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Background: In the radiotherapy of nasopharyngeal carcinoma (NPC), magnetic resonance imaging (MRI) 
is widely used to delineate tumor area more accurately. While MRI offers the higher soft tissue contrast, 
patient positioning and couch correction based on bony image fusion of computed tomography (CT) is 
also necessary. There is thus an urgent need to obtain a high image contrast between bone and soft tissue to 
facilitate target delineation and patient positioning for NPC radiotherapy. In this paper, our aim is to develop 
a novel image conversion between the CT and MRI modalities to obtain clear bone and soft tissue images 
simultaneously, here called bone-enhanced MRI (BeMRI). 
Methods: Thirty-five patients were retrospectively selected for this study. All patients underwent clinical 
CT simulation and 1.5T MRI within the same week in Shenzhen Second People’s Hospital. To synthesize 
BeMRI, two deep learning networks, U-Net and CycleGAN, were constructed to transform MRI to 
synthetic CT (sCT) images. Each network used 28 patients’ images as the training set, while the remaining 7 
patients were used as the test set (~1/5 of all datasets). The bone structure from the sCT was then extracted 
by the threshold-based method and embedded in the corresponding part of the MRI image to generate the 
BeMRI image. To evaluate the performance of these networks, the following metrics were applied: mean 
absolute error (MAE), structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR).
Results: In our experiments, both deep learning models achieved good performance and were able to 
effectively extract bone structure from MRI. Specifically, the supervised U-Net model achieved the best 
results with the lowest overall average MAE of 125.55 (P<0.05) and produced the highest SSIM of 0.89 
and PSNR of 23.84. These results indicate that BeMRI can display bone structure in higher contrast than 
conventional MRI.
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Introduction

Southern China  has  one  of  the  h ighest  ra tes  o f 
nasopharyngeal carcinoma (NPC) in the world (1), 
for which radiotherapy is a necessary part of the main 
treatment. Due to the target volume’s proximity to critical 
structures such as the brainstem, spinal cord, cochlea, 
mandible, optical nerves, chiasm and parotids, the setting 
of the radiation field is the source of most locoregional 
complications and sequelae. The treatment outcomes of 
radiotherapy in NPC are therefore highly dependent on 
accurate delineation of the tumor and organs at risk (OARs) 
which is used to develop optimal treatment plans that 
conform to the prescribed dose to the target volume and 
spare the uninvolved critical structures. However, no single 
modality is capable of an adequate definition of tumor 
volumes because of its inherent imaging limitations. For 
example, in computed tomography (CT), tumor invasion of 
the bone can be clearly seen, but tumor extension into the 
surrounding soft tissue may not be visible. Emami et al. (2) 
have shown that the treatment outcome for Stage III and 
IV NPC with conventional radiotherapy alone is generally 
poor. Meanwhile, it has become increasingly clear that using 
multi-imaging modalities and combined chemoradiotherapy 
has resulted in significant improvements in treatment 
outcomes for NPC patients. 

Many studies have demonstrated that magnetic 
resonance imaging (MRI) is superior to CT in the staging 
and follow-up of NPC patients (3-7). MRI provides better 
tumor definition, especially for NPC and leads to different 
target definitions than CT. Applying MRI to radiotherapy 
has great benefits to improve radiation dosimetry by 
reducing toxicity to OARs and enabling dose escalation 
to tumor targets to achieve survival gains (8-10). Thus, 
treatment planning workflow that uses magnetic resonance 
image-guided radiotherapy (MRIgRT) have already been 

proposed (11-13). However, MRI lacks bone structure 
information and cannot be directly utilized for NPC 
localization. Therefore, MRIgRT is supplemented by CT 
which provides reliable surrogates for electron density 
information for dose distribution calculation (14). The usual 
practice is the conversion of electron density or HU values 
into synthetic CT (sCT) based on MRI images. To our 
knowledge, until now, there is no single imaging modality 
which shows bone structure with the contrast of CT and 
soft tissue with the contrast of MRI simultaneously.

To address these problems, many kinds of experiments 
have explored synthesizing CT images from MRI images. 
These include atlas-based methods (15-17), segmentation-
based methods (18-21), voxel-based methods (22,23), and 
deep learning methods (24-29). The atlas-based method of 
producing sCT images requires CT-to-MRI registration 
in which CT and MRI atlas scan pairs correspond 
anatomically. This method is time consuming, and the atlas 
of new cases needs to be recalculated. The segmentation-
based methods of producing sCT images are done 
according to the intensity of MRI voxels. This method is 
simple and saves time. But the accuracy of dose calculation 
is seriously affected by the accuracy of the segmentation. 
The voxel-based method focuses on using voxel by voxel 
mapping, based on the intensity or spatial location of the 
MRI image, acquired from different MRI pulse sequences. 
This method is more accurate than the above methods but 
is more time and labor intensive. Deep learning methods 
exhibit a superior ability to learn a nonlinear mapping 
from one image domain to another image domain. Several 
convolution neural networks have achieved better sCT 
than the other three traditional methods (25). According 
to whether the input data sets contain labels, deep learning 
methods can be separated into two categories, supervised 
and unsupervised deep learning methods. We investigated 
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the literature and found that most supervised deep learning 
methods were completed based on a convolutional neural 
network (CNN) such as U-Net. Among them, Han (24) 
used a CNN to establish the prediction model of sCT for 
the first time and realized the end-to-end transformation 
from MRI to sCT. Most unsupervised learning is based 
on GAN (mostly CycleGAN). Wolterink et al. (29) used 
unpaired brain data to train the unsupervised prediction 
model for transformation from MRI to sCT.

The above studies have shown how to generate higher 
quality cross-modalities images by deep learning methods, 
but not how to make use of the image features of different 
image modalities simultaneously. Image fusion allows one 
to use both CT and MRI information at the same time. 
Numerous techniques have been proposed in the past 
decades to deal with medical image fusion. These include 
average density or pixel-by-pixel selection methods (30-32),  
wavelet analysis methods (33), weighted averaging to 
complex multiresolution pyramid method (34), and neural 
network method (35,36). Previously, synthetic images 
of single modalities, such as sCT, have been used for 
radiotherapy, but the fusion of synthetic multimodality 
images for radiotherapy has not been fully explored. This 
is a novel concept that opens up a new avenue for the 
applications of deep learning in MRIgRT.

This paper describes the use of head and neck MRI 
images to derive sCT images and a method to synthesize 
a multi-modal image by considering the imaging 
characteristics between the two modalities. The remaining 
part of this paper is organized as follows: in Methods, we 
describe the details of experimental methods; in Results,  
we evaluate the resulting new modality medical images; 
in Discussion, the clinical value of the new modal image 
is discussed in detail; finally, a brief conclusion is given in 
Conclusions.

Methods

To obtain bone structure information from MRI, we first 
choose a supervised neural network [U-Net (37)] and an 
unsupervised generative adversarial network [CycleGAN (38)] 
to generate the sCT. We then extract the bone structure 

information and fuse it with the MRI image. The experiment 
includes four steps as Figure 1: (I) data preprocessing; (II) 
sCT generation; (III) BeMRI composition; (IV) evaluation. 

The study was approved by the Human Research Ethics 
Committee of the Shenzhen Second People’s Hospital and 
informed consent was taken from all the patients.

Data preprocessing

Thirty-five patients were retrospectively selected for this 
study. All patients underwent clinical CT simulation and 
1.5 T MRI within the same week at the Shenzhen Second 
People’s Hospital. The CT images were acquired under 
the following conditions: a 120 kV tube voltage, a 330 mA 
current, a 500 ms exposure time, a 0.5×0.5 mm2 in-plane 
resolution, a 1-mm slice thickness, a 512×512 image size on 
the SOMATOM Definition Flash (Siemens). T2-weighted 
MRI images were acquired under the following conditions: 
a 2,500 ms repetition time, a 123 ms echo time, a  
1×1×1 mm3 pixel volume, a 256×256 image size on a 1.5T 
Avanto scanner (Siemens). The MRI distortion correction 
was applied by the MRI data acquisition system. 

To remove the unnecessary background, we first 
generated binary head masks through the Otsu threshold 
method (39). We then used the binary masks with the 
“AND operation” (i.e., elementwise summation) to exclude 
the unnecessary background and keep the interior brain 
structure. We resampled CT images of size 512×512 to 
256×256 to match MRI images by bicubic interpolation (40).  
To align the CT image with the corresponding MRI images, 
we took the CT as a fixed image. The MRI images were 
registered to CT ones by rigid registration using the Elastix 
toolbox (41), and mutual information was taken as the cost 
function. We randomly selected 28 patients to train neural 
networks. The other 7 patients were used as test data. On 
average, each patient’s CT or MRI contains more than 100 
2D axial image slices. We rescaled the MRI and CT values 
of the acquired images to [0, 255], converted this data 
into a [0, 1] tensor, and normalized each image to [−1, 1].  
Instead of image patches, whole 2D images were used to 
train all models. The axial CT and MRI pairs were put into 
networks with a size of 256×256 pixels. 

Figure 1 The workflow diagram of experiment.
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sCT generation 

U-Net
U-Net has achieved great success in medical image 
processed tasks (24,42). The structure used here is illustrated 
in Figure 2. It is an end-to-end supervised convolutional 
neural network, which requires pairs of images as inputs. 
The network includes an encoder and a decoder (37). The 
encoder consists of repeated 3*3 convolutions, each with a 
Batch-Normalization layer (43) and a LeakyReLu layer (44) 
without input convolution. The max-pooling operation with 
stride two is used for downsampling. Feature channels are 
doubled at each downsampling step. The size of the input 
image was 256×256. The decoder consists of repeated 3×3 
convolutions and 4×4 ConvTranspose layers (45), each with 
a ReLu (46) layer followed by a Batch-Normalization layer. 
Skip connections are designed to concatenate channels from 
the encoder to the decoder to use as much information 
from earlier layers as possible. At the final layer, a sigmoid 
activation operation is used to map sCT. The output image 
is kept the same size as the input image, whose size is also 
256×256. 

CycleGAN
As an unsupervised neural network, CycleGAN can 
convert the styles of two unregistered images. It alleviates 
the problem posed by a lack of paired datasets since there 
is a vast amount of unpaired image data. The structure 
used here is illustrated in Figure 3. Different from the 

original GAN, CycleGAN has two generators. The first 
one was called ‘Generator A’ for transferring input ‘A’ to 
input ‘B’, and the second one was called ‘Generator B’ for 
transferring input ‘B’ to input ‘A’. The outputs are called 
FakeB and FakeA. CycleGAN also has two discriminators, 
which were designed to identify whether a random input is 
real training data or fake data synthesized by a generator. 
The cycle consistency of CycleGAN holds that if input A 
can be converted to input B through a mapping, then there 
is also another mapping that converts input B to input 
A. CycleGAN learns the losses of pair sets of generators 
and discriminators to improve the quality of the synthetic 
images and the robustness of the network simultaneously. 
More details of CycleGAN are given in (38). In this work, 
we input brain MRI labeled ‘A’ and corresponding brain CT 
labeled ‘B’.

To compare the quality of the generated image from 
different networks properly, the parameter settings of 
the U-Net and CycleGAN model are unified. We set the 
batch size as one and used Adam (47) to optimize both the 
generator and discriminator. Four hundred epochs were 
trained for each model. A fixed learning rate of 2.0×10−4 
was applied for the first 200 epochs and linearly reduced 
to 0 during the training of the remaining 200 epochs. 
The number of iterations was 1.62×106. For the U-Net 
model, the paired MRI and CT data are used as input 
data according to a one-to-one correspondence. For the 
CycleGAN model, the MRI and CT image data are input 
randomly.

Figure 2 U-Net structure. The channel number is denoted at the bottom of each Convolutional block. Different colors indicate different 
operations. Light blue indicates convolution; Dark blue indicates LeakyReLu; Red indicates pooling; Green indicates unpooling; Gray 
indicates feature connection; Magenta indicates softmax. 
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BeMRI composition

The BeMRI composition based on the sCT is illustrated 
in Figure 4. First, the ambiguous bone structure in MRI 
images was extracted from the sCT images. To accurately 
extract the bone structure information, we used the 
rescale intercept value and rescale slope value, which was 
obtained from the ground truth CT header file, to separate 
the bone and soft tissue according to Eq. [1]. Rescale 

intercept and rescale slope are DICOM tags that specify the 
linear transformation from pixels in their stored-on-disk 
representation to their in-memory representation. In this 
study, the threshold of 300 Hounsfield Unit (HU) was used 
to separate the bone and soft tissue. From the CT header 
file, we knew the Rescale Intercept was −1,024 and the 
Rescale Slop was 1. We thus chose 1,324 as the pixel value 
threshold according to Eq. [2] to separate bone and soft 
tissue. The bone structure extracted from sCT was used 

Figure 3 CycleGAN structure, the contents in the right dotted frame are the composition of the generator and the discriminator. ‘A’ and ‘B’ 
label a pair of inputs with different modalities, and their outputs are Fake B and Fake A. 

Figure 4 Flowchart of the proposed BeMRI composition pipeline. “⊙” stands for element-wise multiplication; “+” stands for element-wise 
summation. 
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to generate sCT-bone masks through image binarization. 
We then used the bone masks and the “AND operation” to 
exclude unnecessary bone structure while saving soft tissue 
in MRI images. Finally, we combined the bone structure 
extracted from MRI of the eliminated bone structure to 
generate BeMRI.

  val slope interceptHounsfieldUnit pixel rescale rescale= × +     [1]

  intercept
vaule

slope

HounsfieldUnit rescale
pixel

rescale
−

=  [2]

We implemented these networks in Pytorch and used a 
single NVIDIA TITAN X(Pascal) (12GB) GPU for all of 
the training and testing experiments.

Evaluation

After checking all the BeMRI, the layers without bone 
structure were deleted, and the remaining results were 
evaluated. Since the soft tissue area does not change, we 
only evaluated the results of bone structure. Three metrics 
were used to compare the ground truth bone and composite 
bone: MAE according to Eq. [3], PSNR according to 
Eq. [4] and SSIM according to Eq. [5]. These metrics are 
widely used in medical image evaluation (28,48,49), and are 
expressed as follows:

 
( ) ( )

1

1 N

i

MAE CT i sCT i
N =

= −∑  [3]

 2

10=10 log MAXPSNR
MSE

 
×  
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where N is the total number of pixels inside the bone 
region, i is the index of the aligned pixels inside the bone 
area. MAX denotes the largest pixel value of each ground 
truth bone and composite bone images.

SSIM (50) is a metric that can be used to quantify the 
similarities on the whole image scale, and can be expressed 
as follows:
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where μx and μy are the average pixel values of the bone 
structure from ground truth CT and sCT, respectively. σx

2 
and σy

2 are the variance of these pixel values for the ground 
truth CT and sCT, respectively. σxy is the covariance of bone 
structure from ground truth CT and sCT. c1= (k1L)2, c2= 

(k2L)2 are two variables used to stabilize the division by the 
small denominator and L is the dynamic range of the pixel 
values. k1=0.01, k2=0.03 are set by default.

Results

In our experiments, the clinical MRI of 7 patients was 
acquired to test the proposed models. The details of the 
BeMRI images for a single patient are shown in Figure 5.  
The different columns represent different slices in the 
same image modality, and different rows represent different 
modalities. Specifically, ground truth CT image, ground 
truth MRI image, the synthetic BeMRI image from U-Net 
and the synthetic BeMRI image from CycleGAN are 
illustrated from top to bottom. To show the boundary of the 
synthetic bone structure and soft tissue more clearly, we use 
a red rectangle in each result to magnify the region. It can 
be seen qualitatively that MRI is more effective in imaging 
soft tissue, but less effective in imaging bone structure, 
while the opposite is true for CT. The third column shows 
that at the boundary between soft tissue and bone structure, 
MRI cannot sharply identify the boundary while CT can 
hardly detect the corresponding soft tissue. However, 
BeMRI can clearly distinguish between soft tissue and bone 
structure and identify the boundary between them.

Although it is difficult to distinguish the difference 
between the BeMRI images generated by U-Net and 
CycleGAN with the naked eye in Figure 5, it can be seen 
clearly in the difference map of the normalized pixel value 
shown in Figure 6. The color bar of the difference map used 
a gradual color from red to yellow to indicate the difference 
in pixel value between BeMRI bone structure and ground 
truth CT. On the whole, the color of the difference map 
for the result of CycleGAN was lighter than that of U-Net, 
which indicates the images synthesize by the former are on 
average noisier than those generated by the latter.

A comparison of 1D profiles passing through three 
different lines, which were acquired from images generated 
by the U-Net and CycleGAN models is shown in Figure 7. 
Since the soft tissue area does not change, we only evaluated 
the results of the bone structure. Based on these images, the 
bone structure extracted from sCT by the U-Net model 
agreed well with the ground truth CT on a pixel-by-pixel 
scale. For Figure 7A, we chose the parietal part at the same 
position to evaluate the pixel intensity. Comparing the two 
deep learning methods with the ground truth, we find they 
generate similar pixel intensity distributions to the ground 
truth, which indicated that the U-Net and CycleGAN 
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Figure 5 Qualitative comparison of different neural network models. There are two examples of BeMRI synthesis results generated 
by different models. First row: MRI; second row: CT; third row: BeMRI generated with U-Net; fourth row: BeMRI generated with 
CycleGAN.

Figure 6 Qualitative comparison of MRI, CT, and BeMRI images with corresponding labels given underneath. First column: MRI; second 
column: CT; third column: BeMRI generated with U-Net; fourth column: BeMRI generated with CycleGAN; fifth column and sixth 
column: difference maps of CT and BeMRI bone structure pixel values for U-Net and CycleGAN, respectively.
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Figure 7 Comparison of 1D profiles passing through different red lines. The three different brain bone structure images are ground truth 
bone image, bone structure produced by U-Net, and CycleGAN. (A,B,C) profiles show pixel intensity in the parietal, ethmoid sinus, and 
basilar clivus sections, respectively. 
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models can generate reasonable skull structure information 
for BeMRI. However, as shown in Figure 7B,7C, some 
details may also be inaccurate compared with the ground 
truth. In Figure 7B, we found that the details in the ethmoid 
sinus region were accurately generated using U-Net but 
inaccurately generated using CycleGAN. Nonetheless, 
some regions have spurious structures generated by using 
CycleGAN, which is probably due to its unsupervised 
learning style. In Figure 7C, we chose a longer horizontal 
line in the basilar clivus to compare more pixel details of 
these two methods. It was demonstrated that on a large pixel 

scale, the image generated by the U-Net model was much 
better matched with the ground truth image compared to 
the image generated by the CycleGAN model.

Statistics of the three quantitative metrics over the 
whole brain image are given in Table 1. The results showed 
that the U-Net model had smaller MAE and higher SSIM 
values compared with the CycleGAN model. Otherwise, 
the P value of MAE between U-Net and CycleGAN 
is less than 0.05, which means that U-Net model were 
more accurate than the CycleGAN model used in our 
experiment.
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Table 1 Results of three evaluations between ground truth bone and synthesized bone images, MAE, SSIM, and PSNR

Patient
MAE ± SD SSIM ± SD PSNR ± SD (dB)

U-Net CycleGAN U-Net CycleGAN U-Net CycleGAN

1 112.78±22.04 123.25±29.34 0.93±0.06 0.89±0.10 24.65±1.97 22.97±2.11

2 125.43±26.79 132.86±31.63 0.89±0.10 0.87±0.10 24.15±1.71 22.70±1.73

3 131.22±28.99 135.27±35.18 0.86±0.09 0.82±0.12 23.61±1.90 22.30±1.89

4 128.29±27.89 131.52±35.47 0.88±0.09 0.83±0.11 23.67±1.80 22.34±1.87

5 127.70±28.70 130.01±37.48 0.89±0.07 0.83±0.11 23.60±1.85 22.27±1.98

6 126.21±29.31 130.37±36.67 0.93±0.05 0.89±0.08 23.67±1.93 22.29±1.94

7 127.21±31.90 129.98±40.04 0.86±0.08 0.84±0.09 23.55±2.04 22.30±2.09

Average 125.55±5.48 130.47±3.43 0.89±0.027 0.85±0.028 23.84±0.38 22.45±0.25

MAE, mean absolute error; SSIM, structural similarity index; PSNR, peak signal-to-noise ratio; SD, standard deviation.

Discussion

In this study, we proposed a new image modality: a multi-
modality composite image, which contains both high 
contrast soft tissue information and high contrast bone 
structure. BeMRI experiments do not only simply fuse the 
images with MRI images and sCT images. Instead, a deep 
learning method is first used to transform an MRI to into an 
sCT one which is then embedded in the bone structure part 
of an MRI image. In this way we are able to make up for the 
shortcomings of single-modality medical images and acquire 
multimodal medical image information simultaneously in 
one image. 

In the synthesis of a BeMRI image, supervised and 
unsupervised deep learning models were compared. 
Qualitative and quantitative comparison show that U-Net 
achieved the best results, with the lowest overall average 
MAE and the highest SSIM. The quality of the synthetic 
image in some regions and ROI extraction needs to be 
further studied and improved. First, the standard MRI is 
mainly aimed at soft tissue imaging, so that errors in the 
bone structure image can still be propagated into the sCT 
and BeMRI. Second, we only use the method of threshold 
segmentation to extract bone structure. The intensity of 
the synthetic image generated through the deep learning 
network may not accurately correspond to the CT value. 
Due to the existence of air in the bone, the intensity of the 
adjacent points is discontinuous, and the threshold method 
cannot accurately extract bone structure. Many studies 
have shown that deep learning can significantly improve 
the performance of bone segmentation (51,52). Third, we 
only chose the classic deep learning algorithms without 

any improvement to achieve the task. U-Net was the first 
design for biomedical image segmentation, and CycleGAN 
was first used to synthesize a natural image. However, the 
quality of the synthetic image can certainly be improved 
by selecting different networks and algorithms for datasets, 
such as a recurrent neural network (RNN), attention model 
(AM), deep residual network (DRN), long/short term 
memory (LSTM), graph network (GN). 

Despite the above drawbacks, we consider that BeMRI 
has great potential in MRIgRT. Thornton et al. (53) have 
shown, MRI more accurately segments brain tumors 
than CT. Meanwhile, Wang et al. (28) has shown that 
the planning dose based on sCT obtained from MRI is 
similar to that based on true CT in patients with NPC. 
A treatment planning that uses the BeMRI workflow in 
Figure 4 should thus be feasible. There are several clinical 
benefits of BeMRI in radiotherapy: (I) BeMRI combines 
the advantages of MRI images with high soft tissue contrast 
and CT images with high bone contrast; (II) MRI can 
provide functional evaluation of the treatment outcome of 
radiotherapy; (III) Through the CT part in BeMRI, the 
Digitally Reconstructed Radiograph can be generated and 
used for tumor localization in radiotherapy. In addition, 
such systematic errors as MRI-CT co-registration which 
may introduce geometrical uncertainties of ~2 mm for 
the brain and neck region (11), random errors will also 
be introduced if the doctors have to alternate between 
observing two independent image modes. By combining 
the information from the latter in one image mode, BeMRI 
thus makes it easier to accurately detect and locate tumors 
during NPC radiotherapy and minimizes the random error. 
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Conclusions

In this work, we proposed a new medical image modality-
CT/MRI composite, BeMRI, by using deep learning 
networks to derive sCT images from MRI images and fuse 
them to form what we call BeMRI images. Prospects for 
future work include using more advanced deep learning 
networks and real clinical data with tumor lesions. This 
work is expected to find useful applications in NPC 
MRIgRT.
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