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Background: Computed tomography perfusion imaging is commonly used for the rapid assessment of 
patients presenting with symptoms of acute stroke. Maps of perfusion parameters, such as cerebral blood 
volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT) derived from the perfusion scan 
data, provide crucial information for stroke diagnosis and treatment decisions. Most CT scanners use 
singular value decomposition (SVD)-based methods to calculate these parameters. However, some known 
problems are associated with conventional methods. 
Methods: In this work, we propose a Bayesian inference algorithm, which can derive both the perfusion 
parameters and their uncertainties. We apply the variational technique to the inference, which then becomes 
an expectation-maximization problem. The probability distribution (with Gaussian mean and variance) of 
each estimated parameter can be obtained, and the coefficient of variation is used to indicate the uncertainty. 
We perform evaluations using both simulations and patient studies. 
Results: In a simulation, we show that the proposed method has much less bias than conventional 
methods. Then, in separate simulations, we apply the proposed method to evaluate the impacts of various 
scan conditions, i.e., with different frame intervals, truncated measurement, or motion, on the parameter 
estimate. In one patient study, the method produced CBF and MTT maps indicating an ischemic lesion 
consistent with the radiologist’s report. In a second patient study affected by patient movement, we showed 
the feasibility of applying the proposed method to motion corrected data. 
Conclusions: The proposed method can be used to evaluate confidence in parameter estimation and the 
scan protocol design. More clinical evaluation is required to fully test the proposed method.
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Introduction

Stroke is the third leading cause of death in the US, killing 
about 140,000 Americans each year (1). There are two types 
of strokes, ischemic and hemorrhagic, for which the medical 
management can be quite different. About 87% of all cases 
are ischemic strokes (2), meaning there is a complete or 
partial blockage of the blood supply from a cerebral artery. 
Standard treatment options for ischemic strokes are to 
either dissolve or remove the blood clot (i.e., thrombolysis 
or thrombectomy). Early treatment decisions are crucial 
for the survival and recovery of stroke patients. To aid the 
diagnosis and selection of the appropriate treatment, the 
location and volume of the infarct core and penumbra are 
often calculated—the infarct core indicates the brain region 
that is not salvageable, and the penumbra indicates the 
brain region that is at risk of progression to infarction. The 
penumbra usually surrounds the ischemic core and may 
still be salvageable. Classification of the infarct core and 
penumbra is often derived by thresholding certain brain 
hemodynamic parameters, e.g., cerebral blood volume (CBV, 
mL/100 g), cerebral blood flow (CBF, mL/100 g/min),  
mean transit time (MTT, s), and time to peak (TTP, s).  
For example, in (3), the ischemic core was defined as 
regions with relative MTT ≥145% of the normal tissue and 
absolute CBV <2.0 mL/100 g. 

Computed tomography perfusion and dynamic contrast-
enhanced magnetic resonance imaging are the primary 
imaging techniques used to obtain the hemodynamic 
parameters of the brain. In this study we are interested 
in CT perfusion, a procedure performed after the 
administration of intravenous iodine contrast to monitor 
the first pass of a contrast bolus through the cerebral 
circulation. Based on the well-known indicator dilution 
theory (4), from a CT perfusion scan one can obtain the 
hemodynamic functional parameters related to the blood 
passage in the tissue, including CBF, CBV, MTT, and TTP. 
Various approaches, including singular value decomposition 
(SVD)-based methods, have been applied to solve this 
inverse problem. In the clinical setting, perfusion analysis is 
usually done with SVD-based methods, the implementation 
of which varies across vendors.

Unfortunately, SVD-based methods have some known 
problems, which make their derived hemodynamic parameters 
unreliable. First, they make assumptions about the ideal 
underlying physiological model. For example, the residual 
function is assumed to be an impulse function, which is not 
valid for a real scan. Because of this, the estimated parameters 

can be biased. As shown in (5,6), the SVD-based method can 
produce biased CBF and MTT estimates. Several authors 
have proposed advanced deconvolution methods, such as 
Tikhonov regularization, to address this problem (7-9). 
Second, these methods often cannot well tolerate imperfect 
measurements, including relatively long scan intervals 
(10,11) and truncated measurements in time (12,13). Third, 
these methods are deterministic, meaning they provide an 
estimate of the mean of the parameter of interest but not its 
probability distribution. Factors that affect the reliability of 
the measurement in a CT perfusion scan, such as the protocol 
design and perturbance of data, therefore cannot be accounted 
for in the estimation. For example, a too-long scan interval 
reduces the available samples for estimation and hence the 
accuracy. In other cases, patient movement could produce 
inconsistent voxel attenuation measurements that would 
inevitably increase the uncertainty of the estimation. Post-
processing (e.g., spatial and temporal filtering) may introduce 
further uncertainty of estimation. For quantification, it 
is desirable to account for such randomness with proper 
probability theory (14). Therefore, a probabilistic inference 
method seems warranted to infer both the hemodynamic 
parameters and their associated uncertainties. 

In this paper, we propose such an accurate and 
probabilistic method and show its potential value in 
clinical application. In Section “Methods”, we formulate 
the estimation problem as a Bayesian inference problem. 
A variational technique, mean-field approximation, is 
applied, which makes the problem more tractable as a 
classic expectation-maximization problem. The posterior 
distributions (with mean estimate and variance) of CBF 
and MTT can be obtained. Their coefficients of variation 
(CoV) are used to indicate the uncertainty in inference, 
which reflects the reliability of a given measurement. In 
Section “Experiments and Results”, we first demonstrate the 
superiority of the proposed method over the conventional 
method in simulation studies where ground truth is available. 
We also demonstrate the potential usage of the proposed 
method in evaluating different suboptimal scan conditions. 
Finally, patient scans were processed with the proposed 
method. The results are discussed in Section “Discussion”.

Methods

We first present the implementation of the SVD-based 
methods. Then the forward maximum log-likelihood model 
of CT perfusion is presented. We then detail the proposed 
Bayesian inference algorithm and the quantitative analysis 
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design.

SVD-based methods

In a CT perfusion scan, a mask image is first acquired. The 
enhanced image at a single time point can be obtained by 
subtracting the mask image from an image acquired later in 
the scan. The enhancement of tissue depends on the iodine 
concentration, which at one voxel can be represented as:

 ( ) ( ) ( )* ag t h t C t= 	 [1]

where h(t) is the flow-scaled residual function, indicating 
the fraction of contrast that remains in the voxel at time t 
after its arrival; Ca(t) is the arterial input function (AIF), 
indicating the contrast change in the arteries; and * 
represents the convolution operation. Eq. [1] describes the 
well-known indicator dilution theory (4) (Figure 1). Based 
on this theory, one can obtain h(t) from a CT perfusion scan, 
which can be used to derive the hemodynamic functional 
parameters related to the blood passage in the tissue, 
including CBF, CBV, MTT, and TTP which are defined as:

( )( )1CBF max h t
ρ

= ⋅ 	 [2]

 ( )
0

1CBV h dτ τ
ρ

∞
= ∫ 	 [3]

 MTT CBV / CBF= 	 [4]

 ( )TTP argmax
t

g t=
	 [5]

where ρ is the mean density in the capillary bed, which is set 
to 1.04 g/mL in this study (15). A detailed explanation of 
how Eqs. [2-5] is derived can be found in (16).

A straightforward way to obtain the residual function h(t) 
is to perform deconvolution on Eq. [1]. In practice, g(t) is 
sampled at discrete time points. Thus, the deconvolution 
problem is an inverse algebraic problem, which can be 
solved by SVD. The deconvolution is performed as 
illustrated in (17). To suppress noise in the resulting 
residual function, the least significant eigenvectors are 
consecutively removed until h(t) has an oscillation index 
below a certain threshold. In this study, a threshold of 
0.095 is used as suggested in (17). To further suppress 
the spatial noise, an alternate deconvolution method with 
Tikhonov regularization is also implemented using the 
Regularization Tools package (18). The parameter selection 
and regularization setup are as suggested in (7).

Forward maximum log-likelihood model

Starting from Eq. [1], the measurement process in a CT 
perfusion scan can be represented as

 ( ) ( ) ( ) ( ) ( ) ( ), * aY t g t t h t C t tε µ ε= + = + 	 [6]

where Y(t) is the enhanced tissue time curve at the voxel of 
interest, µ represents the hemodynamic parameters to be 
estimated, h(µ,t) is the flow-scaled residual function, and ε(t) 
is the noise. The flow-scaled residual function h(µ,t) can be 
further written as a function of the CBF, tissue density ρ, 
and residual function r(t):

Figure 1 The indicator dilution theory model (A) describes the blood supply to the tissue at one voxel in the brain. After contrast injection, 
the bolus enters the voxel via an arterial inlet Ca(t), is dilated in the capillary bed, and leaves the voxel via the venous outlet. Due to the 
limited spatial resolution of the CT image, Y(t) contain numerous capillary beds as well as arterioles and venules. (B) The residual function 
h(t) that describes the hemodynamic functions in the physiological model. CBF, CBV, and MTT can be derived from h(t). CBF, cerebral 
blood flow; MTT, mean transit time.
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 ( ) ( ), CBFh t r tµ ρ= ⋅ ⋅ 	 [7]

According to (19–21), r(t) can be modelled as a box 
shaped function with exponential decay. Hence, h(µ,t) 
becomes:

( ) ( )

( )

0
0

0

0

T
, CBF exp , T

MTT T
, CBF , T

t
h t t

h t t

µ ρ

µ ρ

 − 
= ⋅ ⋅ − ≥  −  

 = ⋅ <

	 [8]

where T0=0.632×MTT. In this study, we consider µ to 
contain two parameters, CBF and MTT. Other parameters 
can be calculated; for example, CBV can be calculated as 
CBV = CBF × MTT, and TTP can be derived directly from 
the time-attenuation curve (TAC) as the time when the 
peak enhancement is reached, as shown in Eqs. [2-5]. There 
is no bolus arrival delay modelled here. The convolution 
in Eq. [6] can be expanded by sampling the integral of the 
arterial enhancement curve:

 ( ) ( ) ( ) ( )
0

,
t

aY t C h t d tτ µ τ τ ε= ⋅ − +∫ 	 [9]

As explained in the introduction, Y(t) in practice is 
sampled at N discrete time points. Without knowledge 
of the measurement errors, ε is then modelled as a zero-
mean Gaussian distributed in each frame. Since the noise in 
each frame is temporally independent, we can express the 
discrete version of Eq. [9] as:

 ( )
( )2~ N 0,

i i i

i i i

y g

s

µ ε

ε ω

= +
	 [10]

where the index of the time frame is i, and ωi is proportional 
to the number of the detected photon counts (duration of 
the ith frame as a surrogate). s2 is the variance at a given 
frame. From Eq. [10] we can build the data mismatch term, 
and the inference problem becomes one of finding the 
estimate that maximizes the log-likelihood
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where C0 is a constant term. In the case where the length 
of each frame is the same, one can set ωi=1. The above 
optimization problem is essentially equivalent to maximum 

likelihood estimation, which can be solved by nonlinear 
least squares fitting, and the way to perform the inference is 
similar to that of previous perfusion estimation methods (22).

Bayesian inference algorithm

Now we extend the above maximum likelihood estimation 
to a full Bayesian inference, which provides the probability 
distribution rather than just the maximum likelihood estimate 
of a given parameter in Eq. [13]. The derived distribution 
will inherently contain the measurement uncertainty of each 
parameter. According to Bayes’ theorem, the posterior of the 
estimate µ over measurement Y is:

 ( )
( )

( | )
( | )

P Y P
P Y

P Y
µ µ

µ
⋅

= 	 [14]

where P(Y|µ) is the likelihood in Eq. [12], and P(µ) is prior. 
The fundamental difference here from Eq. [12] is that we 
are no longer interested in the maximum likelihood estimate 
but the full distribution of µ. Solving an inference problem 
within the Bayesian framework involves maximizing the 
posterior probability P(µ|Y) of µ given the observed data Y. 
In practice, computing the posterior P(µ|Y) in a closed form 
is often intractable. An approximation is therefore often 
used, for which the Markov chain Monte Carlo (MCMC) 
and variational Bayesian are two popular choices. To 
achieve a reasonable computational load, the approximate 
but efficient variational Bayesian method is used here. 
The basic idea is to find a simple analytical distribution 
q(µ|Y) to approximate the intractable posterior P(µ|Y) such 
that the Kullback-Leibler (KL) divergence of these two is 
minimized. Given the probabilistic model Eq. [14], the log 
evidence can be written as:
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	 [15]
where P(Y,µ) is the joint probability, E* denotes the 
expectation with respect to q(µ|Y), ELBO is the lower 
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bound of the evidence, and KL is the divergence between approximate q(µ|Y) and P(µ|Y). Because the KL divergence is always 
positive, ELBO provides a lower bound on the log-likelihood evidence. Therefore, one can maximize ELBO by finding the 
distribution q(µ) that approximates the posterior close to the true posterior (or minimizes KL):

 

( ) ( ) ( )
* log ( | )( ) argmax ELBO argmin E

log ,q q

q Yq
P Yµ µ

µµ
µ

 
= =  

  
 	 [16]

now we have a second KL divergence in the square brackets, which is always positive, and the optimal solution can be found 
by equating the numerator and denominator.

Considering the numerator, we first need to ensure it is tractable. Variational Bayesian factorizes q(µ|Y) (in physics this is 
known as mean-field approximation) to sort the parameters into separate groups, each with their own approximate posterior (23).  
Note that this approximation does not imply that the parameters are uncorrelated for a given measurement. A simple choice 
of the distribution of the approximated true posterior is multivariate Gaussian. The mean-field approximation theory assumes 
that the posterior distribution of each parameter is Gaussian. Supposing that we have a number, k, of parameters to be 
estimated, the approximate posterior has the following analytical expression:

 ( )( | ) , ,k k kk
q Y N mµ µ σ=∏ 	 [17]
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T T
1

1 1 1log ( | )
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1                 
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k k k kk
k k
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= − + +

= − + +

∑
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where σ is a matrix with 1/σk as the diagonal elements, mk is the mean estimate of each parameter, and C1 is a constant term. 
Then, for the denominator, we can insert the likelihood from Eq. [12]. As for the prior, we choose the conjugate prior—
the prior is said to be conjugate to the likelihood if and only if the factorized posterior has the same parametric form (24). 
Therefore, the conjugate prior has a multivariable Gaussian distribution with mean m0 and variance  2

0σ . The numerator thus 
becomes:

 ( ) ( ) ( )
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where C2 is a constant term. To ensure tractability and to allow the method to generalize to any nonlinear model, g(µ) is 
approximated by a first-order Taylor expansion about the mode (mean) of the posterior:
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where J is the Jacobian. With such linearization applied to g(µ), Eq. [19] becomes:
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By equalizing Eq. [21] and Eq. [17], we have updated equations for the mean m and σ:
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The above derivation matches the description in (24,25): 
under certain conditions, a Bayesian inference problem 
reduces to an optimization problem, and the optimal 
solution can be found by an algorithm similar to expectation 
maximization. Specifically, the expectation term in Eq. [16]  
is an expectation step, and the updates in Eq. [22] are 
a maximization step. The values of the parameters are 
calculated based on the current values, and these values then 
used for the next iteration and so on until convergence. 
Because the independence of the estimated parameters 
is assumed, each parameter in µ (CBF and MTT) can be 
updated simultaneously to iteratively maximize the KL. 
Convergence is determined by observing the trend of 
changes in KL divergence between the approximate and 
true posteriors. When the change is less than a threshold, 
the iterating process terminated and the parameters at the 
current iteration serve as the final estimates.

Hence,  the  d i s tr ibut ion  ( ) ( )2
k k kq μ ~ N m ,σ  that 

approximates q(µ|Y) to P(µ|Y) can be found, where σk 
contains the uncertainty information of the kth parameter 
estimated from a given scan. Instead of directly using 
the variance of each parameter, we use the coefficient of 
variation, which has the advantage of being independent of 

the intensity scale. It can simply be represented as a ratio 
between the standard deviation and the mean of a given 
parameter: CoV=σ/m, which is unitless. One can conclude 
that the higher the CoV, the more uncertainty there is 
associated with the parameter. 

Experiments

Simulation studies
We simulated 3D (2D+t) CT perfusion scans using a 
modification of the brain phantom described in (26) 
(downloadable at https://www5.cs.fau.de/research/
data/digital-brain-perfusion-phantom/index.html). We 
defined two annotated tissue classes to mimic a scan with 
ischemia: healthy tissue and tissue with reduced CBF 
and increased MTT (Figure 2A). Perfusion parameters 
in Table 1, in which was assigned according to (27), were 
assigned to the annotated tissues. From the perfusion 
phantom, we could generate dynamic projection data 
based on the forward model defined in Eqs. [8,9]. A total 
of 50 one-second frames were simulated, for which TACs 
are shown in Figure 2B. Data were generated by forward 
projecting each frame with an acquisition protocol (Table 2)  

Figure 2 Simulation phantom setup. (A) CBF and MTT perfusion phantoms from which data were generated. Two lesions with reduced 
CBF and increased MTT are labeled with arrows. (B) Time attenuation curves of voxels in different regions. AIF is scaled by 0.1 for visual 
inspection. A region-of-interest for quantification was drawn inside the lesion as indicated by the red circle. CBF, cerebral blood function; 
MTT, mean transit time; AIF, arterial input function. 
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based on a simulated scanner model. Poisson noise was added 
to the projections by setting the number of detected counts 
in a blank scan to 1e5. Noise-free and noisy projections 
were reconstructed to generate two sets of acquired dynamic 
images, from which perfusion parameters were inferred. In 
all simulations, reconstruction was performed with a helical 
Feldkamp-Davis-Kress algorithm (28,29). A total of four 
simulations were performed to evaluate the proposed method:

Comparison with conventional methods
In the first simulation, we compared the proposed 
method with conventional methods with ideal simulated 
measurements. The noise-free dynamic images were used 
to compute the perfusion maps with both methods, and the 
bias was assessed by comparing image profiles across the 
lesion in perfusion maps generated from the SVD-based 
methods, the proposed method, and the ground truth. Note 
that only this simulation used the noise-free images, the rest 
using noisy simulated images.

Effect of scan interval
In the second simulation, we evaluated scan protocols with 

different scan intervals using the proposed method. Here, 
scan interval indicates the time between the acquisition of 
the two frames. It was shown previously that scan interval 
variation could have an impact on perfusion imaging by 
introducing bias in the perfusion parameters (10,11). We 
varied the scan intervals by undersampling the simulated 
noisy dynamic frames. For a normal setup, the scan interval 
was zero; for long-interval setups, the scan intervals were 
either 1 s or 3 s, reducing the number of frames to 25 and 
12, respectively. The hypothesis was that the Bayesian 
method can tolerate large intervals better than the SVD-
based methods. Moreover, the measurement would be less 
reliable when fewer data were available, that is, the proposed 
Bayesian method would identify larger uncertainties in 
parameters. We also calculated the predicted enhanced TAC 
for a region-of-interest (ROI) in the lesion for Bayesian 
methods by applying the estimated distribution of the 
perfusion parameters to the forward model in Eq. [10]. This 
enhanced TAC was then compared with the true one.

Effect of truncation
In the third simulation, we evaluated the effect of truncated 
measurements on parameter inference with the proposed 
method. Truncation commonly occurs in CT perfusion 
when the acquisition is too short to capture the complete 
attenuation change due to poor cardiac output or large 
vessel occlusion (30). It has been shown that incomplete 
acquisition falsely reduces perfusion estimates and hence 
may alter patient management (12,13). To simulate such 
an effect, we made the last 20 or 30 s of the measurement 
unavailable for parameter inference. We hypothesized 
that the proposed Bayesian method would handle missing 
data better than the SVD-based method. Moreover, we 
hypothesized that the measurement would be less reliable 
because of the missing data, that is, the proposed Bayesian 
method would identify larger uncertainties in parameters. 
Again, we calculated the predicted enhanced TAC for an 
ROI in the lesion for the Bayesian method and compared it 
to the true one.

Table 2 Scanner parameters in all simulations

Parameter Value

Scanner model Siemens Definition

Detector row No. 64

Flying focus On

Number of frames 50

Scan interval 0 s, 1 s or 3 s

Pitch 1.0

Angels per rotation 600

Detector pixel size 0.5 mm ×1.0 mm

Reconstructed image size 512×512

Reconstructed pixel size 1.0 mm ×1.0 mm

Table 1 Perfusion parameters for digital brain phantom chosen in a range of average values 

Gray matter White matter Lesion

CBF (mL/100 g/min) 53±14 25±14 16±4.25

MTT (s) 3.7±0.7 4.6±0.7 14±0.75

CBV (mL/100 g) 3.3±0.4 1.9±0.9 3±0.7

CBV, cerebral blood volume; CBF, cerebral blood flow; MTT, mean transit time.
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Effect of patient motion
In the fourth simulation, we evaluated the effect of motion 
on parameter inference with the proposed method. 
Involuntary patient motion can create inconsistencies in 
temporal measurements and hence have a negative impact 
on perfusion map estimation (31,32). We examined the 
effect of motion on the uncertainty of the parameter 
estimates. 

For this investigation, we generated simulated motion-
corrupted projections of the phantom by applying previously 
measured human motion (33) during forward projection 
and reconstructing the motion-corrupted images. Perfusion 
maps derived from the motion-free and motion-corrupted 
dynamic images were compared. The hypothesis was that 
the measurement would be less reliable in the motion case 
because of inconsistent data, that is, the proposed Bayesian 
method would identify larger uncertainties in parameters 
estimated from motion-corrupted data.

 

Patient study

The anonymized raw data of two patients who had 
previously undergone a head CT scan in the Department 
of Radiology at Westmead Hospital in Sydney, Australia, 
were collected with the approval of the Human Research 
Ethics Committee of the Western Sydney Local Health 
District. The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). All 
human studies were performed with the approval of the 
Human Research Ethics Committee of the Western 
Sydney Local Health District (approval number 2019/
ETH02047). The scans were acquired with a Definition 
Force scanner (Siemens Healthineers, Forchheim, 
Germany). Before each scan, 45 mL of iodine contrast 
agent was injected intravenously at a rate of 6 mL/s,  
followed by a 40 mL saline flush. After that, a total of 33 
frames (26×1.5 s, 7×3 s) were acquired in axial (shuttle) 
mode. The first acquired frame was labeled as the baseline 
frame (mask). The reconstructions were initially performed 
with the vendor’s filtered back-projection algorithm with 
a smoothing kernel of H40f. The pixel dimensions of 
the reconstructed image were 0.4×0.4×5 mm3. DICOM 
volumes were exported without further post-processing.

One patient dataset was motion-free and the other 
presented visible motion artifacts. For the former, the 
proposed Bayesian method was directly applied to derive the 
perfusion parameters, while, for the dataset contaminated by 
the motion, we identified both inter- and intra-frame motion 

artifacts in the exported dynamic reconstructed frames. 
These images were labeled as NMC. Patient motion would 
be expected to result in greater uncertainty of parameter 
estimates, whereas a reduction in motion artifacts and 
blurring following the application of a motion correction 
algorithm would be expected to recover the reliability 
of the parameter estimates. As a test of the proposed 
method, we applied it to evaluate the effect of motion 
correction methods in terms of the perfusion parameters. 
Two motion correction methods were implemented in 
this study. The first method only compensated for inter-
frame motion by directly operating on the exported images 
(34,35). All dynamic frames were rigidly registered to the 
first (baseline) frame to remove the inter-frame motion. 
The corrected images were labelled as MC1. The second 
method included an additional step before inter-frame 
motion compensation, which compensated for intra-frame 
motion using the method described in (36,37). This iterative 
data-driven method jointly estimated the six degrees-of-
freedom rigid motion of the head at each projection and the 
motion-corrected reconstruction from the raw projection 
data. At each iteration, head pose estimates were updated 
analytically at multiple projection angles by adjusting the 
head pose to reduce the differences between the forward 
and measured projections. The motion-corrected image 
was updated by taking the estimated motion into account 
during reconstruction with a fully 3D maximum likelihood 
expectation maximization or Feldkamp-Davis-Kress 
algorithm. Motion correction was applied to each frame 
independently. This was followed by inter-frame motion 
correction as in the first correction method. The corrected 
images were labeled as MC2. After motion correction, 
perfusion analysis was performed by applying the proposed 
Bayesian inference algorithms to use NMC, MC1, and MC2 
images. 

In contrast to the simulation study, AIF was unknown 
here and was derived directly from the images as follows. 
We first applied a threshold to the summation of all frames 
and drew a 2D ROI over the internal carotid region. We 
then corrected the AIF for the partial volume effect due to 
the small diameter of the target arteries—a venous output 
function was derived similarly in a straight sinus region, 
and the AIF was scaled to have the same area under the 
curve as the venous output function to account for the 
underestimation (38). After inference, hematocrit correction 
was performed on CBV and CBF [multiplying with a 
constant 0.733 (15)] to account for the different hematocrit 
values between arteries and capillaries.
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Quantification

All generated perfusion parameter images were compared 
with the truth in Figure 2A by calculating the mean squared 
error and the bias. Denoting IM0 as the true image and 
IM1 as the image for comparison, we calculated the mean 
squared error MSE:

 N 2
j jj

1MSE (IM1 IM0 )
N

= −∑ 	 [23]

where N is the total number of voxels, and j is the index of 
the voxel. The bias between two images was represented as:

 
( ) ( ) ( )

( )
ROI ROI

ROI

mean IM1 mean IM0
bias % 100%

mean IM0
−

= × 	 [24]

This calculation was only performed in an ROI drawn 

inside the lesion, as shown in Figure 2A. The CBF and 
MTT intensity distributions were also calculated for that 
ROI, which were also Gaussian distributed. The mean of 
the distribution was the mean at all voxels in the ROI; the 
standard deviation of the distribution was the mean of the 
square root of the variance at all voxels in the ROI. The 
wider the distribution, the greater the uncertainty of the 
estimated parameters in the ROI.

Results

Simulation studies

Comparison with conventional methods
Figure 3A shows the accuracy (MSE and bias) of CBF and 
MTT maps derived with the proposed method and with 
the deconvolution methods. Bias was calculated from the 
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Figure 3 A comparison of the results with SVD and the proposed method without noise in Simulation 1. (A) Compared with the true 
images (REF), the proposed method shows markedly less bias in lesions than the SVD-based methods for both CBF and MTT. (B) Profile 
plots (red dotted line in a) of MTT images show the reduction in bias with the proposed method. 
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voxels of an ROI within a lesion (Figure 2A). Figure 3B 
shows profiles from the MTT images in the lower row of 
Figure 3A, at the location indicated by the red dotted line. 
Compared with the SVD-based method, the proposed 
Bayesian method resulted in lower MSE and bias for CBF 
and MTT, and, therefore also, lower bias for CBV. The 
MTT image profile obtained with the Bayesian method 
corresponded well to the reference profile.

Effect of scan interval
In the second simulation, we assessed the impact of varying 
the scan interval on the MSE and bias of parameter 
estimates. As shown in Figure 4A, the SVD-based methods 
resulted in markedly increased MSE and bias at large 
scan intervals, while the proposed method was much less 
affected by increased scan interval. At larger scan intervals, 
we observed that the mean CBF and MTT maps were 
noisier than those obtained with normal sampling (Figure 4).  
The CoV maps and the CBF distribution plots indicated 
differences in CBF mean and variance with different scan 
intervals. The number of iterations used for full data, and 
scan intervals of 1 s and 3 s were 6, 8 and 12, respectively. 
We also calculated the predicted enhanced TAC sampled in 
a lesion ROI for all methods in Figure 5. 

Effect of truncation
In the third simulation, our observations on the effect 
of truncation in Figure 6 were similar to those regarding 
scan interval in Figure 4. MSE and bias in MTT estimates 
were markedly degraded as truncation was increased 
with the SVD-based method while the proposed method 
was relatively unaffected. With severe truncation, the 
MTT estimate was biased and its variance higher, as 
indicated by the CoV images, compared to the case with 
full measurement data. The number of iterations of the 
Bayesian method for the full data and truncations of last 
25 s and 30 s of data were 6, 6 and 9, respectively. Figure 
5B shows the predicted enhanced TAC sampled in a lesion 
ROI for all methods.

Effect of patient motion
In the fourth simulation with simulated motion, we 
observed that the mean CBF and MTT map had noticeable 
visual artifacts (Figure 7). The CBF_CoV images indicated 
that motion made the scan less reliable. High CoV values 
corresponded to regions with artifacts in the mean estimate 
maps, and CoV values were generally lower in the motion-
free image. This suggests that CoV mapping is useful for 

identifying parts of the brain where parameter estimates 
are problematic due to motion-induced uncertainty. The 
numbers of iterations of the Bayesian method used for MC 
and NMC images were 6 and 7, respectively.

Patient study

For the motion-free dataset, the proposed Bayesian method 
was directly applied to derive the perfusion parameters. 
According to the clinical report, this patient had an ischemic 
lesion due to a left middle cerebral artery infarct with 
increased MTT and a corresponding drop in CBF. Figure 
8 shows the CBF, MTT and CBV maps inferred using 
our method. The lesion and the normal tissue had clearly 
different hemodynamic parameters, indicated by the arrows 
in Figure 8. The average CBF value within a region in the 
lesion was 13.2±4.1 mL/100 g/min, while for a region in the 
normal tissue it was 22.6±6.2 mL/100 g/min. The average 
MTT value in the lesion was 22.3±4.8 s, while in the 
normal tissue it was 11.4±3.4 s. The average CBV values in 
the lesion and normal tissues were comparable. In addition, 
the uncertainty of the estimates can be assessed alongside 
the mean estimates as indicated in the middle column of 
Figure 8.

For the dataset with motion artifacts, MC1 and MC2 
were generated as described in the Methods section. The 
goal was to apply the proposed method to evaluate the 
effectiveness of two motion correction methods in terms 
of recovering the perfusion parameters. For both CBF and 
MTT, mean estimates and CoV were derived with MC1, 
MC2, and noMC. In Figure 9 severe artifacts are visible 
with noMC. With MC1, the quality of the dynamic scan 
was successfully recovered, and the inferred parameters 
were more reliable than those obtained with noMC, 
although there were still some residual artifacts. With MC2, 
the images were further improved, and the reliability of the 
estimation was the highest among the three. The results 
correspond well to the hypothesis of progressive recovery of 
the correction methods (from noMC to MC1 to MC2).

Discussion

CT perfusion imaging results can be affected by many 
factors in practice, including the selection of scanner 
acquisition protocols, the choice of the post-processing 
technique, data truncation, and data perturbance caused, for 
example, by patient movement. All may affect the reliability 
of hemodynamic parameter estimation, which is crucial for 
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Figure 4 The effect of varying the scan interval in Simulation 2. For the full data, the SNR of the estimated CBF map (from the proposed 
method) was 3.2. (A) Mean CBF estimate and its CoV for three different scan intervals. The CBF and CoV values calculated with the 
SVD-based method have larger bias than those calculated with the Bayesian method, and bias increases with the interval. (B) The CBF 
intensity distribution of a sampled ROI (yellow circle in A) with different intervals. The wider the distribution, the greater the uncertainty 
in the parameters. Similar results were obtained for MTT (not shown). SNR, signal to noise; CBF, cerebral blood flow; CoV, coefficient of 
variation; SVD, singular value decomposition; MTT, mean transit time. 
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Figure 5 Time-attenuation curves for the lesion ROI from (A) simulation 2 and (B) simulation 3. With the inferred Gaussian distributed 
CBF and MTT (mean ± SD), we can generate the lower and upper bounds of the time-attenuation curves. The predicted enhanced TAC 
with the proposed method and true enhanced TAC are well correlated. With more deterioration in data, the predicted enhanced TAC is 
more biased and with more uncertainty. HU, Hounsfield unit. 
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accurate the diagnosis and appropriate treatment of stroke 
patients. Conventional inference methods cannot tolerate 
such imperfection well and cannot assess the reliability 
of the data, although such information could be useful 
diagnostically. We proposed a Bayesian method that can 
calculate CT perfusion maps and estimate the uncertainty 
at each voxel. The proposed method assumes better 
residual function hence the underlying perfusion model. 
Compared with conventional SVD-based methods, this 
approach has the advantages of (I) estimating parameters 
with less bias than conventional methods, especially when 
the measurements are imperfect and (II) providing the 
probability of an estimate, which can be used to guide the 
design of scan protocols or to compare the performance 
of different data processing or artifact reduction methods. 
We applied the proposed method to three simulated 
abnormal scan scenarios involving increased frame intervals, 
truncated measurement, and patient movement. The results 
indicated that the uncertainty measure provided by the 
method could allow scan protocols of varying reliability to 
be differentiated. In one patient study, the estimate CBF 
and MTT maps indicated an ischemic lesion. In a second 
patient study, we evaluated the proposed method on a 
stroke scan in which the patient exhibited severe motion. 
Two motion correction techniques were compared in terms 
of how much they improved the scan reliability, as assessed 
by the proposed Bayesian method.

The running time of the proposed method was longer 
than the conventional SVD-based methods, as Bayesian 
inference is an iterative process. For example, to produce the 
results in Figure 3, SVD took 2 s per slice while Tikhonov-
SVD took 6 s and the Bayesian method took 10 s. Although 

the running time was longer for the Bayesian method, more 
accurate estimates, and additional information about the 
distribution of the parameters of interest were obtained. 

The proposed method successfully provided mean and 
uncertainty estimates for CBF and MTT. However, it is also 
possible to infer other parameters, such as bolus arrival time 
delay and permeability, if the associated acquisition model is 
assumed. For example, a delay exists between the injection 
time and the contrast agent arrival time in the tissue of 
interest, which has been shown to affect the CBF estimates, 
especially for negative time shifts and at high SNR (17). 
To include this effect, the convolution model in Eq. [1] 
could be modified, and the inference would proceed with 
minor change in future work. Permeability is an important 
indicator of the degree of blood-brain barrier damage. The 
Patlak model is commonly used to infer this parameter and 
could be incorporated with the proposed Bayesian method. 
However, a longer scan time (~200 s) is usually needed to 
provide enough information for the Patlak model, and such 
a scan protocol is not available at this time in our center.

Another possible way to infer the distribution of 
perfusion parameters is the frequentist method, which often 
requires repeatable measurements (which is not feasible 
for patients) or simulated measurements using techniques 
such as bootstrapping. We chose a Bayesian method in 
this study instead since we believe it is more appropriate 
for our application where the measured data are fixed and 
parameters are random. In addition, the Bayesian method 
has the advantage that prior knowledge can easily be 
included in the Bayesian inference process, whereas it is not 
obvious how to do this for bootstrapping (39). In the future 
work, spatial-temporal regularization could be included in 
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Figure 6 The effect of truncating the measured data in Simulation 3. For the full data, the SNR of the estimated MTT map (from 
the proposed method) was 2.8. (A) Mean MTT estimate and CoV for full data and two different degrees of truncation. The MTT and 
CoV values calculated with the SVD-based method have larger bias, and the bias increases with the truncation. (B) The MTT intensity 
distribution of a sampled white matter region with different amounts of missing data. Similar results were obtained for CBF (not shown). 
SNR, signal to noise; CBF, cerebral blood flow; CoV, coefficient of variation; SVD, singular value decomposition; MTT, mean transit time. 
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Figure 8 Mean and CoV maps inferred from a patient scan using the proposed method, in which a lesion due to the left middle cerebral 
infarct was indicated by the arrow. The average CBF value in the lesion was over 40% lower than the normal tissue and the average MTT 
value in the lesion was over 96% higher than the normal tissue. Nine iterations of the Bayesian method were performed.
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Figure 7 The effect of motion in Simulation 4. (A) Mean CBF estimate and CoV with and without simulated motion. Severe motion creates 
increased uncertainty in CBF estimates, as revealed in the CoV map. (B) The CBF intensity distribution of a sampled white matter region. 
Similar results were obtained for MTT (not shown). (C) A segment of realistic rigid motion that is applied. Note that only in-plane motion 
is simulated (one rotation, two translations) in this 2D+t simulation. CBF, cerebral blood flow; CoV, coefficient of variation. 
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the proposed method to reduce speckle noise in estimation 
and enable CT perfusion scans to be performed with lower 
tube current and radiation dose. A Variational Bayesian 
approach was chosen in this study. As mentioned earlier 
in the Introduction, MCMC is another popular Bayesian 
method shown to be efficient in inferring kinetic parameters 
in dynamic contrast-enhanced cardiac MR applications (40). 
MCMC can also incorporate the spatial prior information 
to reduce the speckle noise in estimation map (41).

We inferred the parameter distributions from dynamic 
reconstructed images. In principle, it is possible to infer 
the desired parameters directly from the measured raw 
projections without reconstruction. Applications of direct 
kinetic parameters estimation exist in CT (42), PET (43,44), 
and MRI (40,45,46). However, these approaches can only 

provide maximum likelihood estimates of parameters, not 
the full distribution. Another concern in CT perfusion 
is that it is difficult to separate the coupling between the 
attenuation and kinetic distribution since a perfect forward 
model can often not be guaranteed. For example, if there 
is patient motion during a scan, simultaneous motion 
correction and perfusion map inference can be problematic 
because errors from one side will likely propagate to the 
other.

 A limitation of our measurement model is that the 
observation noise is assumed to be an independently and 
identically distributed (i.i.d.) Gaussian variable. Within 
each frame, the noise level is scaled according to the 
duration of that frame. This assumption leads to great 
convenience for computation. If the CT scan dose is very 

Figure 9 Mean and CoV maps of CBF inferred from a motion-corrected clinical CT perfusion scan using the proposed method. (A) MC2 
yields fewer visible artifacts and lower overall CoV than MC1 or noMC. (B) CBF distributions of a selected ROI (yellow circle in A). MC2 
provided the narrowest distribution, indicating that it provides the lowest uncertainty. Six, eight and twelve iterations of the Bayesian 
method were used for noMC, MC1 and MC2, respectively. Similar results were obtained for MTT (not shown).
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low, the actual noise model can be complicated (47,48) and 
the one assumed here may yield poor inference results. 
Other inference techniques may be required to consider the 
correct noise model. For example, techniques approximating 
the Poisson to Gaussian distribution may be required before 
applying Bayesian inference. Another limitation within the 
proposed measurement model is the bolus arrival delay was 
not considered and hence inferred. As stated earlier, the 
model can be modified to account for this effect. A further 
clinically relevant limitation is that we did not evaluate the 
estimated parameter maps for identifying the infarct core 
and penumbra region, which could be relevant to a clinical 
decision. A more detailed investigation of the clinical impact 
of the method is needed.

Conclusions

We proposed and applied a Bayesian approach that infers 
the hemodynamic parameters in CT perfusion imaging. 
The method can yield mean parameter estimates and 
uncertainty estimates of such parameters under imperfect 
scan scenarios. It can be used to assess the confidence of 
parameter estimates under imperfect scan conditions to 
evaluate protocol designs. Further studies are required to 
fully evaluate the clinical utility of the proposed method.
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