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Abstract: Calciphylaxis is a rare, life-threatening condition that affects patients with chronic kidney disease 
(CKD) undergoing dialysis. Skin biopsy as the gold standard causes ulceration, bleeding, or infection. This 
study aimed to develop radiomic methods using CT as a noninvasive method for calciphylaxis diagnosis. The 
confirmed calciphylaxis patients (Group I), pathologically confirmed non-calciphylaxis patients (Group II), 
and CKD patients (Group III) from October 1, 2017, to November 30, 2019, were enrolled. Training: 70% 
of patients of Group I and all Group III. Test: 30% of patients of Group I and all Group II. ROI was set at 
the skin lesion including the soft tissue. First-order and texture features were extracted from each lesion unit. 
CT-based radiomic models were on the basis of logistic regression (LR) and support vector machine (SVM). 
Additionally, model performance was evaluated in the test dataset and compared with the plain radiography 
and bone scintigraphy. In total, 124 lesions and 38 lesions were identified in training and test datasets. 
Radiomic models were effective in detecting calciphylaxis in patients with CKD, with AUCs of 0.93 (95% 
CI: 0.924–0.953) and 0.93 (95% CI: 0.921–0.953) (SVM and LR) in test. The SVM model manifested a 
sensitivity and specificity of 0.89 and 0.8, and 0.78 and 0.90, at high-sensitivity and high-specificity operating 
points, respectively. Similar performance was found in the LR model. Radiomic models were more effective 
than plain radiography and bone scintigraphy (Delong test, P<0.05). Verification studies showed the features 
which manifested the real variability of lesions. In this research, it primarily developed a radiomic method 
for noninvasive detection of calciphylaxis in patients with CKD. Through this method, calciphylaxis can be 
detected when invasive procedures are not feasible.

Keywords: Calciphylaxis; computed tomography (CT); radiomics

Submitted Oct 28, 2020. Accepted for publication May 10, 2021.

doi: 10.21037/qims-20-1211

View this article at: https://dx.doi.org/10.21037/qims-20-1211

4626

Introduction

Calciphylaxis is a rare, life-threatening condition with high 
morbidity and mortality, commonly affecting patients with 
chronic kidney disease (CKD) undergoing dialysis, with 
death caused mainly by sepsis secondary to infected ulcers (1).

Calciphylaxis diagnosis is challenging, for which skin 
biopsy is a gold standard. Nonetheless, it increases the 
risk of ulceration, bleeding, and necrosis owing to deep  
incisions (2). A noninvasive tool for diagnosing calciphylaxis 
lesions is beneficial for patients with skin lesions and CKD.

The potential usefulness of noninvasive radiology, 
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including plain radiography and bone scintigraphy, has been 
reported, whereas the usefulness of computed tomography 
(CT) has not been assessed (3-5). We hypothesized 
that histological changes, covering vessel calcification, 
thrombosis, interstitial calcium deposits, and adipose tissue 
remodelling, in the subcutaneous tissue of calciphylaxis 
lesions (1,2,6-8) would be reflected in the CT value and 
texture adopting the radiomic method, which is a high-
throughput approach using image features calculated from 
histogram and texture analysis (9,10). 

Hence, this research aims to develop and test a CT-based 
radiomic model for noninvasive detection of calciphylaxis in 
patients with CKD.

Methods

Study population

This retrospective, cohort study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013) and was approved by the local institutional ethics 
review board. Additionally, the need for written informed 
consent from the participants was waived.

In this research, it retrospectively reviewed the 
institutional datasets for patients with the initial diagnosis of 
calciphylaxis from October 1, 2017, to November 30, 2019. 
Calciphylaxis diagnosis protocol was based on “Criteria for 
Diagnosis of Calciphylaxis” illustrated by McCarthy et al. (11)  
One patient with risk factors and clinical conditions 
would undergo histopathological examination and receive 
multidisciplinary discussion involving nephrology, 
dermatology, radiology, and pathology departments with 
experienced doctors (12,13). If one is finally diagnosed with 
calciphylaxis as revealed in the histopathological result, 
he or she was included as calciphylaxis patients (Group I).  
If one with possible calciphylaxis but finally ruled out by 
histopathology, he or she was considered as suspected 
calciphylaxis patients (pathologically confirmed non-
calciphylaxis patients) (Group II). Viscera calciphylaxis was 
not included in the analysis.

In the next step, CT scan data involving lesion location 
was searched. For instance, if one patient had ulceration in 
the right leg, the researcher would find lower extremities’ 
non-contrast CT images in Picture Archiving and 
Communication Systems. All CT scan followed routine CT 
scan protocols.

Nevertheless, for limited negative cases, based on the 
hypothesis, Patients with CKD underwent dialysis during 

the same time period with abdominal CT, who displayed 
no features of calciphylaxis comprised the non-calciphylaxis 
cohort (CKD-non-calciphylaxis) (Group III), so as to 
extract radiomics features about subcutaneous tissue.

The training cohort comprised 70% of patients 
randomly selected from those with calciphylaxis and all 
non-calciphylaxis patients with CKD.

The independent test cohort consisted of the remaining 
30% of patients with calciphylaxis and all patients suspected 
of having calciphylaxis. There was no overlapping between 
training and test data.

Radiomic analysis and model building

Figure 1 displays the pipeline of the radiomic model with 
the feature extraction and model building on each lesion 
unit.

Lesion segmentation
The CT images containing the lesion patches were 
segmented using 3Dslicer (version 4.10.0; https://www.
slicer.org/) (Figure 1). As determined by an experienced 
nephrologist and radiologist based on photos or records, 
a 50×50×50 mm3 box was placed in the area of the lesion 
for patients with calciphylaxis and those suspected of 
calciphylaxis. For CKD-non-calciphylaxis patients, 2 
boxes of the same size were placed at the L3 vertebra of 
their backs. Apart from muscle and bone in the box, all 
subcutaneous tissues would be segmented as lesion patches.

Feature extraction
In the first step, all images and masks were resampled 
to form isotropic voxels of unit dimension with 1 voxel 
corresponding to 1 mm3 to guarantee comparability. By 
centring the image at the mean with a standard deviation 
and re-charting the histogram to conform to l±3r (l: the 
average grey level within the VOI; r: the grey-level standard 
deviation), image normalization was realised.

For each lesion, there were a total of 774 features. In 
accordance with pyradiomics, both first-order and textural 
features were calculated from the original images and those 
with the wavelet filter (14). 

Model building
Normalisation was applied to the feature matrix with each 
vector featured with a zero centre and standard deviation.

To reduce the space dimensionality of the feature, the 
Pearson correlation coefficient (PCC) of the feature pair 
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Figure 1 Flow chart of main study and verification studies. AUC, areas under the ROC curves; CKD, chronic kidney disease; LR, logistic 
regression; SVM, support vector machine; ROI, region of interest; PPV, positive predictive value; NPV, negative predictive value; ROC, 
receiver operating characteristic; PCC, Pearson correlation coefficient.

was adopted. Subsequently, Relief was employed to identify 
the features most closely correlated with the outcome, 
selecting the sub dataset and finding relative features 
according to the label by recursion.

The model and the robustness of the extracted features 
were built and verified, respectively, through two different 
supervised learning algorithms, namely the support vector 
machine (SVM) and the logistic regression (LR) (15). 
The former searches the hyper-plane to label the cases 
by mapping the features in a higher dimension, whereas 
the latter is deemed as a linear classifier via penalised 
maximum likelihood. Moreover, the linear kernel was used 
for explicable feature coefficients in the SVM model. In the 
training course, the 5-fold cross-validation of the training 
dataset was conducted to confirm the model’s performance.

Model performance and stability

High specificity and sensitivity points
In line with the method described in Chilamkurthy et al. (16),  
high specificity and sensitivity points were selected from 
the receiver operating characteristic (ROC) curve of the 
training dataset.

Model performance
The test dataset was adopted for the performance evaluation 
of the model. More specifically, areas under the ROC 

curves (AUCs), as well as the sensitivity, specificity, negative 
predictive value (NPV), and positive predictive value (PPV), 
at these 2 operating points were recorded.

Since the diagnostic performance of plain radiography 
(presence of vascular calcification in lesion peripheries) and 
bone scintigraphy in the test dataset was assessed, the AUCs 
of the radiomic model were compared with those of other 
radiological methods through the Delong test.

Verification studies 
To determine the ability of the model to identify the 
calciphylaxis lesion in CKD patients, rather than classify 
the extremities and abdomen tissue: (I) this research did not 
extract shape-based features and designed three verification 
studies. (II) prior to study, it researched the abdomen CT 
scan at the time of initial diagnosis in the test dataset. 

For calciphylaxis patients, 7 patients had abdomen CT 
scan without skin lesions at back or abdomen, and a total of 
14 patches segmented manifested in Figure 1. For suspected 
calciphylaxis patients, 7 of 12 patients (13 of 20 lesions) 
were not at the back or abdomen, and they had an abdomen 
CT scan at the time of initial diagnosis. Another three 
suspected patients with abdomen CT scan were covered 
as well. Consequently, a total of 20 (7×2+3×2) abdomen 
subcutaneous patches were segmented in suspected 
calciphylaxis patients (Figure 1).

Study I: there was a comparison between the results 
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of the suspected lesion and L3 subcutaneous tissue in 
suspected calciphylaxis patients. 

Study II: there was a comparison between skin lesion and 
L3 subcutaneous tissue in calciphylaxis patients. Patients 
with skin lesion in the back would be excluded. 

Study III :  there was a comparison between L3 
subcutaneous tissue in calciphylaxis patients and suspected 
calciphylaxis patients. 

Statistical analysis

In order to assess the patients’ clinical and demographic 
characteristics, the Chi-square test (or the Fisher's exact test 
if necessary) was conducted to assess categorical variables, 
while the Mann-Whitney test was used for evaluating 
continuous variables in SPSS (version 22.0. IBM Crop. 
Armonk, NY, USA). Then, feature selection and model 
establishment were realised through FeAture Explorer (FAE, 
v0.2.5, https://github.com/salan668/FAE) on Python (3.6.8, 
https://www.python.org/). Furthermore, SPSS and Python 
were employed to calculate test values including the AUCs 
with 95% confidence interval (CI), the sensitivity, and the 
specificity. The Delong test was performed using the “pROC” 
package (R language 3.0.2, R Core Team, 2013), and a 
statistically significant P value should be smaller than 0.05.

Results

Patient characteristics

In this retrospective study, 32 patients diagnosed with 
calciphylaxis were enrolled in line with the histopathological 
result in Group I, and 15 patients suspected of having 
calciphylaxis in Group II, and finally, 27 and 12 patients 
with non-contrast CT scans containing skin lesions were 
enrolled in radiomics analysis respectively. Moreover, non-
contrast CT scans containing skin lesions were included. 
Nevertheless, for limited negative cases, as shown in the 
hypothesis, 41 patients with CKD, undergoing dialysis 
during the same time period with abdominal CT, were 
enrolled in the non-calciphylaxis cohort (CKD-non-
calciphylaxis) (Group III).

The training cohort comprised 70% (19/27) of patients 
with 40 lesions randomly selected from Group I and Group 
III (41 patients with 82 image patches). The independent 
test cohort comprised the rest 30% (8/27) of patients with 
calciphylaxis and Group II (12 patients with 20 lesions). 
Details about additional sample size consideration are 

presented in the Appendix 1.
Baseline demographic and clinical characteristics of 

patients are outlined in Table 1. No dramatic differences 
existed in all baseline characters (P>0.05). The location of 
the skin lesions and CT scan of patients in Group I and II 
are listed in Table 2.

Performance of the radiomic model

The model, based on 8 features including 4 first-order 
features and 4 textural features, showed the highest AUC on 
the validation data set. Significant features and coefficients 
utilised in the models are manifested in Table S1.

Figure 2 and Table 3 conclude the performance of the 
radiomic model with the SVM and LR methods. In the 
training and test dataset, the model based on SVM and LR 
methods demonstrated the highest performance compared 
with conventional imaging methods. AUCs of both models 
reached 0.93 (0.924–0.953) (SVM) and 0.93 (0.921–0.953) 
(LR) in the test dataset. At the high-sensitivity point, the 
SVM and LR model revealed diagnostic performance for 
diagnosis of calciphylaxis with the sensitivity, specificity, 
PPV and NPV of 0.89, 0.80, 0.80, 0.89 and 0.89, 0.85, 
0.84, 0.90 respectively. At the high-specificity point, the 
SVM and LR model showed diagnostic performance for 
diagnosis of calciphylaxis with the sensitivity, specificity, 
PPV and NPV of 0.78, 0.90, 0.88, 0.82 and 0.78, 1.0, 1.0, 
0.83 respectively.

In a subset of the test dataset, where patients had 
plain radiograph and bone scintigraphy, LR performed 
the highest AUC, followed by the SVM model (Table 4). 
Radiomics models illustrated higher AUCs than plain 
radiograph and bone scintigraphy (Delong test, P<0.05, 
Table S2). Bone scintigraphy also displayed a high specificity 
in the diagnosis of calciphylaxis.

Results of verification studies

As shown in Figure 3, in study I and III, the models on 
SVM and LR cannot classify (I) suspected lesions and L3 
subcutaneous tissue in patients with suspected calciphylaxis 
and (II) L3 subcutaneous tissue in patients with confirmed 
calciphylaxis  and that  in patients  with suspected 
calciphylaxis according to low AUCs (0.543–0.681). 
Despite this, in study II, the model with AUCs of 0.84 and 
0.81 (SVM and LR respectively) performed better in the 
classification of skin lesions and L3 subcutaneous tissue in 
patients with calciphylaxis (Figure 3).

https://cdn.amegroups.cn/static/public/QIMS-20-1211-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-20-1211-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-20-1211-supplementary.pdf
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Table 1 Characteristics of patients

Characteristic
Training cohort Test cohort

Calciphylaxis (+) Calciphylaxis (−) P value Calciphylaxis (+) Calciphylaxis (−) P value

Patients, n 19 41 8 12

Age, mean (SD), years 49.16 (13.45) 63.20 (15.21) 0.001 66.88 (13.22) 59.83 (12.64) 0.30

Sex, No. [%] 19 [100] 41 [100] 0.27 8 [100] 12 [100] 0.62

Male 13 [68] 20 [49] 7 [88] 9 [75]

Female 6 [32] 21 [51] 1 [12] 3 [25]

BMI, mean [SD], kg/m2a 22.36 [4.10] 22.86 [3.62] 0.48 23.62 [3.41] 23.81 [50.02] 0.90

CKD level, No. [%] 19 [100] 41 [100] 0.30 8 [100] 12 [100] –

4 0 [0] 4 [10] 0 [0] 0 [0]

5 19 [100] 37 [90] 8 [100] 12 [100]

Current cigarette smoker, No. [%] 1 [5] 5 [12] 0.65 2 [25] 2 [17] >0.99

Alcohol abuse, No. [%] 0 [0] 0 [0] – 0 [0] 0 [0] –

Coronary artery disease, No. [%] 1 [5] 8 [20] 0.25 1 [13] 2 [17] >0.99

Diabetes, No. [%] 4 [21] 21 [51] 0.03 4 [50] 5 [42] >0.99

Diabetes mellitus type 1, No. [%] 1 [5] 1 [2] 0 [0] 0 [0]

Diabetes mellitus type 2, No. [%] 3 [16] 20 [49] 4 [50] 5 [42]

Hepatobiliary disease, No. [%] 4 [21] 4 [10] 0.25 3 [38] 1 [8] 0.26

Hypertension, No. [%] 15 [79] 37 [90] 0.25 7 [88] 11 [92] >0.99

Hyperparathyroidism, No. [%] 7 [367] 4 [10] 0.03 3 [38] 3 [25] 0.64
a3 patients in training cohort with no available BMI data, and 1 patient in test cohort with no available BMI data. BMI, body mass index; 
CKD, chronic kidney disease; SD, standard deviation.

Table 2 Location of skin lesions and CT scan of calciphylaxis and suspected calciphylaxis patients

Patients Location of lesions Site of CT

Calciphylaxis patients

1 Bilateral ankle Lower extremities

2 Lower extremities Lower extremities

3 Bilateral hands, Lower extremities, back lower and upper extremities

4 Lower extremities Chest, Abdomen, Lower extremities

5 Lower extremities Chest, Abdomen, Lower extremities

6 Bilateral hands, Lower extremities Abdomen, Lower extremities

7 Lower extremities Chest, Abdomen, Lower extremities

8 Lower extremities Lower extremities

9 Lower extremities Chest, Lower extremities

10 Lower extremities, right foot Chest, Abdomen, Lower extremities

11 Bilateral feet Chest, Abdomen, Lower extremities

Table 2 (continued)
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Table 2 (continued)

Patients Location of lesions Site of CT

12 Left crus Lower extremities

13 Lower extremities Lower extremities

14 Lower extremities Lower extremities

15 Right ankle, right foot Lower extremities

16 Bilateral upper thighs, penis Abdomen, Lower extremities

17 Lower extremities Chest, Lower extremities

18 Left crus Chest, Abdomen, Lower extremities

19 Lower extremities Lower extremities

20 Lower extremities, right hand lower and upper extremities, Abdomen

21 Lower extremities Lower extremities

22 Bilateral feet Abdomen, Lower extremities

23 Back Chest, Abdomen, Lower extremities

24 Lower extremities none

25 Abdomen none

26 Lower extremities Lower extremities

27 Bilateral hands, feet none

28 Viscera none

29 Bilateral hips none

30 Back Abdomen

31 Back Abdomen

32 Lower extremities lower extremities

Suspected calciphylaxis patients

1 Left foot Abdomen

2 upper extremities Abdomen

3 Abdomen, lower extremities Lower extremities, Abdomen

4 Abdomen, lower extremities Abdomen, Lower extremities

5 Abdomen, lower and upper extremities Chest, Lower extremities

6 Upper extremities Abdomen

7 Lower extremities Lower extremities

8 Abdomen Abdomen

9 upper thighs Lower extremities

10 Lower extremities Lower extremities

11 Lower extremities, back Abdomen, Lower extremities

12 Abdomen, lower and upper extremities Lower extremities

13 left hand upper extremities

14 Bilateral feet Lower extremities

15 Lower extremities Lower extremities
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Figure 2 Predictive performance of models in training, inter-validation and test datasets. AUC, areas under the ROC curves; ROC, receiver 
operating characteristic; LR, logistic regression; SVM, support vector machine; PPV, positive predictive value; NPV, negative predictive 
value.

Table 3 Predictive performance of radiomic modelsa

AUC (95% CI)
High sensitivity model High specificity model

Sensitivity Specificity NPV PPV Sensitivity Specificity NPV PPV

SVM 0.93 (0.924–0.953) 0.89 0.80 0.89 0.80 0.78 0.90 0.82 0.88

LR 0.93 (0.921–0.953) 0.89 0.85 0.90 0.84 0.78 1.0 0.83 1.0
aTotal lesions: 38 (positive: 18/negative: 20). PPV, positive predictive value; NPV, negative predictive value; AUC, areas under the ROC 
curves; ROC, receiver operating characteristic; LR, logistic regression; SVM, support vector machine.

Discussion

In this retrospective study, it proposed the radiomics 
method and demonstrated the effectiveness of the 
noninvasive machine learning technique in diagnosing skin 
lesions in patients with calciphylaxis (Figure 2).

The sample comprised 27 histopathological confirmed 

calciphylaxis patients and 12 histopathological confirmed 
non-calciphylaxis patients with suspected skin lesions. Given 
the histopathological examination as the ground truth, 
the models in this research were confirmed to be stable 
and could be generalised in the diagnosis of skin lesions in 
calciphylaxis. 

Calciphylaxis diagnosis is challenging. In the test 

Training ROC cruve using SVM method

ROC fold 1-5
Mean ROC (AUC =0.957±0.012)
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ROC of SVM
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Sensitivity: 0.89
Specificity: 0.85
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PPV: 0.84
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Sensitivity: 0.89
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PPV: 0.8
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Sensitivity: 0.78
Specificity: 1.0
NPV: 0.83 
PPV: 1.0

High sensitivity
operating point
Sensitivity: 0.78
Specificity: 0.9
NPV: 0.82 
PPV: 0.88

ROC fold 1-5
Mean ROC (AUC =0.955±0.012)
±1 std. dev.
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Table 4 Predictive performance compared with plain radiography and bone scintigraphy

LR High  
sensitivity Model

LR High  
specificity Model

SVM High  
sensitivity Model

SVM High  
specificity Model

Plain radiograph  
(Presence of vascular 

calcification)

Bone  
scintigraphy

TP 13 12 13 12 10 7

TN 9 11 8 10 4 9

FN 1 2 1 2 4 7

FP 2 0 3 1 7 2

Sensitivity 0.93 0.86 0.93 0.86 0.71 0.50

Specificity 0.82 1 0.73 0.91 0.36 0.82

AUC 0.95 0.92 0.54 0.66

AUC 95% CI 0.86–1.0 0.80–1.0 0.31–0.71 0.42–0.88

LR, logistic regression; SVM, support vector machine; AUC, areas under the ROC curves; ROC, receiver operating characteristic; TP, true 
positive; TN, true negative; FN, false negative; FP, false positive.

Figure 3 Results of verification studies. AUC, areas under the ROC curves; ROC, receiver operating characteristic.

dataset, radiomic models performed well for diagnosing 
calciphylaxis in CKD patients, which was better than 
conventional radiology methods such as plain radiograph 
and bone scintigraphy (Table 3), the performance of which 
was similar to that in previous studies (3,5). The exploration 
of diagnostic models has confirmed the possibility of a non-
invasive diagnosis method that might provide clinicians 
with an alternative when histopathological examination 
is impossible and thereby reducing the incidence of 
complications due to invasive operations, especially at the 
skin lesions (2). However, bone scintigraphy also showed 
high specificity based on our dataset (0.82), while its 
sensitivity was 0.5. Specificity in this study is comparable to 
that in the research of Paul et al. (0.97) but the sensitivity 

is much lower (0.89) (5). However, a more accurate 
noninvasive method can be provided for calciphylaxis 
diagnosis by combining radiomics methods on CT and 
bone scintigraphy. 

Secondly, the radiomics and machine learning methods 
were adopted in this study, which are popular in disease 
diagnosis and prognosis prediction (9). In the models, 50% 
of the features included were first-order, while the rest 
were second-order. Nevertheless, they showed a potential 
to detect inflammation, fibrosis, and vascularity in adipose 
tissue, and made the model more robust by being less 
sensitive to an absolute value (17,18). Similarity in AUC, 
sensitivity and, specificity for SVM and LR methods 
demonstrated the robustness of the same radiomic features, 
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based on the prior studies’ result that the classification 
method played the most dominant role in the variability of 
model (15).

In the verification studies, SVM and LR model could 
not classify suspected lesion and L3 subcutaneous tissue 
in suspected calciphylaxis patients well. Extracted features 
might not represent the tissue characteristic in different 
locations. As manifested in the results of Study II and Study 
III, our model revealed the possibility that in calciphylaxis 
patients, tissue in lesion would be distinctive compared to 
distant tissue like abdomen, and huge differences might not 
exist between calciphylaxis patients and other CKD patients 
at the location without skin lesion.

This  research has several  l imitat ions.  It  was a 
retrospective study, and given the low morbidity of 
calciphylaxis, a small sample size of both patients and 
controls was enrolled. In the meantime, this research 
selected a special dataset of negative cases and lesions in 
training, which might give rise to selection bias. Secondly, 
this is a single-centre study, and model performance could 
be different in a large population and other centres. Future 
studies should explore and validate the noninvasive methods 
for diagnosis of calciphylaxis in more patients and centres 
including both imaging-based and serum-based methods. 

To the best of our knowledge, this research is the first 
to develop a radiomics method in calciphylaxis diagnosis. 
CT radiomics features hidden within skin lesions were 
extracted and the radiomic model demonstrated preliminary 
feasibility as a noninvasive technique for calciphylaxis 
diagnosis in patients with CKD when invasive procedures 
are not available.
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Supplementary

TRIPOD Checklist: Prediction Model Development and Validation

Section/Topic Item Checklist Item Page

Title and abstract

Title 1 D;V Identify the study as developing and/or validating a multivariable prediction model, 
the target population, and the outcome to be predicted.

1

Abstract 2 D;V Provide a summary of objectives, study design, setting, participants, sample size, 
predictors, outcome, statistical analysis, results, and conclusions.

3

Introduction

Background and 
objectives

3a D;V Explain the medical context (including whether diagnostic or prognostic) and 
rationale for developing or validating the multivariable prediction model, including 
references to existing models.

5

3b D;V Specify the objectives, including whether the study describes the development or 
validation of the model or both.

5

Methods

Source of data 4a D;V Describe the study design or source of data (e.g., randomized trial, cohort, or  
registry data), separately for the development and validation data sets, if applicable.

6-7

4b D;V Specify the key study dates, including start of accrual; end of accrual; and, if  
applicable, end of follow-up. 

6-7

Participants 5a D;V Specify key elements of the study setting (e.g., primary care, secondary care,  
general population) including number and location of centres.

6-7

5b D;V Describe eligibility criteria for participants. 6-7

5c D;V Give details of treatments received, if relevant. NA

Outcome 6a D;V Clearly define the outcome that is predicted by the prediction model, including how 
and when assessed. 

6-8

6b D;V Report any actions to blind assessment of the outcome to be predicted. 6-8

Predictors 7a D;V Clearly define all predictors used in developing or validating the multivariable  
prediction model, including how and when they were measured.

7-11

7b D;V Report any actions to blind assessment of predictors for the outcome and other 
predictors. 

7

Sample size 8 D;V Explain how the study size was arrived at. 6-7 Supplementary 
method

Missing data 9 D;V Describe how missing data were handled (e.g., complete-case analysis, single  
imputation, multiple imputation) with details of any imputation method. 

NA

Statistical  
analysis methods

10a D Describe how predictors were handled in the analyses. 7-11

10b D Specify type of model, all model-building procedures (including any predictor  
selection), and method for internal validation.

7-11

10c V For validation, describe how the predictions were calculated. 7-11

10d D;V Specify all measures used to assess model performance and, if relevant, to  
compare multiple models. 

7-11

10e V Describe any model updating (e.g., recalibration) arising from the validation, if done. NA

Risk groups 11 D;V Provide details on how risk groups were created, if done. NA

Development vs. 
validation

12 V For validation, identify any differences from the development data in setting, eligibility 
criteria, outcome, and predictors. 

7-11
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Results

Participants 13a D;V Describe the flow of participants through the study, including the number of  
participants with and without the outcome and, if applicable, a summary of the  
follow-up time. A diagram may be helpful. 

12 Supplementary 
method

13b D;V Describe the characteristics of the participants (basic demographics, clinical features, 
available predictors), including the number of participants with missing data for  
predictors and outcome. 

12 Table 1&2

13c V For validation, show a comparison with the development data of the distribution of 
important variables (demographics, predictors and outcome). 

Table 1

Model  
development 

14a D Specify the number of participants and outcome events in each analysis. 12 Table 1 Figure1

14b D If done, report the unadjusted association between each candidate predictor and 
outcome.

NA

Model  
specification

15a D Present the full prediction model to allow predictions for individuals (i.e., all regression 
coefficients, and model intercept or baseline survival at a given time point).

12-14 Supplementary 
Table

15b D Explain how to the use the prediction model. 12-14

Model  
performance

16 D;V Report performance measures (with CIs) for the prediction model. 12-14, Table 3&4  
Figure 2&3

Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model 
performance).

NA

Discussion

Limitations 18 D;V Discuss any limitations of the study (such as nonrepresentative sample, few events 
per predictor, missing data). 

16

Interpretation 19a V For validation, discuss the results with reference to performance in the development 
data, and any other validation data. 

14-16

19b D;V Give an overall interpretation of the results, considering objectives, limitations, results 
from similar studies, and other relevant evidence. 

14-16

Implications 20 D;V Discuss the potential clinical use of the model and implications for future research. 14-16

Other information

Supplementary 
information

21 D;V Provide information about the availability of supplementary resources, such as study 
protocol, Web calculator, and data sets. 

Supplementary  
material

Funding 22 D;V Give the source of funding and the role of the funders for the present study. 17

*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model 
are denoted by V, and items relating to both are denoted D;V.  We recommend using the TRIPOD Checklist in conjunction with the TRIPOD 
Explanation and Elaboration document.
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Method

Diagnosis protocol of calciphylaxis

Calciphylaxis diagnosis protocol was based on "Criteria for Diagnosis of Calciphylaxis" described in McCarthy et al. (11). One 
patient with risk factors and clinical conditions would receive multidisciplinary discussion including nephrology, dermatology, 
radiology, and pathology departments with experienced doctors.

In this study, we retrospectively reviewed our institutional datasets for patients with initial diagnosis of calciphylaxis. If 
one finally diagnosed as calciphylaxis, we included as calciphylaxis patients. If one with possible calciphylaxis but finally ruled 
out, we included as suspected calciphylaxis patients. Viscera calciphylaxis was not included in analysis. Finally, 32 patients 
were diagnosed according to reported diagnosis protocol(calciphylaxis) (11), and 15 patients were identified as suspected 
calciphylaxis from October 1, 2017, to November 30, 2019.

In the next step, we searched CT scan data involving lesion location. For example, if one patient had ulceration in right 
leg, we would find lower extremities non-contrast CT images in Picture Archiving and Communication Systems. All CT scan 
followed routine CT scan protocols. All images and masks were resampled to form isotropic voxels of unit dimension with 1 
voxel corresponding to 1 mm3 to ensure comparability. By centering the image at the mean with a standard deviation and re-
charting the histogram to conform to l ± 3r (l: the average gray level within the VOI; r: the gray-level standard deviation), 
image normalization was realized.

Sample size consideration

For training, we used 70% (19 patients with 40 lesions) randomly chosen calciphylaxis patients and all CKD-non-calciphylaxis 
patients (41 patients with 82 patches) to form training cohort. To balance the case-to-noncase ratio as 1:1, we used SMOTE 
method to up-sample the calciphylaxis cases, which is a re-sampling technique commonly used in datasets. We applied 5-fold 
cross-validation on training data set to prove model performance. Eight features were selected after PCC and Relief, which 
making an event-per-predictor ratio >20. Therefore, we believed that there was no big concern on the overfitting issue of our 
model at this sample size.

For test, we used method introduced by Shein-Chung Chow and colleagues (19).

 2

/2
positive negative

positive negative

2
z z

N N α βσ
µ µ

 +
= =   − 

where, N is the sample size for the validation group. Desired two-sided significance level of α = 0.05 (zα⁄2=1.96) and power of  
1-β = 95% (zβ=1.64).

LR model: The sample sizes in the training groups were npositive= 82(SMOTE) and nnegative= 82, with means of μpositive=0.3927 
and μnegative=0.6075 respectively, and with a standard deviation of σ=0.1369. The minimum number of validation samples:
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SVM model: The sample sizes in the training groups were npositive= 82(SMOTE) and nnegative= 82, with means of 
μpositive=0.1688 and μnegative=0.8133 respectively, and with a standard deviation of σ=0.3948. The minimum number of validation 
samples:
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z z
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Test dataset in our study included 18 calciphylaxis-positive and 20 calciphylaxis-negative lesions, which exceeded the 
minimum required sample sizes.
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Table S1 Features and coefficients of models

Features Coef in model (SVM) Coef in model (LR)

wavelet-LLH_glszm_GrayLevelVariance 1.330 1.187

wavelet-LLH_glcm_Imc2 2.930 2.524

wavelet-HLH_firstorder_Skewness 0.703 0.578

wavelet-HHH_glszm_LargeAreaLowGrayLevelEmphasis 0.594 0.316

original_firstorder_Kurtosis -0.300 0.148

wavelet-LLL_firstorder_90Percentile 1.982 1.485

wavelet-LHH_firstorder_Median 3.460 2.168

wavelet-LLH_glcm_Imc1 –4.422 –3.164

Coef, coefficients.

Table S2 Results of Delong tests

ROC 1 ROC 2 p-value

LR Bone scintigraphy <0.01

LR Plain radiograph <0.01

SVM Bone scintigraphy 0.02

SVM Plain radiograph <0.01

LR, Logistic Regression; SVM, Support Vector Machine; AUC, Areas under the ROC curves; ROC, Receiver operating characteristic.
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