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Background: Local failure (LF) following chemoradiation (CRT) for head and neck cancer is associated 
with poor overall survival. If machine learning techniques could stratify patients at risk of treatment failure 
based on baseline and intra-treatment imaging, such a model could facilitate response-adapted approaches to 
escalate, de-escalate, or switch therapy.
Methods: A 1:2 retrospective case control cohort of patients treated at a single institution with definitive 
radiotherapy for head and neck cancer who failed locally, in-field at a primary or nodal structure were 
included. Radiomic features were extracted from baseline CT and CBCT scans at fractions 1 and 21 (delta) of 
radiotherapy with PyRadiomics and were selected for by: reproducibility (intra-class correlation coefficients 
≥0.95), redundancy [maximum relevance and minimum redundancy (mRMR)], and informativeness 
[recursive feature elimination (RFE)]. Separate models predicting LF of primaries or nodes were created 
using the explainable boosting machine (EBM) classifier with 5-fold cross-validation for (I) clinical only, (II) 
radiomic only (CT1 and delta features), and (III) fused models (clinical + radiomic). Twenty-five iterations 
were performed, and predicted scores were averaged with a parallel ensemble design. Receiver operating 
characteristic curves were compared between models with paired-samples t-tests.
Results: The fused ensemble model for primaries (using clinical, CT1, and delta features) achieved an 
AUC of 0.871 with a sensitivity of 78.3% and specificity of 90.9% at the maximum Youden J statistic. 
The fused ensemble model trended towards improvement when compared to the clinical only ensemble 
model (AUC =0.788, P=0.134) but reached significance when compared to the radiomic ensemble model  
(AUC =0.770, P=0.017). The fused ensemble model for nodes achieved an AUC of 0.910 with a sensitivity 
of 100.0% and specificity of 68.0%, which also trended towards improvement when compared to the clinical 
model (AUC =0.865, P=0.080).
Conclusions: The fused ensemble EBM model achieved high discriminatory ability at predicting LF for 
head and neck cancer in independent primary and nodal structures. Although an additive benefit of delta 
radiomics over clinical factors could not be proven, the results trended towards improvement with the fused 
ensemble model, which are promising and worthy of prospective investigation in a larger cohort.
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Introduction

Although local control following chemoradiation (CRT) 
for head and neck squamous cell carcinoma (HNSCC) 
approaches 60–80% for patients in phase III trials (1,2), 
those who do experience local failure (LF) often do so 
rapidly following therapy completion, with two-thirds of 
failures occurring within the first year. Further, these early 
failures have been associated with worse overall survival 
(OS) (3,4). Despite advancements in radiation techniques to 
spare normal tissue with intensity-modulated radiotherapy 
(IMRT) and image guidance techniques, definitive CRT still 
remains toxic with rates of grade 3+ toxicity approaching 
80% in modern trials even with supportive care (5). If 
patients at high risk of LF could be identified during 
treatment, then response-adapted approaches could be 
considered to escalate care with the objective of improving 
local control or halt CRT if deemed futile with the objective 
of limiting radiation-associated toxicity and proceeding to 
alternative treatment. Alternatively, if patients at low risk of 
LF could be identified, then de-escalation approaches (6) 
could be considered with the objective of reducing toxicity 
whilst maintaining excellent local control.

Traditionally, prognostication of HNSCC malignancies 
treated with definitive CRT has been primarily based 
on TNM stage (7,8) and clinical factors, such as p16 
and smoking status (9). However, attempts have been 
made at improving the prediction of HNSCC outcomes 
with machine learning techniques correlating imaging 
characteristics of the disease with clinical endpoints, such 
as LF. This process of extracting and quantifying numerous 
features from medical images is termed radiomics (10,11). 
Prior studies have shown promising results with the 
correlation of radiomic features of baseline CT (12-17), 
[18F] fluoro-2-deoxy-D-glucose (FDG) PET/CT (18-21),  
and MRI images (22) with LF or loco-regional failure 
(LRF). Of those that were externally validated, Folkert et al.  
showed that an FDG-PET/CT-based multiparameter 
logistic regression model achieved an AUC of 0.68 and 
sensitivity of 67% for the prediction of LF of oropharyngeal 
primaries (18), Bogowicz et al. showed that a mixed model 
using CT-based radiomics of both the primary and lymph 
nodes achieved an AUC of 0.67 for predicting LRF (12), 

Giraud et al. showed an XGboost model using CT-based 
radiomics of oropharyngeal primaries to achieve an AUC 
of 0.68 and sensitivity of 42% at predicting LRF (17), and 
Legers et al. showed CT-based radiomic risk models of 
tumor rim sub-volumes to achieve an AUC of 0.63 to 0.65 
at predicting LRF (15). While the performance of these 
models were modest, they were generated using baseline/
pre-treatment imaging and did not incorporate additional 
intra-treatment imaging that could potentially inform the 
degree of treatment response, as HNSCC primaries and 
nodes often shrink during radiotherapy (23) with the degree 
of change thought to correlate with response to treatment. 
Recently, the use of intra-treatment imaging in HNSCC 
to quantify treatment response was explored. Leger et al. 
evaluated intra-treatment CT-based radiomics at week 2 of 
radiotherapy, showing the model utilizing intra-treatment 
CT features achieved a higher AUC than those using 
baseline CT features for the prediction of LRF (C-index of 
0.79 vs. 0.65) (24), supporting the idea that intra-treatment 
CT-based radiomics may further improve the prognostic 
ability of machine learning models for HNSCC outcomes.

Although CT scans offer superior imaging quality with 
less noise and less artifact than Cone-Beam CTs (CBCTs), 
the incorporation of CTs into the adaptive workflow would 
require the coordination and acquisition of additional scans, 
resulting in additional strain on department resources 
and radiation exposure to the patient. In contrast, CBCT 
imaging is already routinely employed at many radiation 
oncology centers as part of daily or weekly treatment setup 
and verification, making it an attractive modality for the 
evaluation of treatment response during radiotherapy. 
Therefore, if the addition of CBCT-based radiomics 
to a machine learning model improved its prognostic 
ability, such a model could be incorporated into the clinic 
workflow without requiring the acquisition of additional 
imaging over what is already performed as part of 
standard of care treatment. CBCT-based radiomics have 
previously been evaluated in non-small cell lung cancer 
(25-27); however, to the best of our knowledge, CBCT-
based radiomics have yet to be evaluated in HNSCC 
malignancies for the prediction of clinical outcomes. In 
this study, we hypothesize that changes in CBCT-based 
radiomics by week 4–5 of radiotherapy will provide additive 
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prognostic benefit for the prediction of LF for locally 
advanced HNSCC malignancies. Here, we trained and 
validated an interpretable machine learning model, the 
Explainable Boosting Machine (EBM) classifier within the 
InterpretML package (28), utilizing a parallel ensemble 
technique on an internal retrospective case-control cohort 
of HNSCC malignancies, predicting LF for primary and 
nodal structures independently following completion of 
radiotherapy.

Methods 

Participants

Participants treated between April 2014 and October 2019 
at the University of Texas Southwestern Medical Center 
(UTSW) were included if they were diagnosed with locally 
advanced HNSCC (including oropharynx, supraglottic, 
glottic, or hypopharynx) and completed a full course of 
conventionally fractionated definitive radiotherapy with 
daily or weekly cone-beam computed tomography (CBCT) 
imaging. Most patients received concurrent chemotherapy 
(see Table S1). Patients were excluded if they received prior 
induction chemotherapy, had <1 year follow-up without 
reaching the endpoint of LF, had distant metastases (DM) 
at presentation, had a prior history of definitive radiation to 
the head and neck, or had the presence of a separate active 
malignancy. Resection of the primary was allowed, as long 
as there was nodal disease that was not excised and available 
for assessment (primaries and nodes were evaluated 
separately in this work). Patients were also excluded if they 
reached death prior to 1 year with ambiguity of the status 
of their malignancy, in the event that response assessment 
of their disease was not determinable. The authors are 
accountable for all aspects of the work in ensuring that 
questions related to the accuracy or integrity of any part of 
the work are appropriately investigated and resolved. The 
study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). This retrospective study 
was reviewed and approved through the institutional 
review board (IRB), with patient consent waived, and was 
conducted in accordance with the Declaration of Helsinki.

The included participants who reached LF at either a 
primary or nodal site of disease were matched with controls 
based on site of the primary, T stage, N stage, and p16 
status. Case-control matching was done in a 1:2 fashion 
and was performed in SPSS version 26.0 (Armonk, NY: 
IBM Corp.). Matching was also attempted with 6 variables, 

adding in smoking status and the chemotherapy agent used; 
however, less than 60 cases were identified from the pool 
of controls so these two additional variables were omitted 
from case-control matching. Baseline characteristics 
between cases and controls were evaluated for differences 
with Fisher’s exact tests, Mann-Whitney U tests, and 
independent samples t-tests for categorical, ordinal, and 
continuous data, respectively, with a P value of <0.05 set as 
significant on a 2-tailed test.

 

Patterns of failure analysis

LF was defined as imaging or pathologic evidence of 
recurrence within the high dose (70 Gy) volume. If 
LF was defined by imaging, this was termed positive if 
these imaging changes were associated with a change in 
management, including but not limited to surgical resection, 
neck dissection, re-irradiation, radiation to a distant site, or 
systemic therapy. If surgery was performed and pathology 
was negative, then this was not included as a LF event. 
The dates for LF and DM events were recorded as the 
date of the imaging scan demonstrating either LF or DM 
(respectively) that led to a change in management, or when 
imaging was not present, the date at which a biopsy was 
performed for confirmation of progression. The date for 
OS was the date of death from any cause. For all outcomes, 
the time to event was from the date of completion of 
radiotherapy to the date of the event. For patterns of failure 
analysis, baseline scans were compared to post-treatment 
imaging and pathology reports at time of recurrence (if 
reached) to determine the primary or nodal structures that 
met the endpoint of local recurrence.

Actuarial LF and DM rates were estimated with 
cumulative incidence in R version 4.0.3 (29), with death 
being the competing risk, using the package “cmprsk” 
(30,31). Actuarial OS rates were estimated with Kaplan-
Meier curves in SPSS.

 

Imaging parameters and selection

At baseline simulation, all patients were simulated on a 
Philips 16-slice Brilliance large-bore CT simulator with 
iodinated IV contrast. Immobilization most commonly 
included the use of a long IMRT mask and a molded head 
cushion with or without a bite block depending on the 
location of the primary.

CBCT imaging was performed either daily or weekly 
depending on the time period at which they were treated 
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at this facility and the provider. CBCTs were performed 
on a Varian TrueBeam™ or a Varian VitalBeam™ machine 
(Varian Medical Systems, Palo Alto, CA) and acquired at 
210 degrees of rotation. See supplementary file for imaging 
parameters (Table S2).

All patients had at least 3 sets of images included for 
analysis, including: the baseline CT simulation scan (CT1), 
CBCT prior to the initial fraction (CBCT01), and CBCT 
prior to fraction 21 (CBCT21). During review of imaging, 
some CBCTs were noted to be degraded by an artifact 
appearing to originate primarily along the surfaces of bone 
and cartilage (see description in the Results section, entitled 
Reproducibility of Features). When comparing test-retest 
scans (CBCTa and CBCTb, respectively), this artifact was 
noted to come and go between scans performed on the same 
patient prior to the same fraction of radiotherapy often 
only 2–5 minutes apart. Therefore, patients with CBCT01 
or CBCT21 scans affected by this artifact were replaced 
with a separate repeat scan done prior to the same fraction, 
preferably, or a CBCT +/− 1 fraction if a repeat scan was 
not available. 

In addition to the above, patients with at least 2 CBCT 
scans performed prior to the same fraction were selected 
for test - retest analysis (CBCTa and CBCTb as described 
above). Scans were not restricted to a specific fraction. If a 
patient had more than one fraction with test-retest scans, 
the earliest fraction with repeat scans were chosen. 

Segmentation

All initial segmentations on CT1 were contoured by a 
board-certified radiation oncologist specializing in head 
and neck radiotherapy. In this study, all primary structures 
and nodal structures receiving 70 Gy were selected for 
evaluation. Nodal contours were separated into distinct 
structures, unless the nodes were abutting each other or 
matted. Therefore, each patient could have 1 or more 
separate structures for radiomic assessment. 

For CBCT images, all segmentations were deformed 
from CT1 with rigid + multi-pass deformable image 
registration in Velocity (Varian Medical Systems, Palo 
Alto, CA). All deformed contours were manually edited 
by the physician to verify the inclusion of all affected 
mucosa if applicable and to exclude any incident bone, air, 
cartilage, or adipose tissue that may be overlapping the 
GTV boundaries. This process was repeated for subsequent 
CBCTs, including CBCT01, CBCT21, CBCTa, and 
CBCTb. 

Of note, segmentations were not modified if there 
was presence of metal artifacts on the same axial slice as 
the contour. At study inception, we had assumed that the 
change in 3D shape or size could potentially be informative 
for delta radiomics in predicting LF; therefore, we elected 
to not delete slices affected by metal artifacts during 
segmentation, as the truncation of the contours would affect 
the shape features extracted. Overall, 29 primary structures 
and 19 nodal structures had at least one slice with metal 
artifact secondary to dental implants. 

 

Radiomic extraction

All features were extracted with PyRadiomics version 
3.0.1 (32), which is an Image Biomarker Standardisation 
Initiative (IBSI) compliant toolbox (33,34). Features were 
extracted from CT1, CBCT01, CBCT21, CBCTa, and 
CBCTb, separately, at a fixed bin width of 25 HU, with 
sitkBSpline interpolation, and resegmentation set to exclude 
less than −100 Hounsfield Units (HU). The upper limit 
for resegmentation was set to 7,000 HU to avoid excluding 
higher HU data. Note that normal non-involved organs, 
such as bone and cartilage, were manually contoured out 
prior to radiomic extraction. Normalized weighting, voxel-
size resampling, and filters (such as Laplacian of Gaussian or 
Wavelet filters) were not performed. One hundred and two 
features were extracted, including 18 first order, 14 shape, 
24 gray level co-occurrence matrix (GLCM), 16 gray level 
run length matrix (GLRLM), 16 gray level size zone matrix 
(GLSZM), and 14 gray level dependence matrix (GLDM) 
features. A detailed description of all extracted features can 
be found in PyRadiomics documentation (pyradiomics.
readthedocs.io) and are listed in the supplementary file. To 
calculate delta radiomic features, or the change in radiomic 
features over time, features extracted from CBCT01 
were subtracted from the same features of CBCT21 to 
yield the difference. Here, a positive delta feature would 
be increasing in value from CBCT01 to CBCT21 and a 
negative feature would be decreasing.

Fused ensemble machine learning pipeline

The machine learning pipeline for the fused ensemble 
model is summarized in Figure 1 and detailed below. For 
each model, the data was split into 5 folds stratified for the 
outcome of LF with the sklearn StratifiedKFold function (35).  
Four folds were used as the exploratory (training/validation) 
set and one fold was held out (test) for each iteration, 

https://cdn.amegroups.cn/static/public/QIMS-21-274-supplementary.pdf
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Figure 1 Machine learning pipeline for the fused ensemble model. For radiomic extraction, the primary and nodal structures receiving  
70 Gy as delineated on the CT simulation scan (CT1), CBCT at fraction 1 (CBCT01), CBCT at fraction 21 (CBCT21), and test/retest 
scans (CBCTa/CBCTb) were extracted with PyRadiomics. Delta features were calculated as the difference between CBCT21 and CBCT01. 
Datasets were split into 5-folds for each iteration, stratified for local failure (note that both clinical and radiomic models had the same splits 
for each iteration, so that the same patients were in each fold). Clinical features (A) were used as input in a separate model using the EBM 
classifier and were not subject to the same feature selection steps (denoted as NA), as they were based on prior knowledge. Radiomic features 
(B) were selected for in the exploratory set by excluding: (I) delta features with low reproducibility (Intra-Class Correlation Coefficient, 
or ICC, <0.95); (II) features that were redundant (pymRMR); and (III) features that were not informative (based on importance scores for 
predicting local failure in the EBM model of the exploratory set). Following feature selection, EBM models were fit to the entire exploratory 
set (80% of dataset), selected features were applied to the test set (C), and the EBM model predicted the probability of local failure for 
each structure in the Test fold (D). Following this, the clinical and radiomic predicted scores were fused (E; see the methods section for a 
description of the equation). Five-fold cross-validation was done, so that each fold was used as a test holdout set. This entire process was 
then re-iterated 25 times, and the predicted scores for each structure were averaged to create an ensemble score (F), which was used for 
predicting local failure. EBM, explainable boosting machine.
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with the intent for 5-fold cross-validation. For all steps 
in radiomic feature selection described subsequently, the 
exploratory set was used, and the selected features were 
later applied to the test fold prior to model performance 
evaluation (the test set was not seen during feature 
selection). Note clinical features were selected for based on 
prior knowledge (3,7-9) and did not go through the feature 
selection process. Clinical features included: primary site of 
disease, smoking status, p16 status, chemotherapy agent, T 
stage (AJCC 7), and N stage (AJCC 7).

Feature stability/reproducibility

Repeat radiomic features extracted from CBCTa and 
CBCTb were compared with Intra-Class Correlation 
coefficients (ICC) (36) to determine the reproducibility of 
features. Given artifacts were noted in some CBCTs (as 
described in the Results section, entitled Reproducibility of 
Features), a subgroup analysis was performed comparing the 
ICC values of test-retest scans having the artifact described 
above with test-retest scans that did not using independent 
samples t-tests. For subsequent feature selection, a 
restrictive ICC threshold ≥0.95 was used.

Maximum relevance and minimum redundancy (mRMR)

Selection for features with mRMR (37,38) was performed in 
python with pymRMR, where features were selected for on 
the basis of the outcome class (relevance) and then selected 
against the dependence/similarity to other relevant features 
(redundancy). For this project, pymRMR was performed 
with the Mutual Information Difference (MID) scheme 
with 30 features selected for. 

Recursive feature elimination (RFE) with cross-validation

RFE without (39) and with cross-validation (RFECV) (35)  
have previously been described, where the least important 
features are iteratively deleted from the model until reaching 
the combination of features with the highest cross-validation 
score which are then chosen as the optimal features for 
the given dataset. For this project, RFECV was adapted 
for use of the EBM as the classifier. First, the importance 
scores were calculated for each feature in the model fitted 
to the exploratory dataset. At each step, the feature with 
the lowest mean importance score was eliminated from the 
model, and then 5-fold cross-validation was performed on 
the exploratory set to determine the mean AUC with the 

currently included features. This process was repeated until 
a minimum of 5 features were left in the model. Following 
completion, the combination of features with the highest 
mean AUC scores were selected and used in the test set.

EBM model 

EBM is a python-based machine learning classifier from 
InterpretML, termed a “glassbox model”, which is a 
generalized additive model using methods including 
bagging, gradient boosting, and automatic interaction 
detection, producing graphs that not only show model 
performance but also show details of how the included 
features contribute to the overall prediction (28). This 
aids in the overall interpretability of the EBM model (40), 
given issues may be identified explaining unexpected model 
predictions during review of specific feature contributions. 

EBM models were created for nodal and primary 
structures separately that predicted LF. Separate models 
were created for the following sets of features: (I) clinical; (II) 
radiomic (CT1 + delta features); (III) CT1 radiomic only; 
(IV) delta radiomic only; and (V) a combined feature model 
including clinical, radiomic, and delta features in the same 
EBM model. Subsequently, a (VI) fused model was created 
by fusing the predicted scores of the separate (I) clinical and 
(II) radiomic models with the following equation:

 ] [ ( ) ( ) ( ) ( )0 1[ , 1 * 1 * 1 , 1 * * ]F F rad clin rad clinp p w p w p w p w p= − − + − − + 	 [1]

Here, prad is the predicted score for the presence of LF 
from the radiomic model, pclin is the predicted score for the 
presence of LF from the clinical model, w is the weighting 
factor, and pF0 and pF1 are the fused predicted scores for 
the absence and presence of LF, respectively, where the 
following constraint was met: pF0 + pF1 = 1. The weighting 
factor (w) is defined as:

 

( )
   

 
clin

rad clin

AUCw
AUC AUC

=
+ 	 [2]

Here, the AUC was derived from the average of five 5-fold 
cross-validation iterations of the exploratory (training/
validation) sets for each iteration, for the radiomic and 
clinical models (AUCrad and AUCclin, respectively), where 
the following constraint was met: w + (1 − w) = 1. Note 
that AUC values of the test sets were not used to avoid 
information leakage via the weighting variable at time of 
fusion.

Following 5-fold cross-validation and calculation of 
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the test predicted scores, the entire above process was re-
iterated 25 times, for both the parallel ensemble schema and 
to reduce the impact of randomness on biasing the reported 
results. 

Ensemble learning methods have previously been 
employed to reduce variance within datasets and improve 
accuracy (41,42). Note that the EBM classifier already 
employs a sequential form of ensemble learning with 
bagging and gradient boosting in its classification scheme. 
In this project, we have performed an additional parallel 
ensemble step where 25 iterations of the above described 
process are iterated independently with different 5-fold 
splits, leading to a total of 125 models with 25 used for 
each separate structure in the test holdout sets. To calculate 
ensemble scores, these predicted scores were averaged for 
each structure.

Ensemble scores were plotted on receiver operating 
characteristic (ROC) and precision-recall (PRC) curves in 
SPSS for the primary and nodal models. Performance of 
each model was compared against random chance (where 
an area under the curve, or AUC, of 0.50 was assumed to 
be due to random chance) with one-sample t-tests, and 
performance between models were compared with paired-
samples AUC t-tests in SPSS using the ROC analysis 
function. Significance was set at a P value <0.05 using a 
2-tailed test.

Results

Baseline characteristics: patients

Thirty cases (patients who reached LF) were matched 
with 60 controls and were included in this analysis, with 
median follow-up times of 420.5 (IQR, 358.5 to 664) 
and 758.5 (IQR, 617 to 976.5) days, respectively. Of the 
cases, 23 patients failed in their primary, and 12 patients 
failed in at least 1 node (with a total of 23 primary and 19 
nodal structures reaching the endpoint of LF). Baseline 
characteristics of the included patients are summarized 
in Table S1. The site of the primary was significantly 
different between groups (P=0.021), with relatively more 
oropharyngeal, glottic, and hypopharyngeal primaries in 
cases. Furthermore, p16 status significantly differed between 
groups (P=0.032), being positive in less cases (33.3%) than 
controls (53.3%), respectively. There was a similar amount 
of unknown or not applicable p16 cases (33.3% vs. 33.3%). 
T stage and N stage did not differ significantly between 
cases and controls (P=0.170 and P=0.493, respectively).

For the cases, median actuarial time to LF was  
135 days, with the actuarial 1 year LF rate being 90% (see 
cumulative incidence in Figure S1). Of note, one patient in 
the control group did experience regional failure outside 
of the high dose (70 Gy) volume at 305 days following 
therapy completion; however, this was not counted as LF 
given the criteria for this study. The actuarial 1 year DM 
rate for the cases was 40%, which was higher than controls 
(6.7%, P<0.001; see cumulative incidence in Figure S2). 
Median actuarial time to death was 520 days for cases and 
not reached for controls, with actuarial 2-year OS rates 
of 33.0% and 100% for cases and controls, respectively 
(P<0.001, see Kaplan-Meier curves in Figure S3).

Baseline characteristics: structures

Most patients had ≤5 separate structures contoured for 
analysis (83.3% cases, 88.3% controls; P=0.519), including 
both the primaries and nodes. A total of 23 primary and 19 
nodal structures reached LF (with 21 primary events and 15 
nodal events occurring before year 1), with an associated 66 
primary and 194 nodal structures which did not (controls). 
For primary structures, the primary site (P=0.004) and T 
stage (P=0.049) differed between cases and controls. The 
median actuarial time to LF was 173 days for primary cases, 
with a 1-year actuarial rate of LF for all primary structures 
being 33.7%. For nodal structures, the p16 status (P=0.001) 
and T stage (P=0.013) differed between cases and controls, 
and the median actuarial time to LF for cases was 127 days 
and 1-year actuarial rate of LF for all nodal structures was 
7.0%. See Tables S3,S4  and Figure S4.

Reproducibility of features

Of the 90 included patients, 57 patients had at least two 
CBCTs performed before the same fraction of radiotherapy 
and were included in the reproducibility analysis. A total 
of 56 primary and 144 nodal structures were included. For 
primary structures, about half were oropharyngeal (17 base 
of tongue, 9 tonsillar, 2 soft palate, and 3 oropharynx NOS) 
and the rest were non-oropharyngeal (14 supraglottic, 5 
glottic, and 6 hypopharyngeal). For nodal structures, some 
spanned >1 neck level due to size or if they were matted or 
abutting adjacent involved nodes; therefore, >1 neck level 
could have been recorded for each structure. The most 
common involved level was level II (n=87) followed by 
levels III (n=51), IV (n=23), VII (n=10), I (n=8), V (n=5), 
and VI (n=3).

https://cdn.amegroups.cn/static/public/QIMS-21-274-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-21-274-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-21-274-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-21-274-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-21-274-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-21-274-supplementary.pdf
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When comparing extracted radiomic features of the test-
retest CBCTs (CBCTa and CBCTb), 78.4% and 30.4% 
features for primaries and 92.2% and 40.2% features for 
nodes had ICC scores >0.75 and >0.95, respectively (see 
Figure 2 and Table S5). However, during review of these 
test-retest images, it was noted that some scans were 
affected by an artifact that appeared to originate along the 
surface of bone and cartilage as shown in Figure 3. This 
artifact was noted to come and go between test-retest scans 
within minutes of each other of unclear etiology. Twenty 
patients (35%, 20/57) were noted to have at least one test-
retest scan with this artifact. A subcohort analysis was 
performed comparing the ICC values between patients 
with and without this artifact, and it was noted to worsen 
the reproducibility of features, with a mean ICC score for 
all nodal features of 0.839 vs. 0.900 (presence vs. absence 
of artifact, P=0.003) and for all primary features of 0.750 
vs. 0.792 (presence vs. absence of artifact, P=0.099). The 
main feature group affected by this artifact appeared to be 
GLCM features, reaching significance for nodes (mean ICC 
of 0.788 vs. 0.883, presence vs. absence of artifact, P=0.024) 
and trended towards significance for primaries (0.681 vs. 
0.775, P=0.068) (see Tables 1,2). Therefore, it was decided 
to avoid this artifact in subsequent radiomic extractions 
of delta features. For CBCT01 or CBCT21 scans where 
this artifact was identified, another CBCT done prior to 
the same fraction was preferentially selected if present or 
another CBCT ±1 fraction if not.

Models predicting LF of primary structures

All primary ensemble models were significantly different 
from random chance (P≤0.004). The fused ensemble model 
achieved the highest AUC of 0.871 at predicting LF for head 
and neck primaries in the test cohort, which was numerically 
higher than the clinical ensemble but did not reach 
significance (AUC =0.788, P=0.134) and was only marginally 
higher than the combined feature ensemble (AUC =0.853, 
P=0.494). However, the fused ensemble model’s AUC was 
significantly higher than the radiomic ensemble (AUC =0.770, 
P=0.017), CT1 ensemble (AUC =0.687, P=0.004), and delta 
ensemble models (AUC =0.696, P=0.002). The maximum 
Youden J statistic for the fused ensemble model was 0.692 
and correlated with a sensitivity of 78.3% and 90.9% for this 
model. See a summary of the primary models in Table 3, ROC 
curves in Figure 4, and the distribution of scores of the top 
performing fused ensemble model in Figure 5. 

Models predicting LF of nodal structures

All nodal ensemble models performed relatively well 
achieving AUCs >0.80 and were significantly different 
than random chance (P<0.001). The fused ensemble model 
also achieved the highest AUC of 0.910 at predicting LF 
for head and neck nodes in the test cohort, which was 
numerically higher than the clinical ensemble but only 
trended towards significance (AUC =0.865, P=0.080) and 

Figure 2 Histogram demonstrating the frequency distribution of intra-class coefficients of primary (A) and nodal structures (B), 
demonstrating the frequency of reproducible CBCT-based features as determined from analysis of test-retest CBCT scans. 78.4% and 
30.4% features for primaries and 92.2% and 40.2% features for nodes had ICC scores >0.75 and >0.95, respectively. CBCT, cone-beam 
computed tomography; ICC, Intra-Class Correlation Coefficient.
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Figure 3 Examples of the artifact originating along bone/cartilage surfaces in test-retest CBCTs. It was noted to come and go within 
minutes on scans acquired on the same patient prior to the same fraction of radiotherapy of unclear etiology. On subgroup analysis of 
reproducibility results, this artifact appeared to decrease the intra-class correlation coefficients of most feature groups, appearing to mostly 
affect GLCM features. CBCT, cone-beam computed tomography; GLCM, gray level co-occurrence matrix.

Table 1 Intra-class correlation coefficients (ICC) of test-retest CBCTs separated by the presence or absence of bone/cartilage artifact for primary 
structures

Feature class
(−) No artifact (+) Artifact present

Difference P value†

Mean ICC St. Dev. Mean ICC St. Dev.

Total (all features) 0.792 0.151 0.750 0.208 −0.042 0.099

Shape 0.941 0.032 0.986 0.016 0.045 0.000

First order 0.678 0.206 0.620 0.245 −0.058 0.447

GLCM 0.775 0.110 0.681 0.218 −0.094 0.068

GLRLM 0.815 0.139 0.748 0.158 −0.068 0.207

GLSZM 0.785 0.125 0.764 0.125 −0.021 0.639

GLDM 0.798 0.128 0.782 0.185 −0.016 0.016
†ICC values were compared across groups with independent-samples t-tests. CBCT, cone-beam computed tomography.

was again only marginally higher than the combined feature 
ensemble (AUC =0.893, P=0.212). The fused ensemble 
model was not significantly different from the radiomic 
ensemble (AUC =0.880, P=0.268) or delta ensemble  
(AUC =0.867, P=0.150) models, and was only significantly 
better than the CT1 ensemble (AUC =0.854, P=0.026) 

model. The maximum Youden J statistic for the fused 
ensemble model was 0.680 and correlated with a sensitivity 
of 100.0% and a specificity of 68.0% for this model. See 
a summary of the nodal models in Table 4, ROC curves 
in Figure 6, and the distribution of scores of the top 
performing fused ensemble model in Figure 7.
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Table 2 Intra-class correlation coefficients (ICC) of test-retest CBCTs separated by the presence or absence of bone/cartilage artifact for nodal 
structures

Feature class
(−) No artifact (+) Artifact present

Difference P value†

Mean ICC St. Dev. Mean ICC St. Dev.

Total (all features) 0.900 0.098 0.839 0.179 −0.062 0.003

Shape 0.994 0.011 0.995 0.008 0.001 0.726

First order 0.879 0.112 0.773 0.244 −0.105 0.105

GLCM 0.883 0.090 0.788 0.177 −0.095 0.024

GLRLM 0.894 0.075 0.850 0.097 −0.044 0.162

GLSZM 0.872 0.123 0.818 0.219 −0.054 0.398

GLDM 0.904 0.090 0.864 0.099 −0.041 0.408
†ICC values were compared across groups with independent-samples t-tests. CBCT, cone-beam computed tomography.

Table 3 Summary of models predicting LF of HNSCC primary structures

Model AUC
95% CI 
(lower)

95% CI 
(upper)

P value  
(vs. random 

chance)†

P value 
(vs. fused 

ensemble)‡

Max  
Youden J 
statistic

Predicted score 
threshold at  

max J statistic

Sensitivity 
(%)

Specificity 
(%)

Fused ensemble 0.871 0.788 0.954 0.000 NA 0.692 0.290 78.3 90.9

Combined feature ensemble 0.853 0.771 0.935 0.000 0.494 0.565 0.161 91.3 56.5

Clinical only ensemble 0.788 0.680 0.895 0.000 0.134 0.469 0.252 69.6 77.3

Radiomic ensemble (CT1 + Delta) 0.770 0.655 0.885 0.000 0.017 0.491 0.237 87.0 49.1

CT1 only ensemble 0.687 0.561 0.813 0.004 0.004 0.340 0.291 52.2 81.8

Delta only ensemble 0.696 0.571 0.822 0.002 0.013 0.345 0.208 73.9 60.6
†ROC curves were compared against random change (AUC =0.5) with one-sample t-tests and ‡ROC curves were also compared against 
the fused ensemble model with paired-samples t-tests in SPSS with the ROC analysis function. A P value <0.05 (italicized) denotes 
significance on a 2-tailed test. LF, local failure; HNSCC, head and neck squamous cell carcinoma.

Discussion

In this exploratory study, we demonstrated that a novel 
approach of analyzing discrete primary and nodal HNSCC 
structures within the same patient separately yielded 
high discriminatory ability at predicting LF in a fused 
ensemble model developed from a single institutional 
cohort predominantly consisting of early LF (≤12 months). 
Here, the thought was that radiographic changes within 
one structure may not be indicative of response in another; 
therefore, we sought to evaluate these independently. The 
highest AUC values were achieved with the fused models 
using an interpretable machine learning algorithm (EBM) 
and a parallel ensemble design for both the primaries 
(AUC =0.871) and nodes (AUC =0.910), incorporating 
both clinical and radiomic (baseline CT1 and delta 

CBCT) features as input. However, when compared to the 
clinical only model, the fused model’s performance only 
trended towards improvement and did not reach statistical 
significance for both primary (P=0.134) and nodal (P=0.080) 
clinical comparisons. Although we could not prove that 
radiomic findings provided additive prognostic benefit over 
traditional clinical features in an EBM model statistically, 
we view these results as promising given the limited sample 
size may have inhibited our ability to detect a difference 
secondary to inadequate power and given the absolute AUC 
improvement was quite large for both the primary (0.083) 
and nodal (0.045) fused/clinical comparisons. 

The most frequently included delta features were shape 
features, with change in maximum 3D diameter and change 
in sphericity being the most commonly included radiomic 
features in primary (69.6%) and nodal (80.8%) models, 
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Table 4 Summary of models predicting LF of HNSCC nodal structures

Model AUC
95% CI 
(lower)

95% CI 
(upper)

P value  
(vs. random 

chance)†

P value 
(vs. fused 

ensemble)‡

Max Youden 
J statistic

Predicted score 
threshold at  

max J statistic

Sensitivity 
(%)

Specificity 
(%)

Fused ensemble 0.910 0.853 0.967 0.000 NA 0.680 0.066 100.0 68.0

Combined feature ensemble 0.893 0.819 0.941 0.000 0.212 0.686 0.046 100.0 68.6

Clinical only ensemble 0.865 0.802 0.929 0.000 0.080 0.648 0.061 94.7 70.1

Radiomic ensemble (CT1 + Delta) 0.880 0.819 0.941 0.000 0.268 0.643 0.060 94.7 69.6

CT1 only ensemble 0.854 0.784 0.924 0.000 0.026 0.613 0.056 100.0 61.3

Delta only ensemble 0.867 0.803 0.930 0.000 0.150 0.613 0.054 100.0 61.3
†ROC curves were compared against random change (AUC =0.5) with one-sample t-tests and ‡ROC curves were also compared against 
the fused ensemble model with paired-samples t-tests in SPSS with the ROC analysis function. A P value <0.05 (italicized) denotes 
significance on a 2-tailed test. LF, local failure; HNSCC, head and neck squamous cell carcinoma.

Figure 4 ROC curves of models predicting local failure of primary 
structures. See Table 3 for a description of this figure. ROC, 
receiver operating characteristic.

Figure 5 Distribution of predicted scores of the fused ensemble 
model predicting local failure of primary structures. The yellow 
horizontal bar is the cutoff value at the max Youden J statistic, 
which yielded a sensitivity of 78.3% and specificity of 90.9%.

respectively (see Tables S6,S7). The inclusion of these 
features are intuitive in that volume reduction of a tumor 
is often equated to response, and prior small retrospective 
experiences have supported that shrinkage of the tumor 
over the course of or following radiotherapy is associated 
with better local outcomes (43,44). In contrast, change 
in texture features were not commonly incorporated in 
EBM models, occurring less than ~20% of the time due to 
exclusion during feature selection. The seemingly weaker 
informativeness of delta texture features may be due to the 
(I) inherent artifacts of CBCT scans and metal artifacts 
from dental implants that could interfere with accurate 

quantification of texture features and (II) the inherent 
heterogeneity of both primary and nodal structures in 
this dataset making broad changes in texture features over 
time difficult to interpret. Prior retrospective CT studies 
evaluating the evolution of morphology of nodes following 
CRT have shown that baseline hypodensity/fat sub-volume 
component, volume/size, and HU standard deviation were 
associated with response/regression following therapy (45). 
It is unclear if delta texture analysis would be improved if 
subgroups were created based on baseline imaging features, 
such as presence/absence of a necrotic center, single/matted 
nodes, etc.; however, the size of this cohort precluded 

ROC curve

0.0      0.2      0.4      0.6      0.8      1.0

1-Specificity

1.0

0.8

0.6

0.4

0.2

0.0

S
en

si
tiv

ity

Source of the curve
Fused
Combined Feature
Clinical
CT1
Delta
Radiomic
Reference Line

0.6

0.5

0.4

0.3

0.2

0.1

0

E
ns

em
bl

e 
sc

or
e

Fused ensemble model (primaries)

Case (n=23)

Control (n=66)

https://cdn.amegroups.cn/static/public/QIMS-21-274-supplementary.pdf


4792 Morgan et al. Ensemble fused EBM model predicts head and neck cancer LF

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(12):4781-4796 | https://dx.doi.org/10.21037/qims-21-274

meaningful subgroup analyses. 
To our knowledge, this is the first published experience 

using CBCT-based delta radiomics for head and neck 
malignancies in machine learning, as prior experiments 
incorporating CBCT-based delta radiomic features have 
primarily focused on non-small cell lung cancer (NSCLC) 
(27,46-49). Initial findings have been disparate, with 
one study showing stratification of OS based on delta  
features (48) and two studies failing to demonstrate an 

additive prognostic benefit for CBCT-based radiomics 
when added to planning CT features for OS and LRR (47) 
or PFS (49). This discrepancy could be due to differences in 
datasets, acquisition parameters of scans, segmentation and 
deformable image registration, feature selection strategies, 
and data analysis. Of these, the study by van Timmeren 
et al. included the largest dataset from four separate 
institutions, correlating CBCT-based delta radiomic 
features, planning CT, and clinical features with LRR and 
OS. After their model was trained on data from the first 
institution and validated on the other three, the additive 
prognostic benefit of CBCT-based delta radiomic features 
could not be confirmed (47), which the authors noted 
differences in image quality (varying treatment machines), 
segmentation, and deformable image registration between 
centers may have affected the ability for these models to be 
validated across institutions. Indeed, it is well known that 
CBCT-based radiomic features vary substantially based on 
the scanner and acquisition parameters (25), which may 
limit the generalizability of a model developed at a single 
center; however, external validation remains to be tested for 
our proposed models.

The primary model was limited in that it included 
multiple sites of disease in the head and neck that are known 
to behave differently. This heterogeneity of morphology 
at baseline could decrease the potentially informative 
associations of various features, given it is possible that 
different disease sites may exhibit different delta CBCT-
based radiomics over time when responding to or not 
responding to treatment. If this were the case, different 
sites of disease would be better suited to separate models. 
However, the limited size of the cohort limited meaningful 
subgroup analyses in this study and did not allow us to test 
this hypothesis. Other published models of LF or LRF in 
the head and neck region have tended to be more restrictive 
with the primary sites included, e.g., oropharyngeal (17-19),  
laryngeal/hypopharyngeal (20), hypopharyngeal (22). Still, 
our model compared favorably to previously published 
models predicting LF or LRF of HNSCC (as discussed in 
the introduction). Additionally, our analysis is limited by 
a lack of comparison of delta radiomic features to other 
known imaging modalities, such as PET/CT (18-21), 
that have been shown to be informative for LF prediction 
of HNSCC. Therefore, we cannot comment on the 
superiority of this radiomic method in comparison to other 
radiomic methods that use features from other modalities. 

From a clinical standpoint, this model is limited from 
its retrospective nature and small sample size. Although 

Figure 6 ROC curves of models predicting local failure of nodal 
structures. See Table 4 for a description of this figure. ROC, 
receiver operating characteristic.

Figure 7 Distribution of predicted scores of the fused ensemble 
model predicting local failure of nodal structures. The yellow 
horizontal bar is the cutoff value at the max Youden J statistic, 
which yielded a sensitivity of 100.0% and specificity of 68.0%.
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case-control matching was performed to reduce variances 
in baseline characteristics between cohorts, this selection 
method may introduce bias in that the controls may not 
be representative of the normal population (here, “normal 
population” references patients with HNSCC that undergo 
definitive radiotherapy with or without chemotherapy and 
achieve local control). In addition, the small sample size 
(n=90) of the dataset used may not adequately reflect the 
extent of imaging variations of both baseline CT and intra-
treatment CBCT scans over the course of radiotherapy. 
Therefore, further validation of this model in larger 
prospective cohorts is warranted.

Conclusions

Overall, the fused ensemble model incorporating both 
clinical and radiomic (CT1 and delta CBCT) features 
achieved the highest discriminatory ability for predicting 
LF of primaries (AUC =0.871) and for nodes (AUC 
=0.910). Although the fused ensemble model did not 
reach significance when compared to the clinical only 
models, this may have been due to a lack of power from 
the limited sample size of this study, and we find the trend 
towards better performance promising. If these exploratory 
models were shown in a larger retrospective and/or in a 
separate prospective cohort to stratify LF accurately and 
to be superior to the clinical only model, this could aid in 
the early decision for response-adapted approaches with 
an imaging modality that is already incorporated in the 
routine course of radiotherapy for HNSCC malignancies. 
The proposed fused ensemble EBM models are worthy of 
further investigation in larger prospective cohorts.
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Supplementary

Figure S1 Cumulative incidence of patients achieving local failure at any structure receiving 70 Gy (A) and of cases only (B). The control 
subgroup is not shown given no structures receiving 70 Gy reached local failure. The 1 year actuarial rate for local failure was 30% for the 
entire cohort, 90% for cases, and 0% for controls.

Figure S2 Cumulative incidence of patients achieving distant metastases for the entire cohort (A), for cases (B), and for controls (C). The 1 
year actuarial rate for distant metastases was 17.8% for the entire cohort, 40% for cases, and 6.7% for controls. Distant metastasis rates of 
cases were significantly higher (worse) than controls (P<0.001).
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Figure S3 Kaplan-Meier curves of overall survival for the entire cohort (A), cases (B), and controls (C). Actuarial 1yr and 2yr overall survival 
was 91.1% and 77.3% for the entire cohort, 73.2% and 33.0% for cases, and 100% and 100% for controls. Cases (log rank P<0.001). Overall 
survival rates of cases were significantly lower (worse) than controls (P<0.001).

Figure S4 Cumulative incidence of primary structures achieving local failure at any structure receiving 70 Gy (A) and of nodal structures (B). 
The 1 year actuarial rate of local failure for primary structures was 33.7% and for nodes was 7.0%. Note that the crude rate of events was 
23 (of 89 structures) primary events at any time point (21 occurring at or before year 1) and 19 (of 213 structures) nodal events at any time 
point (15 occurring at or before year 1).
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Figure S5 Precision-recall curves of the ensemble models 
predicting local failure of primary structures.

Figure S6 Precision-recall curves of the ensemble models 
predicting local failure of nodal structures.

Table S1 Baseline characteristics for case-control cohort

Cases Controls
P value

n % n %

Primary side 0.366†

Right 15 50.0 24 40.0

Left 9 30.0 27 45.0

Midline or bilateral 6 20.0 9 15.0  

Primary site 0.021†

Base of tongue 5 16.7 21 35.0

Tonsil 10 33.3 11 18.3

Soft palate 0 0.0 2 3.3

Oropharynx NOS 2 6.7 5 8.3

Supraglottic 4 13.3 16 26.7

Glottic 5 16.7 1 1.7

Hypopharynx 4 13.3 4 6.7  

Smoking status 0.418†

Never 8 26.7 17 28.3

Yes, <10 pack years 4 13.3 2 3.3

Yes, >10 pack years 14 46.7 31 51.7

Yes, unknown pack years 4 13.3 10 16.7  

Table S1 (continued)
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Table S1 (continued)

Cases Controls
P value

n % n %

p16 status 0.032†

Negative 10 33.3 6 10.0

Positive 10 33.3 32 53.3

Equivocal 2 3.3

Unknown or NA 10 33.3 20 33.3  

Chemotherapy 0.225†

Cisplatin 20 66.7 45 75.0

Cetuximab 5 16.7 4 6.7

Carboplatin alone 1 3.3 0 0.0

Carbo/Taxol 3 10.0 10 16.7

None/altered fractionation 1 3.3 1 1.7  

T stage (AJCC 7) 0.17‡

T1 3 10.0 8 13.3

T2 5 16.7 16 26.7

T3 11 36.7 20 33.3

T4a 9 30.0 16 26.7

T4b 2 6.7 0 0.0  

N stage (AJCC 7) 0.493‡

N0 6 20.0 9 15.0

N1 0 0.0 6 10.0

N2a 1 3.3 3 5.0

N2b 11 36.7 22 36.7

N2c 10 33.3 19 31.7

N3 2 6.7 1 1.7  

Follow-up (days)

Median 420.5 758.5

IQR 358.5–664 617–976.5

Range 135–1029   343–1187    

Number of structures per patient 0.519§

1 9 30.0 9 15.0

2 5 16.7 18 30.0

3 2 6.7 11 18.3

4 4 13.3 8 13.3

Table S1 (continued)
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Table S1 (continued)

Cases Controls
P value

n % n %

5 5 16.7 7 11.7

6 1 3.3 3 5.0

7 1 3.3 1 1.7

8 1 3.3 2 3.3

9 1 3.3 1 1.7

10 0 0.0 0 0.0

11 1 3.3 0 0.0  

Distant metastases during follow-up

Yes 18 60.0 5 8.3

No 12 40.0 55 91.7  

Death during follow-up

Yes 20 66.7 2 3.3

No 10 33.3 58 96.7  

All statistical analyses were performed in SPSS version 26 with significance defined as a P value <0.05 on a 2-sided test, with either  
Fisher’s exact test†, Mann-Whitney U test‡, or an independent samples t-test§.

Table S2 MetaData for included scans: baseline CT simulation scan (CT1), CBCT prior to first fraction (CBCT01), CBCT prior to twenty-first 
fraction (CBCT21), and test and retest CBCT scans (CBCTa and CBCTb, respectively)

CT1 CBCT01 CBCT21 CBCTa CBCTb

Slice thickness          

Median 3.000 1.990 1.990 1.990 1.990

IQR 3.000 to 3.000 1.990 to 1.990 1.990 to 1.990 1.990 to 1.990 1.990 to 1.990

Range 1.500 to 3.000 1.989 to 1.992 1.990 to 1.992 1.990 to 1.990 1.990 to 1.990

Pixel spacing

Median 1.171 0.511 0.511 0.511 0.511

IQR 1.171 to 1.171 0.511 to 0.511 0.511 to 0.511 0.511 to 0.511 0.511 to 0.511

Range 1.171 to 1.367 0.511 to 0.512 0.511 to 0.512 0.511 to 0.511 0.511 to 0.511

KVP

Median 120 100 100 100 100

IQR 120 to 120 100 to 100 100 to 100 100 to 100 100 to 100

Range 120 to 120 100 to 125 100 to 125 100 to 125 100 to 125

Exposure

Median 300 150 150 150 150

IQR 300 to 300 150 to 150 150 to 150 150 to 150 150 to 150

Range 299 to 300 74 to 751 145 to 751 149 to 751 149 to 751

All CBCT matrix sizes were 512×512×93 pixels. CT matrix sizes were similar except for the Z dimension which varied based on provider 
selection at time of CT simulation.
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Table S3 Baseline characteristics for primary structures

 

Cases Controls

P valuen % n %

Structure side 0.653†

Right 10 43.5 27 40.9

Left 8 34.8 29 43.9

Midline or bilateral 5 21.7 10 15.2  

Primary site 0.004†

Base of tongue 3 13.0 24 36.4

Tonsil 7 30.4 12 18.2

Soft palate 0 0.0 2 3.0

Oropharynx NOS 1 4.3 6 9.1

Supraglottic 3 13.0 17 25.8

Glottic 5 21.7 1 1.5

Hypopharynx 4 17.4 4 6.1  

Smoking status 0.212†

Never 7 30.4 17 25.8

Yes, <10 pack years 3 13.0 2 3.0

Yes, >10 pack years 9 39.1 37 56.1

Yes, unknown pack years 4 17.4 10 15.2  

p16 status 0.323†

Negative 7 30.4 10 15.2

Positive 8 34.8 32 48.5

Equivocal 0 0.0 2 3.0

Unknown or NA 8 34.8 22 33.3  

Chemotherapy 0.157†

Cisplatin 15 65.2 49 74.2

Cetuximab 4 17.4 5 7.6

Carboplatin alone 1 4.3 0 0.0

Carbo/Taxol 2 8.7 11 16.7

None/altered fractionation 1 4.3 1 1.5  

T stage (AJCC 7) 0.047‡

T1 0 0.0 9 13.6

T2 4 17.4 17 25.8

T3 10 43.5 21 31.8

T4a 7 30.4 19 28.8

T4b 2 8.7 0 0.0  

Table S3 (continued)
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Table S3 (continued)

 

Cases Controls

P valuen % n %

N stage (AJCC 7) 0.904‡

N0 6 26.1 10 15.2

N1 0 0.0 6 9.1

N2a 0 0.0 4 6.1

N2b 8 34.8 24 36.4

N2c 9 39.1 20 30.3

N3 0 0.0 2 3.0  

Follow-up (days)

Median 427 751.5

IQR 364.5–642 448.5–971

Range 236–1029   135–1187    

All statistical analyses were performed in SPSS version 26 with significance defined as a P value <0.05 on a 2-sided test, with either  
Fisher’s exact test† or a Mann-Whitney U test‡.

Table S4 Baseline characteristics of nodal structures

 
Cases Controls

P value
n % n %

Primary side 0.8†

Right 11 57.9 95 49.0

Left 6 31.6 70 36.1

Mid 2 10.5 29 14.9  

Primary site 0.973†

Base of tongue 7 36.8 77 39.7

Tonsil 7 36.8 53 27.3

Soft palate 0 0.0 1 0.5

Oropharynx NOS 1 5.3 15 7.7

Supraglottic 0 0.0 33 17.0

Glottic 3 15.8 1 0.5

Hypopharynx 1 5.3 14 7.2  

Nodal laterality 1†

Ipsilateral 12 63.2 116 59.8

Contralateral 5 26.3 49 25.3

NA (primary midline or bilateral) 2 10.5 29 14.9  

Table S4 (continued)
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Table S4 (continued)

 
Cases Controls

P value
n % n %

Smoking status 0.056†

Never 2 10.5 67 34.5

Yes, <10 pack years 1 5.3 11 5.7

Yes, >10 pack years 14 73.7 83 42.8

Yes, unknown pack years 2 10.5 33 17.0  

p16 status 0.001†

Negative 11 57.9 29 14.9

Positive 4 21.1 101 52.1

Equivocal 0 0.0 8 4.1

Unknown or NA 4 21.1 56 28.9  

Chemotherapy 0.099†

Cisplatin 12 63.2 149 76.8

Cetuximab 3 15.8 18 9.3

Carboplatin alone 1 5.3 0 0.0

Carbo/Taxol 3 15.8 26 13.4

None/altered fractionation 0 0.0 1 0.5  

T stage (AJCC 7) 0.013‡

T1 5 26.3 22 11.3

T2 7 36.8 42 21.6

T3 4 21.1 69 35.6

T4a 3 15.8 56 28.9

T4b 0 0.0 5 2.6  

N stage (AJCC 7) 0.342‡

N0 0 0.0 5 2.6

N1 0 0.0 7 3.6

N2a 1 5.3 3 1.5

N2b 7 36.8 77 39.7

N2c 9 47.4 101 52.1

N3 2 10.5 1 0.5  

Follow-up (days)

Median 414 728

IQR 266–809 427–926

Range 135–890   237–1187    

All statistical analyses were performed in SPSS version 26 with significance defined as a P value <0.05 on a 2-sided test, with either  
Fisher’s exact test† or a Mann-Whitney U test‡.
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Table S5 Intra-class correlation coefficients of CBCT radiomic values

Primaries (ICC) Nodes (ICC)

shape_Elongation 0.963 0.980

shape_Flatness 0.982 0.981

shape_LeastAxisLength 0.998 0.999

shape_MajorAxisLength 0.990 0.999

shape_Maximum2DDiameterColumn 0.994 0.999

shape_Maximum2DDiameterRow 0.992 0.999

shape_Maximum2DDiameterSlice 0.995 0.999

shape_Maximum3DDiameter 0.993 0.999

shape_MeshVolume 0.999 1.000

shape_MinorAxisLength 0.996 0.999

shape_Sphericity 0.988 0.994

shape_SurfaceArea 0.999 1.000

shape_SurfaceVolumeRatio 0.995 0.970

shape_VoxelVolume 0.999 1.000

firstorder_10Percentile 0.772 0.836

firstorder_90Percentile 0.735 0.904

firstorder_Energy 0.948 0.988

firstorder_Entropy 0.849 0.866

firstorder_InterquartileRange 0.858 0.892

firstorder_Kurtosis 0.609 0.832

firstorder_Maximum 0.812 0.877

firstorder_MeanAbsoluteDeviation 0.849 0.913

firstorder_Mean 0.602 0.861

firstorder_Median 0.546 0.849

firstorder_Minimum 0.000 0.626

firstorder_Range 0.812 0.878

firstorder_RobustMeanAbsoluteDeviation 0.856 0.893

firstorder_RootMeanSquared 0.746 0.906

firstorder_Skewness 0.733 0.770

firstorder_TotalEnergy 0.948 0.988

firstorder_Uniformity 0.846 0.775

firstorder_Variance 0.836 0.914

glcm_Autocorrelation 0.589 0.832

glcm_ClusterProminence 0.502 0.887

glcm_ClusterShade 0.648 0.962

Table S5 (continued)
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Table S5 (continued)

Primaries (ICC) Nodes (ICC)

glcm_ClusterTendency 0.814 0.961

glcm_Contrast 0.921 0.968

glcm_Correlation 0.787 0.795

glcm_DifferenceAverage 0.934 0.969

glcm_DifferenceEntropy 0.932 0.963

glcm_DifferenceVariance 0.917 0.968

glcm_Id 0.948 0.957

glcm_Idm 0.948 0.958

glcm_Idmn 0.747 0.732

glcm_Idn 0.821 0.875

glcm_Imc1 0.939 0.851

glcm_Imc2 0.782 0.662

glcm_InverseVariance 0.892 0.911

glcm_JointAverage 0.596 0.808

glcm_JointEnergy 0.846 0.863

glcm_JointEntropy 0.894 0.923

glcm_MCC 0.726 0.723

glcm_MaximumProbability 0.868 0.807

glcm_SumAverage 0.596 0.808

glcm_SumEntropy 0.841 0.865

glcm_SumSquares 0.840 0.973

glrlm_GrayLevelNonUniformity 0.992 0.998

glrlm_GrayLevelNonUniformityNormalized 0.852 0.794

glrlm_GrayLevelVariance 0.839 0.906

glrlm_HighGrayLevelRunEmphasis 0.644 0.855

glrlm_LongRunEmphasis 0.955 0.849

glrlm_LongRunHighGrayLevelEmphasis 0.960 0.841

glrlm_LongRunLowGrayLevelEmphasis 0.909 0.739

glrlm_LowGrayLevelRunEmphasis 0.742 0.876

glrlm_RunEntropy 0.838 0.884

glrlm_RunLengthNonUniformity 0.995 0.999

glrlm_RunLengthNonUniformityNormalized 0.954 0.963

glrlm_RunPercentage 0.952 0.956

glrlm_RunVariance 0.953 0.846

Table S5 (continued)
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Table S5 (continued)

Primaries (ICC) Nodes (ICC)

glrlm_ShortRunEmphasis 0.953 0.955

glrlm_ShortRunHighGrayLevelEmphasis 0.708 0.878

glrlm_ShortRunLowGrayLevelEmphasis 0.767 0.896

glszm_GrayLevelNonUniformity 0.993 0.996

glszm_GrayLevelNonUniformityNormalized 0.787 0.758

glszm_GrayLevelVariance 0.820 0.763

glszm_HighGrayLevelZoneEmphasis 0.813 0.787

glszm_LargeAreaEmphasis 0.973 0.995

glszm_LargeAreaHighGrayLevelEmphasis 0.986 0.997

glszm_LargeAreaLowGrayLevelEmphasis 0.953 0.990

glszm_LowGrayLevelZoneEmphasis 0.820 0.726

glszm_SizeZoneNonUniformity 0.983 0.996

glszm_SizeZoneNonUniformityNormalized 0.678 0.777

glszm_SmallAreaEmphasis 0.642 0.793

glszm_SmallAreaHighGrayLevelEmphasis 0.792 0.756

glszm_SmallAreaLowGrayLevelEmphasis 0.808 0.596

glszm_ZoneEntropy 0.836 0.915

glszm_ZonePercentage 0.932 0.961

glszm_ZoneVariance 0.973 0.995

gldm_DependenceEntropy 0.688 0.890

gldm_DependenceNonUniformity 0.995 0.999

gldm_DependenceNonUniformityNormalized 0.958 0.953

gldm_DependenceVariance 0.948 0.890

gldm_GrayLevelNonUniformity 0.986 0.997

gldm_GrayLevelVariance 0.835 0.915

gldm_HighGrayLevelEmphasis 0.623 0.849

gldm_LargeDependenceEmphasis 0.941 0.926

gldm_LargeDependenceHighGrayLevelEmphasis 0.940 0.858

gldm_LargeDependenceLowGrayLevelEmphasis 0.871 0.652

gldm_LowGrayLevelEmphasis 0.733 0.881

gldm_SmallDependenceEmphasis 0.942 0.962

gldm_SmallDependenceHighGrayLevelEmphasis 0.832 0.944

gldm_SmallDependenceLowGrayLevelEmphasis 0.924 0.875
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Table S6 Frequency of features selected for models in the parallel ensemble schema for the fused model predicting local failure of primaries

Feature Frequency of selection (# of models) Percent (% of models)

Site_Primary 125 100.0%

Smoking_Status 125 100.0%

p16 125 100.0%

Chemo 125 100.0%

T_Stage 125 100.0%

N_Stage 125 100.0%

Delta_original_shape_Maximum3DDiameter 87 69.6%

CT1_original_gldm_DependenceVariance 81 64.8%

CT1_original_glszm_SizeZoneNonUniformity 80 64.0%

CT1_original_glszm_LargeAreaEmphasis 47 37.6%

CT1_original_shape_SurfaceVolumeRatio 44 35.2%

CT1_original_shape_Sphericity 41 32.8%

CT1_original_glszm_SmallAreaHighGrayLevelEmphasis 37 29.6%

Delta_original_shape_MajorAxisLength 34 27.2%

CT1_original_glszm_ZoneEntropy 33 26.4%

Delta_original_glrlm_GrayLevelNonUniformity 29 23.2%

Delta_original_gldm_GrayLevelNonUniformity 28 22.4%

CT1_original_gldm_DependenceEntropy 26 20.8%

CT1_original_glszm_SmallAreaLowGrayLevelEmphasis 25 20.0%

Delta_original_glszm_LargeAreaEmphasis 24 19.2%

Delta_original_shape_Maximum2DDiameterSlice 24 19.2%

CT1_original_glszm_HighGrayLevelZoneEmphasis 23 18.4%

CT1_original_gldm_LargeDependenceEmphasis 22 17.6%

Delta_original_shape_VoxelVolume 21 16.8%

CT1_original_glszm_LargeAreaLowGrayLevelEmphasis 21 16.8%

Delta_original_shape_Elongation 20 16.0%

CT1_original_gldm_SmallDependenceHighGrayLevelEmphasis 20 16.0%

Delta_original_glszm_SizeZoneNonUniformity 17 13.6%

Delta_original_shape_MinorAxisLength 16 12.8%

CT1_original_gldm_GrayLevelNonUniformity 16 12.8%

Delta_original_glszm_LargeAreaLowGrayLevelEmphasis 16 12.8%

Delta_original_glszm_LargeAreaHighGrayLevelEmphasis 15 12.0%

Delta_original_glszm_ZoneVariance 15 12.0%

CT1_original_firstorder_TotalEnergy 15 12.0%

Delta_original_shape_SurfaceArea 14 11.2%

Table S6 (continued)
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Table S6 (continued)

Feature Frequency of selection (# of models) Percent (% of models)

Delta_original_shape_LeastAxisLength 14 11.2%

Delta_original_glrlm_RunLengthNonUniformityNormalized 13 10.4%

CT1_original_glszm_GrayLevelNonUniformity 13 10.4%

CT1_original_glszm_GrayLevelVariance 13 10.4%

CT1_original_gldm_SmallDependenceEmphasis 12 9.6%

CT1_original_glrlm_RunVariance 11 8.8%

CT1_original_gldm_LargeDependenceHighGrayLevelEmphasis 11 8.8%

CT1_original_gldm_DependenceNonUniformity 11 8.8%

Delta_original_shape_Maximum2DDiameterColumn 10 8.0%

Delta_original_gldm_DependenceNonUniformityNormalized 10 8.0%

CT1_original_glszm_LowGrayLevelZoneEmphasis 10 8.0%

CT1_original_firstorder_Entropy 9 7.2%

CT1_original_gldm_SmallDependenceLowGrayLevelEmphasis 9 7.2%

CT1_original_glrlm_ShortRunHighGrayLevelEmphasis 8 6.4%

CT1_original_glszm_SmallAreaEmphasis 8 6.4%

CT1_original_glszm_ZonePercentage 8 6.4%

CT1_original_glcm_Imc2 7 5.6%

Delta_original_glrlm_RunLengthNonUniformity 7 5.6%

CT1_original_gldm_HighGrayLevelEmphasis 7 5.6%

CT1_original_glszm_LargeAreaHighGrayLevelEmphasis 6 4.8%

CT1_original_glszm_GrayLevelNonUniformityNormalized 6 4.8%

CT1_original_shape_Flatness 6 4.8%

CT1_original_gldm_DependenceNonUniformityNormalized 6 4.8%

CT1_original_gldm_LargeDependenceLowGrayLevelEmphasis 6 4.8%

Delta_original_glrlm_RunPercentage 6 4.8%

CT1_original_firstorder_10Percentile 5 4.0%

CT1_original_glrlm_RunPercentage 5 4.0%

CT1_original_glrlm_RunEntropy 5 4.0%

CT1_original_glszm_SizeZoneNonUniformityNormalized 5 4.0%

Delta_original_glszm_GrayLevelNonUniformity 5 4.0%

CT1_original_glcm_ClusterTendency 5 4.0%

CT1_original_glszm_ZoneVariance 5 4.0%

CT1_original_gldm_LowGrayLevelEmphasis 4 3.2%

Delta_original_shape_Maximum2DDiameterRow 4 3.2%

Table S6 (continued)
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Table S6 (continued)

Feature Frequency of selection (# of models) Percent (% of models)

CT1_original_firstorder_Maximum 4 3.2%

Delta_original_shape_Flatness 3 2.4%

CT1_original_shape_Maximum2DDiameterRow 3 2.4%

Delta_original_shape_MeshVolume 3 2.4%

CT1_original_firstorder_Skewness 3 2.4%

Delta_original_glrlm_LongRunEmphasis 3 2.4%

Delta_original_gldm_DependenceNonUniformity 3 2.4%

CT1_original_shape_VoxelVolume 3 2.4%

CT1_original_glcm_SumEntropy 3 2.4%

Delta_original_glrlm_ShortRunEmphasis 3 2.4%

CT1_original_glrlm_GrayLevelVariance 2 1.6%

CT1_original_firstorder_Minimum 2 1.6%

Delta_original_shape_SurfaceVolumeRatio 2 1.6%

CT1_original_glrlm_LongRunHighGrayLevelEmphasis 2 1.6%

CT1_original_shape_SurfaceArea 2 1.6%

Delta_original_glrlm_RunVariance 1 0.8%

CT1_original_glcm_SumSquares 1 0.8%

CT1_original_shape_MajorAxisLength 1 0.8%

CT1_original_glcm_ClusterProminence 1 0.8%

CT1_original_firstorder_Range 1 0.8%

CT1_original_glrlm_RunLengthNonUniformity 1 0.8%

CT1_original_glrlm_ShortRunLowGrayLevelEmphasis 1 0.8%

CT1_original_firstorder_Mean 1 0.8%

Delta_original_shape_Sphericity 1 0.8%

CT1_original_firstorder_MeanAbsoluteDeviation 1 0.8%

CT1_original_firstorder_Uniformity 1 0.8%

CT1_original_shape_Maximum3DDiameter 1 0.8%

CT1_original_glcm_InverseVariance 1 0.8%

CT1_original_firstorder_Energy 1 0.8%

CT1_original_glcm_Id 1 0.8%

Features with a frequency of selection of 0 were excluded from the below chart. Note that all clinical features were included based on prior 
knowledge, resulting in 100% inclusion in all models using clinical features.
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Table S7 Frequency of features selected for models in the parallel ensemble schema for the fused model predicting local failure of nodes

Feature Frequency of selection (# of models) Percent (% of models)

Site_Primary 125 100.0%

Smoking_Status 125 100.0%

p16 125 100.0%

Chemo 125 100.0%

T_Stage 125 100.0%

N_Stage 125 100.0%

Delta_original_shape_Sphericity 101 80.8%

CT1_original_glcm_Correlation 86 68.8%

CT1_original_glrlm_LongRunHighGrayLevelEmphasis 81 64.8%

CT1_original_gldm_LargeDependenceLowGrayLevelEmphasis 48 38.4%

CT1_original_glrlm_RunEntropy 45 36.0%

CT1_original_glszm_LargeAreaLowGrayLevelEmphasis 43 34.4%

CT1_original_firstorder_TotalEnergy 38 30.4%

CT1_original_glrlm_RunVariance 34 27.2%

CT1_original_gldm_SmallDependenceLowGrayLevelEmphasis 32 25.6%

CT1_original_glcm_Id 30 24.0%

CT1_original_glrlm_GrayLevelNonUniformity 29 23.2%

CT1_original_glszm_GrayLevelNonUniformityNormalized 29 23.2%

CT1_original_glszm_SizeZoneNonUniformity 27 21.6%

CT1_original_glszm_ZoneEntropy 27 21.6%

CT1_original_glcm_InverseVariance 27 21.6%

CT1_original_glcm_MaximumProbability 27 21.6%

Delta_original_glcm_Id 26 20.8%

Delta_original_firstorder_Energy 26 20.8%

Delta_original_glcm_Idm 26 20.8%

CT1_original_glrlm_LongRunLowGrayLevelEmphasis 26 20.8%

Delta_original_shape_Maximum2DDiameterRow 22 17.6%

Delta_original_shape_Elongation 21 16.8%

Delta_original_firstorder_TotalEnergy 20 16.0%

CT1_original_shape_Flatness 20 16.0%

CT1_original_glszm_GrayLevelNonUniformity 17 13.6%

CT1_original_gldm_GrayLevelNonUniformity 17 13.6%

CT1_original_gldm_DependenceEntropy 17 13.6%

Delta_original_glcm_DifferenceEntropy 15 12.0%

Table S7 (continued)
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Table S7 (continued)

Feature Frequency of selection (# of models) Percent (% of models)

CT1_original_glrlm_LongRunEmphasis 13 10.4%

CT1_original_glcm_JointEnergy 13 10.4%

CT1_original_glszm_SmallAreaLowGrayLevelEmphasis 12 9.6%

Delta_original_glcm_DifferenceAverage 12 9.6%

CT1_original_gldm_LowGrayLevelEmphasis 12 9.6%

CT1_original_firstorder_InterquartileRange 12 9.6%

CT1_original_shape_Maximum3DDiameter 11 8.8%

CT1_original_glszm_LargeAreaEmphasis 10 8.0%

CT1_original_glszm_ZonePercentage 10 8.0%

CT1_original_glrlm_LowGrayLevelRunEmphasis 10 8.0%

CT1_original_glszm_HighGrayLevelZoneEmphasis 10 8.0%

CT1_original_gldm_LargeDependenceHighGrayLevelEmphasis 10 8.0%

CT1_original_firstorder_RobustMeanAbsoluteDeviation 10 8.0%

CT1_original_shape_VoxelVolume 9 7.2%

CT1_original_glszm_LowGrayLevelZoneEmphasis 9 7.2%

Delta_original_shape_Maximum2DDiameterColumn 9 7.2%

CT1_original_firstorder_Energy 8 6.4%

CT1_original_shape_SurfaceArea 8 6.4%

CT1_original_glszm_SizeZoneNonUniformityNormalized 8 6.4%

CT1_original_shape_MeshVolume 8 6.4%

CT1_original_glszm_GrayLevelVariance 7 5.6%

CT1_original_gldm_SmallDependenceHighGrayLevelEmphasis 7 5.6%

CT1_original_glszm_SmallAreaHighGrayLevelEmphasis 7 5.6%

CT1_original_glszm_SmallAreaEmphasis 7 5.6%

CT1_original_firstorder_Skewness 7 5.6%

CT1_original_gldm_SmallDependenceEmphasis 7 5.6%

Delta_original_shape_LeastAxisLength 6 4.8%

Delta_original_glrlm_GrayLevelNonUniformity 6 4.8%

CT1_original_gldm_DependenceNonUniformityNormalized 5 4.0%

CT1_original_firstorder_Minimum 5 4.0%

CT1_original_glszm_LargeAreaHighGrayLevelEmphasis 5 4.0%

Delta_original_shape_Flatness 5 4.0%

Delta_original_glrlm_ShortRunEmphasis 4 3.2%

CT1_original_shape_MinorAxisLength 4 3.2%

Table S7 (continued)
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Table S7 (continued)

Feature Frequency of selection (# of models) Percent (% of models)

Delta_original_glcm_ClusterTendency 3 2.4%

Delta_original_shape_MeshVolume 3 2.4%

CT1_original_glrlm_RunLengthNonUniformity 3 2.4%

Delta_original_glcm_Contrast 3 2.4%

CT1_original_gldm_DependenceVariance 3 2.4%

CT1_original_glrlm_RunPercentage 3 2.4%

CT1_original_shape_LeastAxisLength 2 1.6%

Delta_original_shape_MinorAxisLength 2 1.6%

CT1_original_gldm_DependenceNonUniformity 2 1.6%

Delta_original_shape_SurfaceVolumeRatio 2 1.6%

CT1_original_glcm_Idn 2 1.6%

Delta_original_glrlm_RunLengthNonUniformityNormalized 2 1.6%

CT1_original_glcm_ClusterShade 2 1.6%

CT1_original_glrlm_ShortRunHighGrayLevelEmphasis 2 1.6%

Delta_original_glcm_DifferenceVariance 2 1.6%

CT1_original_shape_SurfaceVolumeRatio 2 1.6%

CT1_original_glszm_ZoneVariance 2 1.6%

CT1_original_shape_Maximum2DDiameterSlice 2 1.6%

CT1_original_glcm_Idm 2 1.6%

Delta_original_shape_MajorAxisLength 2 1.6%

Delta_original_shape_Maximum3DDiameter 2 1.6%

CT1_original_firstorder_10Percentile 1 0.8%

Delta_original_glszm_LargeAreaLowGrayLevelEmphasis 1 0.8%

Delta_original_shape_Maximum2DDiameterSlice 1 0.8%

Delta_original_glcm_ClusterShade 1 0.8%

Delta_original_glszm_SizeZoneNonUniformity 1 0.8%

Delta_original_glrlm_RunLengthNonUniformity 1 0.8%

CT1_original_gldm_GrayLevelVariance 1 0.8%

CT1_original_shape_Maximum2DDiameterRow 1 0.8%

Delta_original_gldm_GrayLevelNonUniformity 1 0.8%

Delta_original_shape_VoxelVolume 1 0.8%

Features with a frequency of selection of 0 were excluded from the below chart. Note that all clinical features were included based on prior 
knowledge, resulting in 100% inclusion in all models using clinical features.


