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Background: Intravascular ultrasound (IVUS) provides good insight into lumen boundary and plaques; 
however, it is still difficult to detect functionally significant stenosis from IVUS images for the guidance 
of coronary percutaneous intervention (PCI). This study aimed to develop a novel method to estimate 
fractional flow reserve (FFR) value for determining the functional significance of coronary artery disease 
through the fusion of IVUS and X-ray angiographic images.
Methods: We developed a novel approach to 3D vessel reconstruction by integrating IVUS with X-ray 
angiographic images. Based on the reconstructed geometry and the inlet flow derived from the thrombolysis 
in myocardial infarction (TIMI) frame count, a simplified fluid dynamics equation was established to 
compute the pressure drop and IVUS-derived FFR (AccuFFRivus) was subsequently obtained. To validate 
the feasibility and performance of this IVUS-based FFR method, we performed AccuFFRivus calculations 
on 32 coronary vessels with invasive FFR as the reference standard.
Results: Great correlation (r=0.86, P<0.001) was observed between AccuFFRivus and FFR. The area under 
the receiver-operating characteristic curve (AUC) was higher for AccuFFRivus than minimal lumen area 
(MLA, <4 mm2) and diameter stenosis rate (DS% ≥50%) [0.98 (95% CI: 0.86 to 1.0) vs. 0.78 (95% CI: 0.60 
to 0.91) and 0.66 (95% CI: 0.47 to 0.82)]. Bland-Altman plot showed a mean difference value of –0.011 (limits 
of agreement: –0.156 to 0.134).
Conclusions: AccuFFRivus is a novel method for hybridizing IVUS and X-ray angiographic images to 
identify functionally significant stenosis with FFR ≤0.80. The good diagnostic performance from the initial 
validation study demonstrates the potential for clinical utilization of physiologically guided decision-making. 
Further validation is required in future studies with a large number of cases.
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Introduction

Coronary artery imaging is of great value in the diagnosis 
of coronary artery disease. Non-invasive and invasive 
imaging methods, such as coronary computed tomography 
angiography (CTA), magnetic resonance angiography 
(MRA), coronary angiography (CAG), intravascular 
ultrasound (IVUS), and optical coherence tomography 
(OCT), visualize the structure of the arterial lumen, plaque, 
and vessel wall.

In the clinical setting, decision-making for coronary 
percutaneous intervention (PCI) is guided by fractional flow 
reserve (FFR), which is considered the gold standard and 
measured by introducing a pressure wire into the coronary 
artery. Several studies have emphasized that functional 
assessment of FFR can improve clinical outcomes and 
reduce unnecessary revascularizations (1,2). Taylor et al. (3)  
proposed a simulation method to compute the FFR of 
the coronary arteries by using CTA images. Tu et al. (4) 
developed a rapid computational method of FFR, denoted 
as quantitative flow ratio (QFR) from 3-dimensional (3D) 
quantitative coronary angiography (QCA). Ha et al. (5) and 
Lee et al. (6) presented an algorithm to compute OCT-
based FFR. Images from IVUS have higher resolution than 
coronary CTA and X-ray angiography. Furthermore, IVUS 
is already currently more widely applied than OCT. Thus, 
it is of clinical importance to develop the IVUS-based FFR 
technique. This study aimed to introduce a new method for 
calculating FFR from IVUS and CAG, called AccuFFRivus.

In this study, we segmented accurate lumen boundaries 
from IVUS images via the deep learning method. The 
path of the IVUS catheter was extracted from coronary 
angiographic images. Then, IVUS images were combined 
with the catheter path to merge into a 3D coronary arterial 
geometry. To calculate the coronary FFR, a simplified 
pressure-drop formula was used in the coronary artery 
geometry. To demonstrate the method's validity, we 
compared AccuFFRivus results with clinically measured 
FFR for 32 vessels from 31 patients.

Methods

This article describes a new and robust method for 
3D reconstruction of coronary arteries by fusing CAG 
and IVUS images and calculating patient-specific FFR. 
Comparison with invasive FFR measurements was made 
to validate the feasibility of this method. The overall flow 
chart of AccuFFRivus calculation is shown in Figure 1.

Study population

To validate the method described above, we recruited 
34 patients with both IVUS and FFR measurements 
available. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The Ethics 
Committee approved the study of the Second Affiliated 
Hospital of Zhejiang University School of Medicine. 
Informed consent for participants was waived due to the 
retrospective nature of the study. Patients were excluded 
from computational analysis if they presented: (I) IVUS 
images with vessel spasm or injury during IVUS imaging; (II) 
too short IVUS pullback that the IVUS was not covering 
the whole lesion; (III) X-ray images with too low quality 
that the vessel boundary could not be clearly distinguished; 
(IV) X-ray images without 2 appropriate angles or with 
severe overlapping; (V) location mismatch between 
AccuFFRivus and FFR measurement.

X-ray angiographic image processing

Electrocardiogram gating and geometry parameter 
calibration
This method started with standard angiographic images, 
and multiple views of the angiographic image series were 
essential. Only 2 matched images captured from 2 different 
views in the same cardiac phase generated an accurate vessel 
model. For this purpose, the ECG signal simultaneously 
acquired in image acquisition was considered to determine 
the appropriate cardiac phase. Conventionally, the phases 
with the least cardiac motion are the optimal choices for 
vessel model reconstruction, typically derived at the end-
diastole of the cardiac phase.

For each spatial point, the projections in different views 
may fail to correspond due to various reasons. It is necessary 
to calibrate the image acquisition parameters after selecting 
X-ray angiographic images of the same cardiac phase. For 
the X-ray angiography system, an effective and robust 
calibration method was adopted, in which the definition of 
3 pairs of physiological points was needed. This calibration 
method can eliminate geometrical errors and achieve 
optimal correspondence between the 2 images.

Segmentation of angiographic data
Different methods and algorithms are available for 
angiographic image segmentation, aiming to identify the 
vessel lumen borders and visualize them in the angiograms. 
The implementation of this method requires ascertainment 
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of the approximate centerline of the target vessel segment. 
After that, the original image can be resampled along 
scanlines perpendicular to the centerline. Using the 
reciprocal of the weighted sum of the first-derivative and 
second-derivative values of the brightness profile along the 
scanline, we generated a cost image for the further minimal 
path algorithm.

Among all the resampled points in the cost image, the 
points belonging to the lumen borders tend to have a lower 
cost value, so we defined the starting point as the point with 
the lowest cost value in the first scanline and the ending 
point in the last scanline. The vessel lumen borders were 
determined using the Dijkstra minimum path algorithm 
(7,8) and could be adjusted if needed.

3D lumen outline
We proposed an algorithm for the 3D reconstruction of 
coronary arteries from 2 views of uncalibrated angiographic 
images based on the finite projective camera model and 
existing optimization methods.

After calibrating the image acquisition parameters, 
the estimation of the centerline in 3D space was direct 
and straightforward. Each centerline point in 3D space 
corresponded to 2 different projection planes defined by 
different X-ray source positions. As shown in Figure 2, the 
plane Ф represents a plane at the centerline point with a 
normal vector parallel to the local centerline tangent, and 

plane S1-MN intersects with plane Ф at line L1. Similarly, 
S2-AB intersects with plane Ф at line L2, and Line L1 and 
L2 intersect mutually. This cross geometry is composed 
of 4-vessel boundary key points in the cross-section of this 
centerline point. Scanning from the proximal vessel segment 
points to the distal segment points finally constructs the 
whole vessel lumen point cloud.

The result of the point cloud after downsampling is 
shown in Figure 3. From the figure, it can be distinguished 
that the vascular point cloud is in a layered pattern. The 
vessel retained rich surface details and sufficient surface 
smoothness.

Estimation of catheter
The trajectory of the IVUS catheter in the vascular vessel 
was derived based on the graph theory algorithm (9). This 
catheter trajectory and spatial location are specified in the 
3D vessel model, segmented based on the angiographic 
images. The physical model of the catheter is interpreted 
as infinite connecting points and bonding energy. Firstly, 
several flat cross-sections in spatial proximity were 
constructed by the vascular vessel stacked along the vessel 
centerline. It is worth noting that any adjacent cross-
sections should not intersect with each other. Since the 
trajectory simulation requires minimal energy calculation, 
each round flat cross-section should be expressed as a point 
cloud.

Figure 1 Workflow for coronary artery reconstruction from CAG and IVUS images. CAG, coronary angiography; IVUS, intravascular 
ultrasound. 

IVUS images
IVUS segmentation 

(Deep-Learning) 

Automatic extraction 

of diastolic images

3D vessel

reconstruction

AccuFFRivus

Blood Flow RateTIMl Frame Count

ECG gating
3D catheter 
trajectory 
simulation

CAG images



4546 Jiang et al. IVUS and CAG based FFR

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(11):4543-4555 | https://dx.doi.org/10.21037/qims-20-1324

For points on each cross-section, the internal energy 
H contains elastic energy He and potential energy Hp. 
Elastic energy was defined as He=θ2. For any spatial sample 
points mi-1, mi, mi+1, angle θ is the angle between a vector 
 

i-1 im m


 with  i i+1m m


. Hp represents potential energy, which is 
proportional to the square of the vascular deformation, and 

was defined as: 
 2

p ij i
1H = k s l
2

. In this equation, k defines the 

local curvature at the sample point sij, and  ij is l  stands for the 
distance from the points sij to centerline li.

The next step was deemed to be the calculation of the 

trajectory of the catheter according to the principle of 
minimum energy. The discrete spatial points connection 
could be converted into the problem of connecting edges 
in the corresponding graph, which was equivalent to the 
single-source minimal path problem. The position of 
guidewire was extracted using the Dijkstra algorithm (8). 
The minimized energy equaled the sum of the internal 
energy in all connected edges. By using the above 
algorithm, the edges could be located in the spatial position 
imitating the catheter trajectory.

IVUS image processing

Cardiac phase selection
Massive IVUS images contain much information that is 
redundant for vascular vessel segmentation. In this article, a 
function s(n) is used to define a motion signal that measured 
the cardiac phase of the nth image. The signal function s(n) 
is defined with the following mathematical expression:
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The signal s(n) in the equation is expressed as a linear 
weighted combination set of image features si(n), and wi∈ 
(0,1) is defined as a weight factor of the image feature. The 
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In detail, 2 image features were chosen to characterize 

Figure 2 Construction of vessel lumen point cloud.

Figure 3 Vessel lumen point cloud after downsampling.
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the cardiac phase in each IUVS frame. The first feature, 
 ( )0s n  represents a relation between 2 consecutive images:
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where un(i,j) shows the intensity from the ith row and jth 

column, µn is defined as the mean value of the intensity of 
the nth frame, and σn is the standard deviation of the nth frame 
intensity. Moreover, H and W are defined as the height 
and width of the image. If 2 frames are both at the end-
diastole cardiac phase, almost no movement exists. When 
inter-frame motion increases, the feature value difference 
between 2 frames increases. 

Another feature sensitive to intensity distribution 
differences between adjacent frames was used for cardiac 
phase assessment. This second image feature   ( )1s n  was 
designed to measure the degree of blur in an image:
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In this equation, ∇un measures the intensity distribution 
changes in image space with a large scale. The s(n) is 
generated by adequately combining these 2 image features, 
which can be normalized with the following equation:
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number of images. From the last step, si are positive and 
have the same order of magnitude are all ensured.

Under certain circumstances, the weighting factors can 
be simplified from 2 image features to 1 parameter. With 
the distribution parameter α, the weighting factor for 
feature 1 was defined as w0=α and for feature two w1=1−α. 
Then Eq. [1] can be expressed in the following equation:

 ( ) ( ) ( ) ( )0 11s n s n s nα α= + −    [5]

Automatic IVUS segmentation
A U-Net (10) based pipeline was developed to segment 
the lumen of 2D IVUS images automatically (11). The 
pipeline contains 2 significant steps: (I) the MeshGrid 
data was enhanced by combining the flip and rotation 
operations of the original IVUS image; (II) the 8-layer deep 
U-Net was used for pixel-level prediction (Figure 4). The 
detailed description of the U-Net, encoder part, and model 
optimizer can be seen in the method section of our previous 

Figure 4 The proposed U-Net Architecture with eight layers for IVUS segmentation. IVUS, intravascular ultrasound.
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works (11). As a result, our current model showed better 
segmentation prediction of the lumen with MIoU of 0.948. 
The raw slice of an IVUS image, labeled image and our 
model’s predicted image of lumen are shown in Figure 5.

Coronary artery modeling

Fusion of IVUS and X-ray angiographic images
It should be noted that the IVUS catheter twists and bends 
in the vascular vessel. Therefore, the catheter twists in 
different spatial angles and corresponds with the different 
relative orientations of the images. The morphological 
character of the vessel can only be guaranteed if the IVUS 
borders are stacked in the right orientation along the 
calculated guide wire trajectory; otherwise, incorrect vessel 
cross-sections in adjacent frames may lead to inaccurate 
3D modeling. Thus, the catheter binormal direction can 
be calculated by a discrete method of the Frenet-Serret 
formulas. This method is effective for adjacent frames with 
orientation determination, and it gets the initial direction 
of the first image in this frameset. The accumulation of all 
these vessel border points in different layers in the definite 
orientation leads to them being merged into a point cloud, 
which can be extracted to generate the vascular model.

AccuFFRivus calculation

Average flow rate from frame count
Since the pressure drop has a positive correlation with 
the coronary flow rate, an accurate estimation of flow 
rate became the basis for calculating reliable FFR value. 
Without adding the cost of additional instruments, the 
frame count method was a relatively feasible solution. With 

the hypothesis that the blood flow rate is proportional to 
the square of the vessel diameter, flow rate velocity for 
FFR computation was derived from arterial geometrical 
characteristics and the number of frames in which the blood 
flowed from the proximal to distal aspect (12).

However,  f low rate based exclusively on image 
information cannot represent the flow status during 
maximum hyperemia. A flow rate conversion relationship 
from the rest to the hyperemic state was applied to 
overcome this problem (13), which provides a possibility of 
measuring FFR without the use of adenosine.

Reference vessel diameter and FFR calculation 
algorithm
The central premise of the estimated FFR value is 
determining reference vessel diameter, which directly 
impacts stenosis recognition. Obviously, greater or longer 
stenosis tends to result in larger pressure drop and lower 
estimated FFR. The technique for determining a reference 
vessel diameter is denoted as interpolated percent diameter 
stenosis measurement (14). The blood vessel diameter curve 
was filtered by high frequency, and the linear fitting was 
utilized to determine the reference blood vessel diameter 
slope initially. After that, it may become achievable that 
80% of points are below the reference diameter line (15).

In general, pressure drop from proximal to distal can be 
caused by 2 factors. The first is the viscous pressure drop 
which is related to friction. Briefly, longer and slimmer 
blood vessels cause a larger pressure drop. The second is 
the expansion pressure drop, mainly due to rapid change 
of radius, which is usually the characteristic of stenosis. 
Pressure drop ∆PR is related to viscous loss coefficient CVis, 
expansion loss coefficient CExpan, and flow rate Q:

Figure 5 The raw IVUS image, labeled image, and predicted image. IVUS, intravascular ultrasound.
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 ( )R Vis ExpanP C C Q Q∆ = + ⋅ ⋅  [6]

Here, CVis and CExpan in Eq. [6] are dependent on the 
stenosis geometry and can be calculated as:

 Vis
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Here, KVis and KE are dimensionless coefficients, μ and ρ 
are absolute viscosity and density of blood. dNormal and ANormal 

are the diameter and cross-sectional area of the normal 
lumen. The AStenosis is the cross-sectional area at the stenosis.

Using Eqs. [7] and [8], Eq. [6] is rewritten as:
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 [9]

With estimated aortic pressure at hyperemia and pressure 
drop, AccuFFRivus values were determined from mean 
distal coronary pressure divided by mean proximal aortic 
pressure.

Statistical analysis

Continuous variables with mean ± standard deviation 
(SD) and binary variables were presented as percentages. 

Agreement between AccuFFRivus and invasive FFR was 
assessed by Pearson or Spearman correlation analysis. The 
area under the receiver-operating characteristic curve (AUC) 
of AccuFFRivus (≤0.8) was used to evaluate diagnostic 
performance. Minimal lumen area (MLA, <4 mm2),  
diameter stenosis (DS% ≥50%), and FFR ≤0.8 was taken 
as the reference standard (all calculated as values with 
corresponding 95% CI). Bland-Altman analysis and 
correlation were used to analyze the agreement between 
AccuFFRivus and invasive FFR. A 2-sided P value (<0.05) 
was regarded as statistically significant. All the statistical 
analyses were conducted using MedCalc (version 19.0, 
MedCalc Software, Ostend, Belgium).

Results

Baseline clinical and lesion characteristics

In all, 34 patients with 35 vessels who underwent invasive 
FFR, CAG, and IVUS were included in this study, among 
whom 3 patients with 3 vessels were excluded due to the 
low image quality of IVUS or CAG images or mismatch of 
IVUS and FFR measurement. The final study population 
comprised 31 participants with 32 vessels (Figure 6). The 
baseline clinical characteristics and vessel characteristics 
according to CAG, FFR, and IVUS are listed in Table 1. 
The lesions at the end for the algorithm validation were 
from 25 left anterior descending arteries (LAD), 1 left 
circumflex artery (LCx), and 6 right coronary arteries 
(RCA). The average invasive FFR was 0.80±0.11.

Correlation between AccuFFRivus and FFR

Representative examples of AccuFFRivus calculation for 
LAD and RCA with significant stenosis are shown in Figure 
7 and Figure 8, where Figure 7C,D,E and Figure 8C,D,E 
show IVUS images with the minimum lumen and the 
automatic segmentation of lumen. 

The agreement between AccuFFRivus and invasive FFR 
is shown in Figure 9. High correlation (r=0.86, P<0.001) 
between AccuFFRivus and FFR was observed.

Diagnosis Performance of AccuFFRivus

Diagnostic Performance of AccuFFRivus, DS%, and MLA 
(Per-vessel, n=32) are shown in Table 2. Using FFR ≤0.8 as a 
reference, diagnostic accuracy, sensitivity, specificity, positive 
predictive value (PPV), and negative predictive value (NPV) 

Figure 6 Participant flow chart of the study. FFR, fractional 
flow reserve; IVUS, intravascular ultrasound; CAG, coronary 
angiography.
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Table 1 Baseline clinical characteristics and vessel characteristics 
according to CAG, FFR, and IVUS

Parameter
Number of participants  

(n=31)

Age (y) 66±10

Male 71% [22]

Weight (kg) 69±12

Height (cm) 165±10

BMI (kg/m2) 25±4

Cardiovascular risk factors

Systolic blood pressure (mm Hg) 129±17

Diastolic blood pressure (mm Hg) 71±11

Angina pectoris 29% [9]

Diabetes 32% [10]

Hypertension 74% [23]

Hyperlipidemia 9% [3]

Vessel location,% [n]

LAD 78% [25]

LCX 3% [1]

RCA 19% [6]

Invasive CAG and FFR,% [n]

Stenosis degree <50% 84% [27]

Stenosis degree ≥50% 16% [5]

FFR ≤0.8 44% [14]

IVUS analysis 

Minimum lumen diameter (mm) 1.82±0.35

Maximum lumen diameter (mm) 2.19±0.47

Minimum lumen area (mm2) 3.44±1.46

Minimum EEM diameter (mm) 3.59±0.64

Maximum EEM diameter (mm) 4.07±0.58

EEM CSA (mm2) 12.07±3.56

Plaque burden (%) 71±9

FFR, fractional flow reserve; IVUS, intravascular ultrasound; 
CAG, coronary angiography; BMI, body mass index; LAD, left 
anterior descending; LCX, left circumflex artery; RCA, right  
coronary artery; EEM, external elastic membrane; CSA, 
cross-sectional area.

for AccuFFRivus was 93.75%, 92.86%, 94.44%, 92.86%, 
and 94.44%, respectively. The AUC for diagnosis of 
functionally significant coronary stenosis was higher for 
AccuFFRivus than MLA (<4 mm2) and diameter stenosis 
rate (DS% ≥50%) [0.98 (95% CI: 0.86 to 1.0) vs. 0.78 
(95% CI: 0.60 to 0.91) and 0.66 (95% CI: 0.47 to 0.82)] 
as shown in Figure 10. Bland-Altman plot showed a mean 
difference value of –0.011 (limits of agreement: –0.156 
to 0.134). The mean time for AccuFFRivus assessment 
(including 3D reconstruction based on IVUS images and 
frame count analysis) was 5.20±2.31 min.

Discussion

As an important complement to CAG, IVUS imaging 
improves the accuracy of diagnosis and plays an essential 
guiding role in PCI strategy, stent selection, and the 
effect evaluation of PCI. Despite the effort to determine 
the IVUS criteria with MLA, IVUS-derived MLA does 
not always equate with functional significance (16). The 
optimal cutoff value of MLA <2.4 mm2 was determined to 
detect FFR <0.80 and improved diagnostic accuracy from 
64% to 76% compared with MLA <4 mm2. 

A few studies have explored the feasibility of IVUS-
derived FFR by computational fluid dynamic (CFD) 
simulation in improving the diagnostic accuracy for the 
functional assessment of coronary lesions. As early as 
2014, Carrizo et al. reconstructed a single coronary LAD 
vessel from acquired IVUS images and applied CFD to 
calculate FFR (17). A comparison study of blood flow 
simulation based on CCTA-derived and IVUS-derived 
geometric models was performed involving 11 patients 
with 16 arteries (18). In another study with 24 participants 
(34 vessels), a new IVUSFR parameter performed better 
than MLA or angiography on ischemia detection with an 
overall accuracy, sensitivity, and specificity of 91%, 89%, 
and 92%, respectively (19). However, the target vessel 
with each arterial bifurcation should be reconstructed 
for CFD simulation, and the median time of 9.1 hours 
(7.9–12 hours) was consumed per studied vessel. Wang  
et al. (20) presented another algorithm for calculating FFR 
based on 3D reconstruction from CAG and IVUS images. 
During CFD simulation, the mean volumetric flow rate 
coupled at the inlet of a single vessel was constant, in 
which case the law of conservation of mass was violated. 
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Figure 7 Example of AccuFFRivus calculation of the LAD artery with a significant lesion in the middle part of LAD. (A) CAG showing 
significant lesion; (B) AccuFFRivus calculation result and IVUS images show the proximal lumen (C), minimum area lumen (D), lumen 
across the stenosis (E). LAD, left anterior descending; CAG, coronary angiography; IVUS, intravascular ultrasound.

Figure 8 Example of AccuFFRivus calculation of the right coronary artery (RCA) with a significant lesion in the proximal. (A) CAG 
showing significant lesion; (B) AccuFFRivus calculation result and IVUS images show the proximal lumen (C), minimum area lumen (D), 
lumen across the stenosis (E). CAG, coronary angiography; IVUS, intravascular ultrasound.
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Table 2 Diagnostic performance of AccuFFRivus, %DS, and MLA (Per-vessel) (n=32)

AccuFFRivus ≤0.80 (95% CI) DS% ≥50% (95% CI) MLA <4 mm
2
 (95% CI)

Accuracy 93.75 (79.19–99.23) 65.62 (46.81–81.43) 53.12 (34.74–70.91)

Sensitivity 92.86 (66.13–99.82) 28.57 (8.39–58.10) 57.14 (28.86–82.34)

Specificity 94.44 (72.71–99.86) 94.44 (72.71–99.86) 50.00 (26.02–73.98)

Positive likelihood ratio 16.71 (2.47–112.91) 5.14 (0.64–41.04) 1.14 (0.60–2.18)

Negative likelihood ratio 0.08 (0.01–0.50) 0.76 (0.53–1.07) 0.86 (0.40–1.83)

Positive predictive value 92.86 (65.81–98.87) 80.00 (33.39–96.96) 47.06 (31.75–62.94)

Negative predictive value 94.44 (71.93–99.12) 62.96 (54.51–70.69) 60.00 (41.20–76.25)

Figure 9 Correlation between wire-measured FFR and IVUS-
derived FFR. IVUS, intravascular ultrasound.

Figure 10 The AUC and Bland-Altman plots between IVUS-derived FFR (AccuFFRivus) and clinically measured-FFR for the same vessels. 
AUC, area under curve; IVUS, intravascular ultrasound; FFR, fractional flow reserve.

Despite the performance of IVUS-derived FFR illustrated 
on ischemia detection, its clinical applications are limited 
by time-consuming CFD computation. To address this 
issue, a supervised machine learning (ML) algorithm 
based on IVUS was proposed to identify lesions with an 
FFR ≤ of 0.80 (21). Random forest and Adaboost had the 
highest diagnostic accuracy of 83%. These binary classifiers 
failed to provide quantitative analysis for the functional 
significance of intermediate coronary stenosis.

This  s tudy developed a  novel  method for  fast 
computation of FFR from the fusion of coronary IVUS and 
X-ray angiographic images. A high correlation between 
AccuFFRivus and invasive FFR was observed (r=0.86, 
P<0.001). The AUC was higher for AccuFFRivus than 
MLA and DS% (0.98 vs. 0.78 and 0.66, respectively). A 
small mean difference value of –0.011 was observed from 
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the Bland-Altman plot.
We applied a pre-trained deep learning model for fast 

and accurate lumen boundary detection derived from IVUS 
images, while the catheter path and blood flow rate were 
obtained from CAG. Here, we integrated IVUS images 
and CAG to derive a more accurate FFR. Compared with 
CAG, more accurate lumen boundaries could be extracted 
automatically from IVUS images by deep learning. Then, 
segmented lumen boundaries were fused with the catheter 
path simulated from CAG to reconstruct an accurate 
vascular model. This method can eliminate the error 
from the catheter twist, which may enlarge the lumen 
border. Next, after calculating vessel-specific flow rate 
by thrombolysis in myocardial infarction (TIMI) frame 
count, simplified pressure drop formula was coupled to the 
geometry to compute FFR. Due to the contribution of the 
deep learning method and simplified CFD, the time spent 
on FFR computation can be reduced to 5 min per vessel.

Invasive FFR measurement is currently the gold 
standard for functional evaluation of coronary stenosis, and 
the computational accuracy based on different images is 
based on the comparison of invasive FFR. The functional 
evaluation based on coronary CT is the most widely used 
among the 3 FFR calculation methods based on different 
types of images. Its evaluation accuracy is greatly improved 
compared with the anatomical evaluation method based 
on CTA (22). It can play the role of “gatekeeper” of the 
catheter room and be made into a screening tool for 
functional significance for coronary artery disease (23,24). 
The disadvantage of FFR-CT is that its accuracy may be 
low in the diagnosis of some complex calcified lesions.

Moreover, it is difficult to segment CTA images 
because of coronary artery calcification, which leads to 
difficulty in FFR calculation (25). Functional evaluation 
based on coronary angiography and intravascular 
imaging is limited to use in the catheter room. The 
accuracy is generally improved compared with that 
based on coronary CTA, especially the FFR analysis 
system based on intravascular imaging can achieve the 
highest accuracy. Because they have more accurate 3D 
reconstruction image data than CAG, a 3D reconstruction 
based on CAG is generally based on angiography 
images from 2 angles (26). In contrast, a reconstruction 
based on intravascular imaging is based on a 3D scan 
image with the actual structure of the vessel lumen (27).  
Theoretically, its 3D reconstruction model will have higher 
accuracy. The structure of the coronary vessel lumen 
can only be approximated, and the diagnostic accuracy 

for functional significance was 86% (13), 86.3% (26),  
and 92.4% (28), according to 3 clinical study reports. As 
an important complement to CAG, IVUS/OCT imaging 
improves the accuracy of diagnosis. The 3D coronary artery 
model reconstructed by IVUS/OCT image contained real 
structure of vascular lumen (27,29) because the resolution 
of IVUS/OCT is much higher than that of an angiography 
image, and the accuracy of these methods was equal to and 
larger than 90% (27) or 93.75% in this study.

There were some limitations to the current study. First, 
the research method was validated using only (29) vessels, 
and no left main arterial lesions were included in our 
analysis. Thus, the diagnostic performance of the IVUS-
derived FFR should be more clearly validated through the 
solid investigation with a large number of samples and 
different lesion locations in the future study. Second, this 
IVUS-FFR algorithm is limited by the quality of IVUS 
images. If the IVUS images are not qualified, AccuFFRivus 
calculation is unavailable, or the accuracy could be affected. 
Third, since the IVUS images for deep learning training 
were acquired using a rotating 40-MHz transducer 
commercial  scanner (Boston Scientif ic/SCIMED, 
Minneapolis, MN, USA), AccuFFRivus calculation can only 
support IVUS images with the same specifications. 
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