmentation  One-way random single-measure model Yes Yes No

30765732 Lecler A et al. 2019 Breast cancer 207 Segmentation ICC(2,1), absolute agreement Yes Yes Yes

30840747 Foy JJ et al. 2018 Healthy 39 Quantification ICC(a,1) Yes Yes Yes

30845221 Duron L et al. 2019 Breast cancer 104 Segmentation 2-way random intraclass correlation  
coefficient (ICC) (absolute agreement, average 

type)

Yes Yes Yes

30928060 Branchini M et al. 2019 Pediatric 21 Processing One way random single measure model Yes Yes No

30961895 Peeken JC et al. 2019 Soft tissue sarcoma 221 Segmentation ICC(3,1) Yes Yes Yes

31015155 Fiset S et al. 2019 Cervical cancer 62 Acquisition ICC(1,1) for test -retest reliability and  
diagnostic-simulation, ICC(2,1) for  

inter-observer

Yes Yes Yes

31032192 Qiu Q et al. 2019 Liver cancer 106 Segmentation Form-specific formula given Yes Yes Yes

31063427 Kocak B et al. 2019 Kidney cancer 30 Segmentation Two-way model, single-rating, and absolute 
agreement

Yes Yes Yes

31131906 Tixier F et al. 2019 GBM 90 Segmentation Two-way random effects model Yes No No

31273242 Whybra P et al. 2019 HNC 441 Processing 2-way mixed-effects model, single rater,  
absolute agreement

Yes Yes Yes

31375452 Huang L et al. 2019 Lung cancer 31 Acquisition 2-way fixed effect, absolute agreement, and 
single measurement model 

Yes Yes Yes

31375883 Ugga L et al. 2019 HNC 89 Segmentation Absolute agreement ICC value No No Yes

31392481 Yamashita R et al. 2020 Pancreatic cancer 55 Acquisition Mixed effects linear model Yes No No

31420497 Pfaehler E et al. 2020 Phantom 3 Acquisition,  
quantification

2-way single-measure model for consistency 
of features

Yes Yes Yes

31423714 Ta D et al. 2020 Healthy 6 Acquisition Two-way mixed-effects model Yes No No

31477335 Traverso A et al. 2020 Cervical cancer 81 Processing ICC(2,1) Yes Yes Yes

31539450 Bologna M et al. 2019 Phantom 1 Acquisition,  
processing

Measure agreement in mixed-effect models, 
equivalent to the (A,1) model described in 

McGraw et al

Yes Yes Yes

31703155 Merisaari H et al. 2020 Prostate cancer 112 Acquisition ICC(3,1) Yes Yes Yes

31743889 Cong M et al. 2020 Lung cancer 50 Segmentation  Absolute agreement method No No Yes

31761666 Wang Y et al. 2019 Gastric cancer 30 Segmentation  Two-way mixed effects, absolute agreement, 
single rater ICC test 

Yes Yes Yes

Table S1 (continued)
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Table S1 (continued)

PMID/doi First author Publication year Disease or organ
Patient 
number

ICC purpose ICC form described in the article
ICC  

model
ICC  
type

ICC  
definition

31824843 Wu J et al. 2019 Colorectal cancer 102 Segmentation Single rater; definition: absolute agreement; 
model: inter-user ICC: two-way random  

effects; intra-user ICC: two-way mixed effects

Yes Yes Yes

31824847 Chen W et al. 2019 Gastric cancer 30 Segmentation Intraclass (single-rating, consistency,  
2-way mixed effects model), interclass  

(multiple-rating, consistency, 2-way  
random-effects model)

Yes Yes Yes

31903240 Xu X et al. 2019 Lung cancer 132 Segmentation Two-way fixed effect, absolute agreement,  
and single measurement

Yes Yes Yes

31918370 Kakino R et al. 2020 Lung cancer 256 Segmentation Two-way random effects model under an 
absolute agreement condition

Yes No Yes

31941949 Yang F et al. 2020 Phantom 1 Segmentation 2-way random effect model to estimate the 
absolute agreement of multiple raters per 

measurement

Yes Yes Yes

31971614 Scalco E et al. 2020 Prostate cancer 14 Acquisition Two-way mixed effect model, single rater  
type, both consistency and absolute  

agreement were used

Yes Yes Yes

32123281 Park BW et al. 2020 Bladder cancer 83 Processing ICC(c,1) Yes Yes Yes

32174316 Caballo M et al. 2020 Breast cancer 93 Segmentation ICC(3,1) Yes Yes Yes

32229081 Palle S et al. 2020 Endometrial cancer 30 Segmentation Two-way random effects, single rater,  
agreement

Yes Yes Yes

32236847 Nardone V et al. 2020 Phantom 1 Acquisition Mean rating, absolute agreement, and  
two-way mixed effects model

Yes Yes Yes

32240418 Cattell R et al. 2019 Phantom 5 Quantification 2-way mixed-effects model, single rater,  
absolute agreement

Yes Yes Yes

32277703 Rai R et al. 2020 Phantom 11 Acquisition Two-way random effect with absolute  
agreement model 

Yes No Yes

32395833 Vuong D et al. 2020 Lung cancer 124 Acquisition ICC(3,1) Yes Yes Yes

32399621 Haider SP et al. 2020 HNC 50 Segmentation Two-way mixed effects, absolute agreement, 
single rater

Yes Yes Yes

32557189 Yang P et al. 2020 NPC 21 Processing ICC(3,10) Yes Yes Yes

32593138 Ramon R et al. 2020 GBM 100 Segmentation Two-way random effects, absolute  
agreement, single rater/measurement

Yes Yes Yes

32705290 Cuocolo R et al. 2020 HNC 89 Segmentation Two-way, absolute agreement and single  
rater ICC

Yes Yes Yes

32723501 Dreher C et al. 2020 Phantom 17 Segmentation Two-way mixed model for absolute  
agreement and single measures

Yes Yes Yes

32728098 Haarburger C et al. 2020 Kidney cancer, liver 
cancer, lung cancer

1216 Segmentation ICC(1,1) Yes Yes Yes

32737518 Cysouw MCF et al. 2021 Prostate cancer 76 Segmentation Two-way mixed effect model, absolute  
agreement

Yes No Yes

Table S1 (continued)
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Table S1 (continued)

PMID/doi First author Publication year Disease or organ
Patient 
number

ICC purpose ICC form described in the article
ICC  

model
ICC  
type

ICC  
definition

32758279 Suter Y et al. 2020 GBM 63 Reconstruction ICC(2,1), absolute agreement Yes Yes Yes

32767049 Song X et al. 2021 Ovarian cancer 104 Segmentation Single-rater, absolute- agreement, 2-way 
mixed-effects model

Yes Yes Yes

32800693 Gutmann DAP et al. 2020 Liver cancer 310 Processing ICC(1,1) for test reliability and ICC(3,k) for 
inter-rater agreement

Yes Yes Yes

32822054 Kim D et al. 2020 Lung cancer 35 Segmentation Inter-rater agreement (absolute agreement, 
2-way random effect model, k = 2), intra-rater 
agreement (absolute agreement, 2-way mixed 

effect model, k = 2)

Yes Yes Yes

32827069 Park YW et al. 2021 Lung cancer 51 Segmentation One-way random effects model Yes No No

32843663 Granzier RWY et al. 2020 Breast cancer 138 Segmentation Two-way random single measure ICC(2,1) Yes Yes Yes

32939634 Kulkarni A et al. 2020 Pancreatic cancer 128 Segmentation Two-way model with single rating and  
absolute agreement

Yes Yes Yes

32968131 Crobe A et al. 2020 Soft tissue sarcoma 70 Segmentation 2-way random model, agreement between 
raters and 6 raters

Yes Yes Yes

32970859 Bianchini L et al. 2021 Phantom 1 Acquisition Two-way random effects for absolute  
agreement and single rater/measurement

Yes Yes Yes

33118182 Pati S et al. 2020 GBM 31 Segmentation ICC(3,1) Yes Yes Yes

33128598 Park JE et al. 2020 GBM 422 Segmentation Two-way mixed-effects model Yes No No

33137621 Tsarochi M et al. 2020 Breast cancer 73 Segmentation Two-way mixed effect model, single  
measurement for absolute agreement 

Yes Yes Yes

33228815 Wang X et al. 2020 Gastric cancer 539 Segmentation Multiple-rating, consistency, 2-way  
random-effects model

Yes Yes No

10.1109/ACCESS. 
2019.2923755

Li Z et al. 2019 Brain 15 Acquisition, pro-
cessing

ICC(1,1) for intra-observer repeatability, 
ICC(3,1) for inter-observer repeatability

Yes Yes Yes

10.1117/12.2512406 Hendrik MJ et al. 2019 Liver cancer 13 Segmentation ICC(2,1) Yes Yes Yes

10.21037/
trc.2017.09.47

Qingtao Q et al. 2017 Liver cancer 15 Segmentation ICC(A,1) (inter-observer segmentation),  
ICC(C,1) (intra-observer segmentation),  

formulas given

Yes Yes Yes

10.4274/imj. 
galenos.2019.09582

Burak K et al. 2019 GBM 70 Segmentation Two-way model, single-rating, and absolute 
agreement

Yes Yes Yes
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