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Background: Stereotactic body radiation therapy (SBRT) for liver cancer has shown promising therapeutic 
effects. Effective treatment relies not only on the precise delivery provided by image-guided radiation 
therapy (IGRT) but also high dose gradient formed around the treatment volume to spare functional liver 
tissue, which is highly dependent on the beam/arc angle selection. In this study, we aim to develop a decision 
support model to learn human planner’s beam navigation approach for beam angle/arc angle selection for 
liver SBRT.
Methods: A total of 27 liver SBRT/HIGRT patients (10 IMRT, 17 VMAT/DCA) were included in this 
study. A dosimetric budget index was defined for each beam angle/control point considering dose penetration 
through the patient body and liver tissue. Optimal beam angle setting (beam angles for IMRT and start/
terminal angle for VMAT/DCA) was determined by minimizing the loss function defined as the sum of 
total dosimetric budget index and beam span penalty function. Leave-one-out validation was exercised on all  
27 cases while weighting coefficients in the loss function was tuned in nested cross validation. To compare 
the efficacy of the model, a model plan was generated using automatically generated beam setting while 
retaining the original optimization constraints in the clinical plan. Model plan was normalized to the same 
planning target volume (PTV) V100% as the clinical plans. Dosimetric endpoints including PTV D98%, 
D2%, liver V20Gy and total MU were compared between two plan groups. Wilcoxon Signed-Rank test was 
performed with the null hypothesis being that no difference exists between two plan groups.
Results: Beam setting prediction was instantaneous. Mean PTV D98% was 91.3% and 91.3% (P=0.566), 
while mean PTV D2% was 107.9% and 108.1% (P=0.164) for clinical plan and model plan respectively. 
Liver V20Gy showed no significant difference (P=0.590) with 23.3% for clinical plan and 23.4% for the 
model plan. Total MU is comparable (P=0.256) between the clinical plan (avg. 2,389.6) and model plan (avg. 
2,319.6).
Conclusions: The evidence driven beam setting model yielded similar plan quality as hand-crafted clinical 
plan. It is capable of capturing human’s knowledge in beam selection decision making. This model could 
facilitate decision making for beam angle selection while eliminating lengthy trial-and-error process of 
adjusting beam setting during liver SBRT treatment planning.
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Introduction

Liver tumor has relatively high occurrence among cancer 
patients: Primary liver cancer has been shown to be one 
of the most frequently occurred cancer and leading causes 
of death worldwide; and liver is a frequent metastasize 
site for many high occurrence cancers such as breast and  
lung (1). In the last decade it has been shown that 
stereotactic body radiation therapy (SBRT) is an effective 
treatment modality for liver tumors that are relatively small 
in size (2-5), particularly for patient with unresectable liver 
metastases (6). 

The technical aspect of delivering liver SBRT extends 
beyond regular positional and dosimetric accuracies that 
are commonly emphasized for other SBRT treatment such 
as lung. Most often for a typical radiation therapy clinic, 
intensity modulated radiation therapy (IMRT) or volumetric 
modulated arc therapy (VMAT) are mostly widely available 
delivery techniques for SBRT treatment (7). Due to the 
high demand of dose conformity and normal liver sparing, 
careful choice of beam angle is critical at the beginning of 
treatment planning process. A suboptimal choice of beam 
angles cannot be compensated by intensity or volumetric 
modulation (8), and is often difficult to correct at later 
planning stage as no adjustment to beam directions can be 
made within the optimization process. 

Although several studies have shown that non-coplanar 
IMRT could result in improved dosimetry (8-10), it is 
not directly applicable to VMAT-based treatment that are 
often preferred due to better conformity and efficiency. In 
addition, increasing number of institutions have adopted 
Halcyon™ ring-gantry linac system or Ethos™ online 
adaptive treatment system that are only capable of delivery 
coplanar treatment. Therefore, exploring optimal beam 
angle selection for coplanar IMRT and VMAT is still a 
meaningful clinical pursuit. 

In practice the selection of beam or arc angles by human 
planners is often achieved relying on experience, which 
could potentially lead to variability in plan quality due 
to non-uniform experience levels of the planners (11). 
To address this issue, many researchers have proposed 
automated beam angle choice solutions for IMRT. Some 
of the proposed methods were based on exhaustive or 
random search that typically takes 1–20 hours to finish (12-

27), while others employed shape-driven methods based 
mostly on patient anatomy and beam’s eye view as well 
as dose-volume histogram (DVH) features that required 
iterative dose calculation (28-36). No prior study was 
found to provide automatic VMAT arc geometry selection. 
Through observations of expert planner’s beam angle 
selection decision process, we noticed that the choice of 
optimal beam angles for liver SBRT is neither equidistant 
nor purely anatomy driven—rather the planner’s beam 
placement is guided by intentionally placing beams to drive 
key isodose lines (e.g., 20 Gy) away from normal liver. This 
represents an active trade-off decision process that allows 
for heterogeneous dose fall-off outside planning target 
volume (PTV) in exchange for better liver sparing, which is 
somewhat unique to liver SBRT. 

In the subsequent sections we describe and evaluate a 
model that captures the abovementioned unique human 
planner decision process during liver SBRT planning and 
provides a unified decision support tool for beam and arc 
angle selection. The algorithm models human planner’s 
decision process by analyzing relationship between 
important isodose lines, key structure contours, and 
planner’s choice of beam angles. This model is applicable to 
both IMRT and VMAT techniques and can rapidly adapt to 
the preference of individual physician or institution. 

Methods

Materials

In this study, a total of 27 liver SBRT or hypo-fractionated 
image-guided radiation therapy (HIGRT) patients treated 
at Duke University Medical Center were retrospectively 
included with Internal Review Board (IRB) approval. 
All plans were generated in Eclipse® treatment planning 
system (TPS) version 15.6 or earlier (Varian Medical 
Systems, Palo Alto, CA) for a TrueBeam® linear accelerator 
(Linac). Plan parameter details were listed in Table 1. Total 
prescription was dependent on the patient liver volume, 
prior liver radiation therapy history etc. The most common 
prescription for SBRT liver treatment is 5,000 cGy in  
5 fractions while for liver HIGRT the dose was reduced 
to 5,000 cGy in 10 fractions. Key organs-at-risk (OARs) 
included liver, chest wall, skin and gastro-intestine (GI) 
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luminal structures such as bowel and duodenum. Treatment 
technique was determined by the planner. The choice 
of the technique is largely dependent on several factors, 
including PTV volume, healthy liver volume, PTV shape, 
PTV location and treatment planning constraints etc. The 
final treatment technique and corresponding gantry setting 
is reflection of patient specific geometry and associated 
planning constraints after several iterations of trial-and-
error optimization.

Modeling approach

In this study, we tried to model the decision process of beam 
setting by the planner. In addition, we attempted to create a 
unified formulism that is generalizable between IMRT and 
VMAT (or dynamic conformal arc, DCA). We introduced 
the concept of “dosimetric budget index” which is used to 
describe the dose penetration feature of each IMRT beam/
VMAT beamlet. As human planners try to place a beam, 
they often try to avoid long penetration depth through the 
body as well as the liver tissue while balancing the beam 
angle span for IMRT and arc span for VMAT. Therefore, 
a cost function combining the dosimetric budget index and 
the beam/arc span function was generated to model the 
human planner’s decision process. It was written as follows:

 ( ) ( )max 0, max 0,body body liver liver beamB t a B t b fΩ = − + ⋅ − + ⋅ 	[1]

where Bbody and Bliver are body and liver dosimetric budget 
index, respectively. tbody and tliver, a and b are weighting 
coefficients. fbeam is the beam/arc span penalty function 
defined separately for IMRT and VMAT. The first two 
terms are combined body and liver dosimetric budget 
index, respectively. Coefficient tbody and tliver were used as 
the offset cutoff threshold for body and liver dosimetric 
budget index. Weighting coefficient a and b were used for 
tuning the relative weighting between three terms. The 
dosimetric budget was calculated as the radiological depth 
(in mm) within the respective organ prior to reaching the 
surface of the PTV, averaged across all beams (for IMRT) 
or beamlets/control points (for VMAT). 

The beam/arc span penalty function was written as:
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for IMRT. Nb is the number of total beams. The threshold 
gantry angle of 20 degrees for adjacent beams and 5 degrees 
diversion for opposing beams were decided based on routine 
clinical practice. The formulism was written to balance the 
IMRT beam angle span while maximizing the freedom of 
optimization.

For VMAT, the function was written as:

 ( ){ }2
max 0, 180VMAT start terminalf G G = − −  	 [3]

where Gstart and Gterminal are the first and last control point 
gantry angle. The threshold arc span was chosen as 180 
degrees as VMAT plans often avoid less than 180-degree 
arc as the freedom of optimization is substantially reduced 
when arc span is less than 180-degree.

Solving the optimal beam/arc setting B for IMRT/
VMAT could then be expressed as the minimization 
problem for the cost function Ω. 
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All weighting coefficients were tuned with training 
dataset using grid search. For coefficient a and b, the 

Table 1 Plan parameter breakdown (technique, energy, fractions) 
for all 27 liver cases included in this study

Category Variation Number of cases (N)

Technique IMRT 11

VMAT 14

DCA 2

Energy 6XFFF 2

10X 7

10XFFF 17

15X 1

Fractions 3 3

5 8

8 1

10 12

15 1

25 2

IMRT, intensity modulated radiation therapy; VMAT, volumetric 
modulated arc therapy; DCA, dynamic conformal arc.
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search grid was (0, 10) with step size of 0.2. For tbody and 
tliver, the grid range was (0, 150) with step size of 5. Tuned 
parameters were then applied in Eqs. [4] and [5] to optimize 
for the beam setting for the validation case. For IMRT 
prediction, candidate beam angles were sampled with 
5-degree increment (a total of 72 candidates) and beams 
were sequentially added which minimizes the cost function. 
In this study, we aimed to predict 10-beam IMRT setting. 
For VMAT, start and terminal control point beam angle 
was also sampled at every 5-degree increment. The start-
terminal arc setting that minimizes the overall cost function 
was chosen as the optimal arc setting for the VMAT plan.

Model validation

Due to the data scarcity of liver SBRT/HIGRT nature, 
all cases included in this study were used in leave-one-out 
validation process. All 27 cases were divided into two groups: 
(I) IMRT with 11 cases and (II) rotational arc therapy 
(VMAT and DCA) with 16 cases. All N-1 cases within 
each group were used to tune coefficients in nested cross 
validation fashion and the remained one case was used for 
testing (N=11 for IMRT group and N=16 for VMAT/DCA 
group). All predicted beam/arc setting was used to guide a 
manual replan, i.e., a model plan, to validate the efficacy and 
robustness of the knowledge model. For IMRT plans, a 10-
beam IMRT beam setting was predicted. For VMAT plans, 
the replan shared the same number of arcs as the clinical plan 
to reduce confounding effect from the degree of modulation. 
The model plans were optimized with original optimization 
constraints and normalized to the same PTV coverage at 
prescription dose level. Same dose calculation algorithm and 
leaf sequencing algorithm were used as the original clinical 
plan to eliminate impact from dose calculation engines. The 
model plan was compared with the clinical plan to assess key 
dosimetric endpoints including PTV D98%, D2%, liver 
V20Gy and total monitor units (MU). Wilcoxon Signed-
Rank test was performed with the null hypothes being that 
no difference exists between two groups. All patient data 
were anonymized and exported to Matlab® R2019b (Natick, 
MA) for processing. All model plans were generated in 
Eclipse® treatment planning system version 15.6.

Results

Knowledge guided beam setting prediction for all 27 cases 
included in this study is shown Figure 1. Overall the beam 
setting was comparable between prediction (left column) 

and clinically employed beam setting (right column). For 
IMRT plans, the beam clusters were generally similar 
between the manually set clinical beam angles and the model 
predicted beam angles, indicating the model’s capability to 
mimic planner’s decision process in tailoring the beam angles 
to maximize target coverage and OAR sparing. For VMAT 
plans, the arc span as well as the start/terminal beam angle 
were comparable for the majority of the cases. 

Table 2 summarizes the dosimetric comparison between 
the clinical plan with manually placed beams and the model 
plan with model predicted beam angles. With the identical 
plan normalization at V100% for the PTV for both plans, 
D2% (%) and D98% (%) was 107.9% and 91.3% for the 
clinical plan, compared to 108.1% and 91.3% for the model 
plan, with no statistical significance observed (P=0.164 
and 0.566). For key dosimetric sparing of liver V20Gy, the 
mean value was 23.3% for clinical plan and 23.4% for the 
model plan (P=0.590). For 700 cc healthy liver tissue, the 
max dose was 7.5 Gy for both the clinical plan and model 
plan (P=0.972). Overall similar liver V20Gy and D(V-700cc) 
Gy indicated that the knowledge modeled beam setting 
was capable of generating clinically acceptable liver sparing 
without manual trial-and-error beam placement process. Max 
dose to the stomach was 20.5 Gy in the clinical plan and 20.6 
Gy in the model plan (P=0.952). Max dose to the skin was 
23.3 Gy in the clinical plan and 23.7 Gy in the model plan 
(P=0.883). MU between two plan groups were also similar: 
the mean MU was 2,389.6 and 2,319.6 for the clinical plan 
and the model plan, respectively. Similar MU indicates that 
the model’s predicted beam setting balanced the dosimetric 
budget while maintained sufficient beam/arc span to provide 
adequate degree of freedom for optimization, in other words 
the modulation complexity between corresponding clinical-
plans and model-plans was similar. 

Figure 2 shows the boxplot of dosimetric endpoint 
comparison between two plan groups. Not only was the 
mean and standard deviation similar between two groups as 
presented in Table 2, the overall distribution as indicated in 
the interquartile range and median (red bar in the box) were 
also similar as shown in Figure 2. 

An example case (row 4 column 1 in Figure 1) of isodose 
distribution comparison between the clinical plan and the 
model plan is shown in Figure 3. The yellow lines indicated 
the IMRT beam central axis with the short end representing 
beam sources. It was observed that the model plan used 
more clustered beam bouquet from patient anterior-right 
direction while minimizing beams coming from patient 
posterior direction. This particular arrangement helped 
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Figure 1 Beam Setting for all 27 cases. Left figure is evidence-based prediction beam setting while right figure is clinically employed beam 
setting. IMRT beams are plotted as isolated arrows while VMAT is plotted per 5-degree control points. Red box highlights one example case 
shown isodose line comparison.

reduced the 20 Gy isodose line (pink) from expanding 
beyond the posterior of the PTV which was predominantly 
healthy liver tissue, while purposefully driving the dose 
spill to patient anterior-right surface which was primarily 
adipose tissue. The model plan showed improved liver 
V20Gy from clinical plan (48.1% vs. 51.5%) as shown 
in the DVH comparison in Figure 4. This observation 
clearly demonstrated that he evidence based model was 
capable of capturing the human planner’s decision making 

and reasoning of selecting and arranging beams, and 
actively making reasonable trade-off to achieve dosimetric 
constraints with higher clinical priorities.

Discussion

In this study, we proposed a knowledge modeling approach 
to assist beam angle/arc placement for liver SBRT/HIGRT 
treatment planning. The results were promising and showed 

Model
predicted

Model
predicted

Model
predicted

Model
predicted

Clinically
used

Clinically
used

Clinically
used

Clinically
used



4802 Sheng et al. Automatic beam/arc angle selection for liver SBRT

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(12):4797-4806 | https://dx.doi.org/10.21037/qims-21-169

encouraging capability of capturing and understanding 
the rationale of human planner to place beam after trial-
and-error process. The overall beam angle and arc span 
were similar between the clinical plan and the model plan, 
in terms of the range that was covered in 2π space. Some 
exceptions were observed between half-arc versus full-arc, 
which was probably due to the small volume of the PTV for 
which beam selection would have less impact on shaping 
key dose gradient around the PTV. Model plans using the 
model predicted beam setting showed overall comparable 
plan quality as the clinical expert plans that were delivered 
to the patient. The beam angle prediction was instantaneous 
and could substantially improve the clinical workflow 
efficiency.

It is worth noting the difference between our knowledge 
modeling methods and previously reported beam angle 
automation methods that employed human knowledge. 
Yan et al. (36) proposed a fuzzy-logic-based method of 
beam angle optimization simultaneously with fluence 
optimization. The authors modeled human decision 
making process by using fuzzy inference system to follow a 
predefined set of rules and add beams iteratively. However, 
their method did not explicitly incorporate the end result 
of planner decision, which is the dose fall-off distribution 
largely determined by non-uniform beam arrangement. 
Pugachev et al. developed a method to incorporate prior 
knowledge into beam orientation optimization in IMRT (22).  
In their method the prior knowledge came from dosimetric 
impact of a single beam on the patient geometry in BEV. 
Although this was based on physical parameters, it could 
not reflect the human planner’s active decision making 
process during planning. Compared to these previous 

methods, our method focused on modeling the trade-off 
balance specifically to liver SBRT cases using established 
and clinically approved plans. It was substantially less 
computationally intensive and ensured the knowledge and 
preferences of a specific practice group is reflected in the 
beam angle recommendation process, and that the resulting 
plan conforms with the quality requirement specific to the 
training data cohort. 

Another potential advantage of our approach is its 
simplicity and portability. Because the model formulism is 
relatively simple and physically meaningful, the size of the 
training dataset does not need to be very large. In contrast 
to previous knowledge-based systems utilizing PCA and 
DVH modeling that requires 50–100 cases per site as 
training dataset, and convolutional neural network methods 
that rely on large training data and implicit models, our 
approach is simpler to understand and faster to deploy. 
Therefore the initial cost of model building and ongoing 
cost for model maintenance is expected to be relatively low. 
Because of its portability, the model can also be tailored 
towards different physician’s preference in the same 
institution with only a small number of training cases.

There were several limitations in this study. First, the 
data sample size was relatively small due to the limited 
cases available for this particular site (liver) and procedure 
(SBRT). In future studies, we aim to include additional liver 
SBRT cases to further validate the model. Along this line, 
this study was carried out in retrospective manner. It would 
be more robust to prospectively validate cases in a clinical 
setting. Second, no prior radiation therapy treatment record 
was considered in this study. Patients under liver treatment 
often have prior treatments which would affect beam 

Table 2 Statistical summary of dosimetric endpoints between the clinical plan and the model plan

PTV Liver Stomach Skin
MU

D2% (%) D98% (%) V20Gy (%) D(V-700cc) Gy Max Dose (Gy) Max Dose (Gy)

Clinical Plan

Mean 107.9 91.3 23.3 7.5 20.5 23.3 2,389.6

SD 1.6 11.4 17.2 7.1 17.7 9.6 1,472.8

Model Plan

Mean 108.1 91.3 23.4 7.5 20.6 23.7 2,319.6

SD 2.0 11.5 17.4 7.2 17.9 9.7 1,373.2

P value 0.164 0.566 0.590 0.972 0.952 0.883 0.256

Statistical significance was based on Wilcoxon Signed-Rank test and significance level was set to 0.05. SD, standard deviation.



4803Quantitative Imaging in Medicine and Surgery, Vol 11, No 12 December 2021

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(12):4797-4806 | https://dx.doi.org/10.21037/qims-21-169

Figure 2 Boxplot of PTV D2%, D98%, liver V20Gy, D(V-700cc) Gy, stomach max dose, skin max dose and total MU between the clinical 
plan (left) and model plan (right).
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setting determination due to efforts to actively avoid dose 
overlapping with prior courses and spare critical healthy 
liver tissue. We plan to incorporate this factor in the next 
step to help customize the beam setting based patient-
specific treatment history. Thirdly, in this prototype the 

data processing was performed offline in MATLAB, which 
requires manually exporting from and importing into 
treatment planning system. It is possible that with well-
trained model, it can be incorporated into Eclipse Scripting 
API (ESAPI) in Varian Eclipse® treatment planning system 
to further enhance streamlined process with one-click 
prediction and beam placement.

Conclusions

In this study, we developed a knowledge modeling 
approach to provide beam angles prediction for liver 
stereotactic body radiation therapy treatment planning. The 
lightweight model is effective, portable, and generalizable 
without extensive training data, and requires very little 
computational power to generate clinical-quality beam 
placement without further trial-and-error manual editing 
process. The proposed tool could serve as a key component 
towards a comprehensive decision support system for 
radiation therapy treatment planning.
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