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Background: Artificial intelligence (AI) based radiotherapy treatment planning tools have gained interest 
in automating the treatment planning process. It is essential to understand their overall robustness in various 
clinical scenarios. This is an existing gap between many AI based tools and their actual clinical deployment. 
This study works to fill the gap for AI based treatment planning by investigating a clinical robustness 
assessment (CRA) tool for the AI based planning methods using a phantom simulation approach. 
Methods: A cylindrical phantom was created in the treatment planning system (TPS) with the axial 
dimension of 30 cm by 18 cm. Key structures involved in pancreas stereotactic body radiation therapy 
(SBRT) including PTV25, PTV33, C-Loop, stomach, bowel and liver were created within the phantom. 
Several simulation scenarios were created to mimic multiple scenarios of anatomical changes, including 
displacement, expansion, rotation and combination of three. The goal of treatment planning was to deliver 
25 Gy to PTV25 and 33 Gy to PTV33 in 5 fractions in simultaneous integral boost (SIB) manner while 
limiting luminal organ-at-risk (OAR) max dose to be under 29 Gy. A previously developed deep learning 
based AI treatment planning tool for pancreas SBRT was identified as the validation object. For each 
scenario, the anatomy information was fed into the AI tool and the final fluence map associated to the plan 
was generated, which was subsequently sent to TPS for leaf sequencing and dose calculation. The final auto 
plan’s quality was analyzed against the treatment planning constraint. The final plans’ quality was further 
analyzed to evaluate potential correlation with anatomical changes using the Manhattan plot.
Results: A total of 32 scenarios were simulated in this study. For all scenarios, the mean PTV25 V25Gy 
of the AI based auto plans was 96.7% while mean PTV33 V33Gy was 82.2%. Large variation (16.3%) in 
PTV33 V33Gy was observed due to anatomical variations, a.k.a. proximity of luminal structure to PTV33. 
Mean max dose was 28.55, 27.68 and 24.63 Gy for C-Loop, bowel and stomach, respectively. Using D0.03cc as 
max dose surrogate, the value was 28.03, 27.12 and 23.84 Gy for C-Loop, bowel and stomach, respectively. 
Max dose constraint of 29 Gy was achieved for 81.3% cases for C-Loop and stomach, and 78.1% for bowel. 
Using D0.03cc as max dose surrogate, the passing rate was 90.6% for C-Loop, and 81.3% for bowel and 
stomach. Manhattan plot revealed high correlation between the OAR over dose and the minimal distance 
between the PTV33 and OAR.
Conclusions: The results showed promising robustness of the pancreas SBRT AI tool, providing 
important evidence of its readiness for clinical implementation. The established workflow could guide the 
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Introduction

Artificial intelligence (AI) has been widely investigated 
and implemented in various fields and showing promising 
results. Radiation therapy has traditionally relied on 
experienced physicians, physicists and dosimetrists 
performing multiple tasks during the radiation therapy 
treatment workflow, starting with contouring, treatment 
planning, and quality assurance (QA). Recent years saw 
substantial amount of efforts in improving efficiency of the 
radiation therapy workflow while maintaining quality (1).  
These efforts include auto contouring (2), treatment 
planning automation (3-16), and QA automation (17-21). 

With the tremendous success of AI applications in 
many domains, it is expected that more and more clinical 
deployments are forthcoming. Translating an AI tools 
to clinical use is a non-trivial task; as has been reported 
previously, many clinical uses have seen unexpected pitfalls 
despite promising initial development and validation 
results (22). It is of great importance to establish a proper 
process to ensure that the AI tools are safely and effectively 
deployed for clinical use. Unfortunately, there have been 
very few efforts reported that address this critical issue. 

Like other clinical tools routinely used in a modern 
radiation oncology department, a proper QA program 
is needed to establish understanding, confidence, and 
the proper evaluation of the device/procedure’s rigor in 
delivering the service as initially described. A traditional QA 
program is composed of initial acceptance, commissioning, 
and periodic QA (23,24). A successful QA program relies 
on proper documentation of the device functionality, the 
QA procedure, recommended frequency and tolerance, 
and the timely installation of recommended QA items. 
The AI based tools in the clinical setting should follow a 
similar assurance/assessment procedure as other techniques 
especially before delivering to clinical use, with the 
inclusion of additional items as needed by the unique 
features of the specific tool. In contrast to routine clinical 
QA, the assessment program for AI based tools should 

focus on volume testing and validation before finalizing 
the product and only needs to be done once. Due to the 
black box nature of many AI techniques, it is of extreme 
importance to understand the strength and weakness of the 
technique to avoid unexpected and unnoticed deviation in 
performance. 

AI based tools for radiation treatment planning have seen 
increased interest in clinics to improve workflow efficiency 
while still maintaining high plan quality. An example of such 
tool is RapidPlan® from Varian Medical Systems (Palo Alto, 
CA), which is capable of generating dose-volume histogram 
(DVH) predictions to guide inverse optimization (25). There 
have been many publications which validate the performance 
of RapidPlan® in multiple treatment sites (26-28).  
RapidPlan® has demonstrated that the key to successful 
clinical implementation is composed of three pillars: (I) 
volume testing, (II) performance robustness against patient 
anatomy variation, (III) user friendliness. Before delivering 
the product to the end user, the developers often share the 
responsibility of testing and validating the performance 
of the tool in various clinical scenarios. It is perhaps the 
most important to evaluate and understand the product’s 
performance under conditions where outlier data is 
presented. Unlike the development phase of the AI tool 
which focuses highly on optimizing performance, clinical 
deployment necessitates and prioritizes overall robustness.

Deep learning approaches have taken a step forward in 
automating treatment planning in recent years (9-11,29). 
Unlike traditional machine learning techniques such as the 
one used in RapidPlan®, the complexity of deep learning 
models increases exponentially with the depth and width 
of the network, often making it difficult to understand its 
limitations. Therefore, it is even more important to validate 
a deep learning based AI tool’s overall robustness against 
various clinical scenarios. In previous studies, we have 
developed AI based fluence map prediction tools using deep 
convolutional neural networks (NN) (10). We used 85 cases 
to train the NN and additional 15 cases to test it. In this 
project, we propose a simulation based clinical robustness 
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assessment (CRA) approach for assessing AI based planning 
tools and we apply this approach to assessing the pancreas 
fluence map prediction tool in terms of its robustness in 
various simulated clinical scenarios. Unlike traditional 
periodic QA program for routine clinical tasks, the CRA 
approach focuses more on the pre-clinical testing and 
validation for robustness. Our proposed CRA approach 
focuses on the first two pillars of the key items to ensure 
safe delivery: high volume testing and overall robustness 
against anatomical variation. We simulated various 
anatomical variations using real patient organ anatomy. 
We evaluated the performance of the AI tool against the 
proposed anatomy variation while expanding the size of the 
independent test cases.

Methods

Dataset

In this study, the simulation was carried out for pancreas 
stereotactic body radiation therapy (SBRT). The 
prescription was 25 Gy in 5 fractions with simultaneous 
integral boost (SIB) to 33 Gy, in accordance with our 
clinical practice. The luminal organ-at-risk (OAR) max 
dose was constrained to a maximum dose of 29 Gy, which 

included the stomach, C-Loop of the duodenum and 
bowel. All simulation plans were evaluated in the Eclipse® 
treatment planning system (TPS) version 15.6 (Varian 
Medical Systems, Palo Alto, CA) for a TrueBeam® Linear 
Accelerator (Linac) with Millennium 120 multi-leaf 
collimator (MLC). The leaf sequence was calculated with 
Smart LMC version 13.7.14, and the dose was calculated 
with the AAA dose calculation algorithm version 15.6.06.

In this study, one cylindrical phantom was generated 
for simulating the abdominal trunk of a patient. The body 
structure was generated as an ellipse with long axis of 30 cm 
(left-right) and short axis of 18 cm (anterior-posterior), 
with the density of water. Anatomical structures from a 
patient underwent pancreas SBRT were extracted and 
transferred to the phantom, including two planning target 
volume, PTV25 (prescribed to 25 Gy), PTV33 (prescribed 
to 33 Gy), and four OARs (liver, stomach, C-Loop and 
bowel). An axial view of the structure geometry is shown 
in Figure 1. 

Study design and workflow

The AI tool tested in this study is capable of predicting 
the fluence map of pancreas SBRT as reported by Wang 
et al. (10). The algorithm, in short, is composed of two 

Figure 1 Example anatomy variation of the C-Loop under scenario (A) 3 mm, (B) 5 mm, (C) 10 mm dilation, and (D) 5 mm compounded 
with 3 mm translation in either of axial directions. Result isodose line is shown in yellow for 33 Gy, dark blue for 29 Gy and cyan for 25 Gy.
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sequential deep NN, structure contours are fed in and 
the algorithm makes a prediction of the fluence map for a 
nine-field intensity modulated radiation therapy (IMRT) 
plan. The first NN predicts the optimal dose distribution 
and projects it to each field’s beam’s eye view (BEV). The 
second NN subsequently predicts the optimal fluence 
map for each field. The entire workflow includes data 
preparation, a beam dose prediction NN, dose projection, 
and a fluence map prediction NN. All the processes in 
the workflow were fully automated. The first beam dose 
prediction NN used a customized encoder-decoder design, 
which combines a downsampling block, upsampling 
blocks, and a convolutional block. For the beam dose NN, 
the input images were the axial slices including the PTV 
contours and OAR contours with 6 adjacent superior and 
inferior slices. All contour masks were assigned a value 
of the ratio of the max dose constraint (25 Gy) over the 
PTV33 prescription dose (33 Gy) for OARs, and the ratio 
of the PTV25 prescription dose (29 Gy) over the PTV33 
prescription dose (33 Gy). The output for the beam dose 
NN was the beam dose distribution for the current slice. 
All predicted beam dose slices were stacked to create a 3D 
beam dose which was subsequently projected onto the BEV 
to feed into the second fluence map NN. The fluence map 
NN took beam dose projections as input and output fluence 
map for the specific beam. The predicted fluence maps were 
then imported into the TPS. The plan is finalized after leaf 
sequencing and dose calculation with no additional manual 
editing. 

This AI tool has been validated with 15 clinical patient 
cases with promising results as reported by Wang et al. (10). 
The mean target dose difference was 0.1% between the 
auto-plan and the manually generated benchmark plan. For 
OARs, the mean and max dose difference (0.1 cc) was 0.2% 
and 4.4%, respectively. The predicted fluence map was 
deemed deliverable based on the gamma index comparing 
the optimal fluence map (before leaf sequencing) and actual 
fluence map (after leaf sequencing). The mean gamma index 
was 97.69% for the auto-plan group as compared to 98.14% 
for the benchmark plan group.

Due to a limited number of clinical pancreas SBRT 
cases, the overall robustness and sensitivity against various 
clinical scenarios is preferred to be tested using augmented 
clinical dataset and simulated on the phantom. It is due to 
the fact that the clinically available dataset for validation 
and testing is too scarce to cover a wide range of anatomical 
variations in pancreas SBRT context. In this study, we 
simulated anatomical variations using real patient anatomy. 

We evaluated the performance of the AI tool against the 
proposed anatomy variation while expanding the size of the 
independent test cases. 

The test case augmentation was broken down into two 
categories: (I) single structure anatomy variation, and (II) 
dual structure anatomy variation. Under the first category, 
we simulated four scenarios, which included five individual 
structures involved in pancreas SBRT treatment planning: 
GTV (PTV33), PTV (PTV25), C-Loop, stomach and 
bowel. Anatomical variation includes organ translation, 
dilation, rotation and/or combination of two. Under the 
second category, we focus on the dual-structure anatomy 
variation, including GTV (PTV33)/C-Loop, GTV 
(PTV33)/stomach, and GTV (PTV33)/Bowel. The details 
of the investigated scenarios are outlined in Table 1. For 
each scenario, the anatomical variation was executed in 
Matlab® R2019b (Natick, MA) and subsequently exported 
to Python for fluence map prediction using the AI tool 
described above. The automatically generated plan (auto-
plan) was assessed to the desired prescription constraints. 

Evaluation criteria

All auto-plans for the simulation test cases were evaluated 
against the standard dose constraints used in the study. To 
re-iterate, PTV coverage was assessed for PTV25 using 
V25Gy (%) and for PTV33 using V33Gy (%). Volume 
coverage at prescription levels over 95% is ideal, with 
90–95% to be acceptable. For all OARs including C-Loop, 
bowel and stomach, the percentage of cases passing max 
dose constraint of 29 Gy was reported. In addition, we 
recorded the percentage of cases passing an alternative 
max dose constraint of D0.03cc <29 Gy. For cases exceeding 
the constraint, the volume receiving more than 29 Gy was 
recorded. We define the cases having more than 1 cc of 
OAR volume exceeding 29 Gy as unacceptable and recorded 
the number of such cases.

In order to assess the correlation of the tool performance 
with changing geometry, we utilized a Manhattan plot 
(30,31) to visualize the DVH coupled with the geometry 
information, which is the minimum distance between the 
OAR and the PTV33. Manhattan plot is 4D visualization, 
where in this study the base two dimensions are dose and 
volume in 10% bins, the height of the bar is the number 
of cases falling into the specific dose-volume bin and the 
color map is the percentage of cases with close proximity to 
the higher prescribed PTV volume PTV33. The threshold 
distance was chosen as 5 mm which is the average distance 
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Table 1 Description of all scenarios simulated

Category Scenario Simulation detail (shift/margin/rotation)

Category 1 
(single  
structure 
variation)

Scenario 1  
(PTV33 displacement)

Scenario 1-1: PTV33 with X =5 mm shift

Scenario 1-2: PTV33 with X =−5 mm shift

Scenario 1-3: PTV33 with Y =5 mm shift

Scenario 1-4: PTV33 with Y =−5 mm shift

Scenario 2  
(PTV25 displacement)

Scenario 2-1: PTV25 with X =7 mm shift

Scenario 2-2: PTV25 with X =−7 mm shift

Scenario 2-3: PTV25 with Y =7 mm shift

Scenario 2-4: PTV25 with Y =−7 mm shift

Scenario 3  
(C-Loop expansion)

Scenario 3-1: C-Loop with 3 mm margin

Scenario 3-2: C-Loop with 5 mm margin

Scenario 3-3: C-Loop with 10 mm margin

Scenario 3-4: C-Loop with 5 mm margin and X=3 mm, Y=−3 mm shift

Scenario 4  
(Stomach rotation and shift)

Scenario 4-1: stomach with 15 degrees rotation and X=−10 mm, Y=10 mm shift

Scenario 4-2: stomach with 30 degrees rotation and X=−15 mm, Y=15 mm shift

Scenario 4-3: stomach with −15 degrees rotation and X=−10 mm, Y=10 mm shift

Scenario 4-4: stomach with −30 degrees rotation and X=−15 mm, Y=15 mm shift

Scenario 5  
(Bowel expansion and shift)

Scenario 5-1: bowel with 5 mm margin and Y=0 mm shift

Scenario 5-2: bowel with 5 mm margin and Y=5 mm shift

Scenario 5-3: bowel with 10 mm margin and Y=0 mm shift

Scenario 5-4: bowel with 10 mm margin and Y=5 mm shift

Category 2 
(dual  
structure 
variation)

Scenario 1  
(PTV33 displacement and 
C-Loop shift)

Scenario 1-1: PTV33 with X=5 mm shift and C-Loop with 3 mm margin

Scenario 1-2: PTV33 with X=−5 mm shift and C-Loop with 3 mm margin

Scenario 1-3: PTV33 with Y=5 mm shift and C-Loop with X=3 mm, Y=−3 mm shift

Scenario 1-4: PTV33 with Y=−5 mm shift and C-Loop with X=3 mm, Y=−3 mm shift

Scenario 2  
(PTV33 displacement and  
stomach shift)

Scenario 2-1: PTV33 with X=5 mm shift and stomach with 15 degrees rotation

Scenario 2-2: PTV33 with X=−5 mm shift and stomach with −15 degrees rotation

Scenario 2-3: PTV33 with Y=5 mm shift and stomach with 15 degrees rotation and  
X=−10 mm, Y=10 mm shift

Scenario 2-4: PTV33 with Y=−5 mm shift and stomach with -15 degree rotation and  
X=−10 mm, Y=10 mm shift

Scenario 3  
(PTV33 displacement and  
bowel shift)

Scenario 3-1: PTV33 with X=5 mm shift and bowel with 5 mm margin and Y=0 mm shift

Scenario 3-2: PTV33 with X=−5 mm shift and bowel with 10 mm margin and Y=0 mm shift

Scenario 3-3: PTV33 with Y=5 mm shift and bowel with 10 mm margin and Y=5 mm shift

Scenario 3-4: PTV33 with Y=−5 mm shift and bowel with 5 mm margin and Y=5 mm shift

X, Y and Z are left-right (LR), anterior-posterior (AP) and superior-inferior (SI) direction, respectively. Margin is isotropic in X, Y and Z 
direction. Positive value indicates left, posterior and superior direction.
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for dose fall off to 88% (29 Gy/33 Gy).

Results

An example dose distribution of the auto-plan is shown 
in Figure 1 for category 1 scenario 3. Figure 1 shows an 
example scenario which simulates the C-Loop variation 
(dark blue). Figure 1A,B,C simulates the dilation of the 
C-Loop of 3, 5 and 10 mm respectively. And Figure 1D 
simulates 5mm dilation compounded with 3 mm translation 
in either of axial direction. The data suggested that the 
proposed AI tool is robust against the anatomical variation 
by providing conformal dose distribution for both 25 Gy 
(cyan) and 33 Gy (yellow). The critical OAR sparing goal 
29 Gy isodose line has been tailored to not only conform 
to the PTV but also respect the OAR structure (C-Loop 
in dark blue) as shown in the white arrow, indicating 
overall robustness of the proposed AI tool. It is capable 
of recognizing the PTV (PTV25), GTV (PTV33) and 
OAR anatomy changes while still respecting the dose 
prescription, OAR sparing goal, and more importantly the 
choice of priority between two. 

Structure volume and key dosimetric endpoints for both 
PTVs and three luminal OARs are listed in Table 2. The 
auto-plan provided satisfactory coverage for the PTV25 
with a mean V25Gy of 96.7%. Mean PTV33 V33Gy has 
reached 82.2%, which is highly dependent on the proximity 
of the OAR to the PTV33 for each scenario as indicated 
by the standard deviation of 16.25%. Mean max dose was 
28.55, 27.68 and 24.63 Gy for C-Loop, bowel and stomach, 
respectively. Mean D0.03cc was 28.03, 27.12 and 23.84 Gy for 
C-Loop, bowel and stomach, respectively. Corresponding 
mean volume over the dose limit of 29 Gy was 0.02, 0.22 
and 0.14 cc for C-Loop, bowel and stomach. 

Key dosimetric endpoints were further partitioned 
and evaluated for different ranges for the PTV and an 
alternative max dose endpoint for the OAR in Table 3. All 
PTV25 received satisfactory coverage as indicated in Table 3.  
For PTV33, 68.75% cases received less than optimal 
coverage (<90%). Among these cases, the mean minimum 
distance to the PTV33 for OARs was 2.7 mm, while the 
corresponding value was 6.7 mm for the group with over 
90% PTV33 coverage (P<0.001, Wilcoxon Rank-Sum test). 
A boxplot of PTV25 V25Gy, PTV33 V33Gy and their 

Table 2 Geometric and dosimetric data summary for all five structures simulated in the study: PTV25, PTV33, C-Loop, bowel and stomach

Structure Metrics Mean SD

PTV25
Volume (cc) 48.58 0.00

V25Gy (%) 96.7 1.4

PTV33
Volume (cc) 1.45 0.02

V33Gy (%) 82.2 16.3

C-Loop

Volume (cc) 26.27 10.66

Max dose (Gy) 28.55 0.82

D0.03cc (Gy) 28.03 0.78

V29Gy (cc) 0.02 0.06

Bowel

Volume (cc) 346.34 61.60

Max dose (Gy) 27.68 2.54

D0.03cc (Gy) 27.12 2.52

V29Gy (cc) 0.22 0.52

Stomach

Volume (cc) 82.57 0.00

Max dose (Gy) 24.63 3.89

D0.03cc (Gy) 23.84 3.81

V29Gy (cc) 0.14 0.38

Mean and standard deviation were reported for all 32 simulated scenarios. SD, standard deviation.
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Table 3 Number of cases and percentage of cases that fall into specific range of for various dosimetric endpoints

Structure Count/percentage V >95% 90%< V ≤95% V ≤90% Dmax <29 Gy D0.03cc <29 Gy V29Gy >1 cc

PTV25 V25Gy(%) Count 31 1 0 – – –

Percentage 96.90% 3.10% 0.00% – – –

PTV33 V33Gy(%) Count 4 6 22 – – –

Percentage 12.50% 18.80% 68.80% – – –

C-Loop Count – – – 26 29 0

Percentage – – – 81.30% 90.60% 0.00%

Bowel Count – – – 25 26 3

Percentage – – – 78.10% 81.30% 9.40%

Stomach Count – – – 26 26 1

Percentage – – – 81.30% 81.30% 3.10%

PTV25 V25Gy(%) and PTV33 V33Gy(%) were reported for range (0, 90%), (90%, 95%) and (95%, 100%). For OARs, Dmax and D0.03cc 
less than 29 Gy, V29Gy over 1 cc were reported, respectively.

Figure 2 Dosimetric statistics of PTV25/33 volumetric coverage at prescription. (A) Boxplot of the prescription dose coverage for PTV25 
(left) and PTV33 (right); (B) color-coded PTV25 V25Gy distribution in range over 95% (green), 90–95% (yellow) and below 90% (red); (C) 
color-coded PTV33 V33Gy distribution in range over 95% (green), 90–95% (yellow) and below 90% (red).
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concentration for various ranges is shown in Figure 2. The 
max dose constraint of 29 Gy was met for 81.25% cases for 
the C-Loop and stomach, and 78.13% for the bowel. An 
alternative max dose constraint of D0.03cc indicated a 90.63% 
passing rate for the C-Loop, and 81.25% for the bowel and 
stomach. Significant overdosed (V29Gy >1 cc) were not 
observed for the C-Loop, while 3 and 1 cases were observed 
for bowel and stomach, respectively. A boxplot of the OAR 
max dose and pie charts showing OAR constraint passing 

rate are shown in Figure 3. 
To visualize the correlation between the DVH and the 

geometry, a.k.a. the minimum distance between the OAR 
and PTV33, Manhattan plot was generated as shown in 
Figure 4. It shows C-Loop, bowel and stomach in Figure 
4A, B and C, respectively. The base 2D is percentage dose 
and percentage volume both in 10% bin. The height is the 
number of cases falling into the bin. The color map is the 
percentage of cases that have minimum distance between 
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OAR and PTV less than 5 mm. It is noticeable that for both 
the C-Loop in (Figure 4A) and bowel in (Figure 4B), the 
excessive max dose is highly correlated with the minimum 
distance (dark red). For stomach as indicated in (Figure 
4C), the overdose (higher percentage dose for each volume 
row) is strongly associated with the minimum distance in 
all volume rows. The results indicated that the auto-plan’s 
quality in OAR dose is reflective of anatomical variation.

Discussion

In  th i s  s tudy,  we  des igned  a  CRA approach  for 
systematically validating and testing the overall robustness 
of a pancreas SBRT automatic planning AI tool against 
various geometries in a simulated phantom. This tool can be 
used to systematically validate the robustness and sensitivity 
of an AI tool based on the available anatomy variation 

Figure 3 Boxplot for OAR (A) max dose and (B) D0.03cc distribution for bowel, C-Loop and stomach; (C) pie chart for pass fail percentage of 
max dose <29 Gy (left column), D0.03cc <29 Gy (middle column) and V29Gy <1 cc (right column) for bowel (first row), C-Loop (second row) 
and stomach (bottom row), respectively. OAR, organ-at-risk.
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before releasing it for clinical use. We believe this is the 
first study ever to investigate the CRA approach for an AI 
based planning tool. The simulated scenario can mimic 
multiple possible scenarios related to geometry change 
that are commonly seen in gastro-intestinal (GI) treatment 
planning. The results have shown promising robustness of 
the AI tool, boosting the confidence of it providing solid 
performance once used in the clinic. In addition, the design 
of the CRA approach augmented the number of cases and 
scenarios that the AI tool can be tested on, which has long 
been the limitation for developing AI tools development 
due to the scarcity of data.

In this study, we also noticed that the AI tool struggles 
with scenarios where the constraints were hard to meet, 
e.g., the minimum distance between OAR and PTV is small 
and therefore the PTV coverage would be compromised 
to prioritize OAR sparing. Such scenario represents an 
“extrapolation” scenario which was not fully accounted 
for during the training phase due to the data scarcity. It is 
more prominent when the overlap volume of the luminal 
structure increases with the PTVs. It is worth mentioning 
that such scenarios with conflicting constraints would also 
substantially increase the complexity of manual planning. 
The proposed AI tool provides valuable assistance in 
generating the plan in a significantly reduced amount of 
time. We believe that, based on its current performance, the 
AI tool will bring tremendous value to treatment planning 
teams once it is rolled out to the clinic.

Designing CRA approaches for AI based treatment 
planning tools is a new area which has been rarely 
investigated. Ensuring safe delivery and quality control is 
extremely important to maintain and guarantee high quality 

care provided to the patients. This study is the first attempt 
in addressing this topic by systematically analyzing and 
evaluating the performance of the AI tool. A complete CRA 
approach for AI based automation in radiation oncology 
departments is worth the effort to ensure quality. Once the 
algorithm is thoroughly tested and validated for stability 
and robustness, proper documentation of the functionality 
and version control is necessary. Designated personnel 
responsible for development, CRA, documentation should 
be appointed. Recommended check items for acceptance, 
commissioning and periodic CRA and its frequency shall be 
documented and properly followed. 

The proposed CRA approach could also assist in 
determining the subpar performance of an AI planning tool. 
Augmenting the simulation dataset and classifying them 
into subclinical groups could help identify the area where 
the AI planning tool performs less than optimal, while 
also ensuring such performance is clinically acceptable. 
Simulating multiple scenarios is also beneficial in detecting 
geometric outliers that could deviate the AI tool’s 
performance, which could help alert the clinical user to 
monitor the performance.

This study showed an example application of CRA 
approach for a pancreas SBRT AI based planning tool for 
our clinic. It worth mentioning that this approach allows 
users from different centers to customize the approach for 
their own local data sample. It is also important that such 
approach is adopted when the AI tool is updated or re-
calibrated, based on model retraining due to data evolution.

We demonstrated the CRA approach for pancreas SBRT 
treatment planning in this study, which can be further 
expanded to other treatment sites, such as head-and-neck 

Figure 4 Manhattan plot of three OARs: (A) C-Loop, (B) bowel and (C) stomach, with respect to the endpoint of minimum distance to 
PTV33 with the threshold of 5 mm. The base two dimensions are percentage dose and percentage volume with 10% bin. The height of the 
bar indicates the number of cases falling into each bin. The color map is indicator of the percentage of cases that have minimum distance to 
PTV33 less than 5 mm. OAR, organ-at-risk.
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(HN) and lung. Attention should be made to address the 
fact that the anatomy variation pattern could be different 
across different treatment sites. Therefore, simulating 
realistic anatomy variation distribution is key to successful 
validation. In addition, site specific consideration should 
be fully considered in the simulation process, such as using 
bolus in HN treatment planning, etc. 

As more and more AI application are delivered to the 
clinical side, tremendous effort is needed to establish the 
pipeline of ensuring continuous safety practice regarding AI 
technology. A few studies have summarized the current and 
future practice of AI tools in the clinic (32,33). We believe 
the traditional acceptance-commissioning-QA pipeline 
would be a straightforward pathway of implementing the 
AI tool in the clinic. However, understanding the black box 
nature of the AI tool is the key component of ensure overall 
safety, which is not often seen in the software/hardware QA 
program in the modern radiation oncology department. 
This study focuses on addressing this issue by implementing 
the CRA pipeline, which facilitates the understanding of 
the candidate tool and benefits human-AI integration once 
deployed in the clinic. There are still many areas that need 
to be investigated regarding ensuring safe deployment and 
assisting clinical team understand and accept the AI tool in 
the future.

The results in this study show overall promising results. 
However, some limitations exist. For example, as mentioned 
before, the AI tool is not strictly following the luminal 
max dose constraint when it is challenging to meet both 
PTV and OAR constraints due to the anatomy. In future 
studies, it would be beneficial for the AI tool to appraise the 
performance on its own and provide a confidence level for 
the human operator. It is highly important that the planner 
is alerted when potential deviation could occur. Another 
limitation is that this simulation is based on a homogenous 
phantom. It worth mentioning that the AI tool tested in 
this study accounts for the heterogeneity in the CT images 
by incorporating the static dose in the deep NN design. It 
would be of clinical interest to use real patient’s CT images 
to validate the tool’s overall robustness in this regard. 
Using patient CT images to carry out simulation would 
be the next step in future studies. Finally, as the final step 
of clinical readiness evaluation, we would like to involve 
the clinician in appraising the plan acceptability from their 
perspective in the future study. The clinician will grade the 
plan as “acceptable”, “acceptable with minor improvement” 
or “not acceptable” as reported by Cox et al. (34) and Wang 
et al. (35).

Conclusions

In this study, we developed a CRA approach to validate 
the performance and robustness of the pancreas SBRT 
AI based treatment planning tool. The results showed 
overall robustness which supports subsequent clinical 
implementation. This is the first attempt to systematically 
evaluate and test an AI based tool using simulated data for 
data augmentation. This approach can be used to establish a 
testing workflow for future endeavors in AI based treatment 
planning. Complete and systematic CRA workflow would 
ensure safe delivery and quality control of AI applications in 
real clinical settings.
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