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Ability of weakly supervised learning to detect acute ischemic 
stroke and hemorrhagic infarction lesions with diffusion-weighted 
imaging
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Background: Gradient-recalled echo (GRE) sequence is time-consuming and not routinely performed. 
Herein, we aimed to investigate the ability of weakly supervised learning to identify acute ischemic stroke 
(AIS) and concurrent hemorrhagic infarction based on diffusion-weighted imaging (DWI).
Methods: First, we proposed spatially locating small stroke lesions in different positions and hemorrhagic 
infarction lesions by residual neural and visual geometry group networks using weakly supervised learning. 
Next, we compared the sensitivity and specificity for identifying automatically concurrent hemorrhagic 
infarction in stroke patients with the sensitivity and specificity of human readings of diffusion and b0 
images to evaluate the performance of the weakly supervised methods. Also, the labeling time of the weakly 
supervised approach was compared with that of the fully supervised approach.
Results: Data from a total of 1,027 patients were analyzed. The residual neural network displayed a higher 
sensitivity than did the visual geometry group network in spatially locating the small stroke and hemorrhagic 
infarction lesions. The residual neural network had significantly greater patient-level sensitivity than did the 
human readers (98.4% versus 86.2%, P=0.008) in identifying concurrent hemorrhagic infarction with GRE as the 
reference standard; however, their specificities were comparable (95.4% versus 96.9%, P>0.99). Weak labeling of 
lesions required significantly less time than did full labeling of lesions (2.667 versus 10.115 minutes, P<0.001).
Conclusions: Weakly supervised learning was able to spatially locate small stroke lesions in different 
positions and showed more sensitivity than did human reading in identifying concurrent hemorrhagic 
infarction based on DWI. The proposed approach can reduce the labeling workload.
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Introduction

Acute ischemic stroke (AIS) is the leading cause of death 
in China. The age-standardized prevalence, incidence, and 
mortality rates of AIS in China are 111, 4.8, 246.8, and 
114.8/100,000 person-years, respectively (1). The latest 
guidelines recommend imaging evaluations before and after 
treatment, with particular attention given to the occurrence 
of hemorrhagic transformation (2). For spontaneous or 
therapy-related hemorrhagic transformation, missed 
diagnosis should be avoided to improve the prognosis of 
patients (3). 

Diffusion-weighted imaging (DWI) should be routinely 
performed for patients who are clinically suspected of having 
AIS lesions. DWI allows for sensitive visualization of AIS 
lesions; however, it may prevent the accurate identification 
of small-sized lesions or those disturbed by various 
artifacts due to the location (4). The gradient-recalled 
echo (GRE) sequence provides an accurate assessment 
of hemorrhagic transformation and is even superior to 
computed tomography (CT) (5,6). Unfortunately, GRE 
is not routinely performed, especially in low- and middle-
income cities in China. In addition, GRE normally takes 
several minutes, which can prolong the examination time 
for AIS patients. Previous studies have found that b0 images 
exhibit comparable sensitivities to those of GRE (7).  
However, due to its lower spatial resolution, b0 images 
have less ability than does GRE in identifying hemorrhagic 
transformation by human visual assessment. Moreover, a 
hemorrhagic infarction (HI) is more difficult to identify 
than parenchymal hematoma, which indicates the presence 
of petechiae within the infarcted area without a space-
occupying effect (8).

Numerous fully supervised approaches, such as EDD-
Net (9), 3D-DenseNet (10), and the residual-structured 
fully convolutional network (11), have been successfully 
applied in AIS lesion detection. However, the fully labeled 
annotation of lesions from a large number of images is 
tremendously labor and time intensive. Recently, some 
weakly supervised approaches were proposed to leverage 
the annotation workload (12-14), such as the wiseDNN (15) 
and the 3D weakly supervised network (16). The related 
studies have indicated that weakly supervised approaches 
can reduce the difficulty of label acquisition while still 
maintaining high detection efficiency. 

We hypothesized that weakly supervised learning may 
be helpful in detecting and locating small AIS lesions, 
and can simultaneously identify the concurrent HI lesions 

based on DWI. To this end, we first developed 2 weakly 
supervised methods to determine small AIS lesions in 
different positions. We then chose the better one to identify 
HI lesions and compared its performance with results from 
human reading.

Methods

Patient selection and data collection

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 
approved by the Ethics Board of Tianjin Huanhu Hospital. 
Individual consent for this retrospective analysis was waived. 
All clinical images of consecutive patients were collected 
from a retrospective database between January 1, 2017, and 
October 30, 2018.

The overall flow chart of this study is shown in Figure 1.  
First, a total of 417 training patients were randomly 
sampled from the retrospective database, in which eligibility 
for inclusion was AIS within 3 days from the onset of 
symptoms and available DWI images. The magnetic 
resonance imaging (MRI) data were screened for severe 
motion artifacts. To evaluate the performance of the weakly 
supervised approaches spatially locating the small lesions 
in different positions, a total of 240 patients in the test set 
were carefully selected. Lacunar stroke is a typical type 
of small stroke lesion, which is regarded as an important 
marker of cerebral small vessel disease and predicts 
unfavorable long-term outcomes. According to the current 
stroke classification systems, the definition of lacunar stroke 
relies mainly on the lesion radius limit (<7.5 mm) on brain 
imaging (17). Therefore, a patient was categorized as a test 
subject if the lesion was singular and its radius was smaller 
than 7.5 mm. The 240 test subjects were further divided 
into three groups according to the lesion positions on the 
basal ganglia, pons, and centrum semiovale, with 80 subjects 
in each group. We used an AIS patient data set to measure 
the performance of the weakly supervised approaches 
spatially locating the small lesions (radius <7.5 mm) in 
different positions.

Next, we further identified 305 AIS patients with HI 
lesions and 65 AIS patients without HI lesions (non-HI 
group) from the retrospective database. The HI lesions 
confirmed by two neuroradiologists using GRE sequences 
were considered to be the gold standard. In each case, GRE 
images were independently reviewed in conjunction with 
the isotropic DWI scan. HI was defined as an area of low 
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signal intensity to cortical gray matter on GRE images. Of 
the 305 AIS subjects with HI lesions, 240 were used to train 
and 65 were used to test the approach. In other words, the 
training set included 240 AIS subjects with HI lesions, and 
the test set included 130 AIS subjects (65 subjects with HI 
lesions and 65 subjects without HI lesions). There were no 
significant differences between the HI test group and the 
non-HI group in baseline characteristics of age, sex, or AIS 
lesion volume. 

Image acquisition

MRI measurements were acquired from three MR scanners, 
with two 3T MR scanners (Skyra and Trio, Siemens, 
Erlangen, Germany) and one 1.5 T MR scanner (Avanto, 
Siemens, Erlangen, Germany). DWI images were acquired 
using a spin-echo type echo-planar (SE-EPI) sequence 
with b values of 0 and 1,000 s/mm2. Following acquisition, 
apparent diffusion coefficient (ADC) maps were calculated 
from the diffusion scan raw data in a pixel-by-pixel manner. 
The detailed parameters of GRE and DWI are summarized 
in Table 1. 

Lesion annotation

The lesions were annotated with different methods. 
As shown in Figure 2, subjects in the training set were 
annotated by weak labels, where each slice of the subjects 
was annotated as “with AIS lesion”, “with AIS and HI 
lesion”, or “without lesion”. Subjects in the testing set 
were annotated by full labels, where all of the lesions were 
annotated in a pixel-by-pixel manner for evaluation only. In 
our work, we used the slice-level label to perform lesion-
level localization and detection. Identification of AIS lesions 
was performed as regions of ADC <620×10−6 mm2/s. The 
HI lesions were manually annotated by inspecting the 
GRE images. The labels were annotated by an experienced 
expert (Dr. Cao, a radiologist with 8 years of neuroimaging 
experience). The expert performed the manual annotation 
of the train and test data twice, and the interobserver 
agreement was assessed. Manual annotation of the first trial 
served as the ground truth. Another experienced expert 
checked the labels (Dr. Jin, a radiologist with 20 years of 
neuroimaging experience). The full and weak labeling times 
were recorded. Annotated labels were further tallied for 
statistical analysis (Tables 2,3).

Figure 1 Flow chart for evaluating AIS and HI lesions. AIS, acute ischemic stroke; HI, hemorrhagic infarction; PPV, positive predictive 
value; FD-S, the number of failure-to-detect subjects.
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Table 1 MRI scan parameters

Parameters
Skyra Trio Avanto

DWI GRE DWI GRE DWI GRE

Repetition (ms) 5,200 220 3,100 566 3,800 576

Echo time (ms) 80 2.46 99 20 102 20.4

Number of excitations 1 1 3 1 3 1

Field of view (mm2) 240×240 240×240 200×200 230×230 240×240 240×240

Matrix size 130×130 180×288 132×132 166×256 192×192 173×256

Slice thickness (mm) 5 5 6 6 5 5

Slice spacing (mm) 1.5 1.5 1.8 1.8 1.5 1.5

Number of slices 21 21 17 17 21 21

MRI, magnetic resonance imaging; DWI, diffusion-weighted imaging; GRE, gradient-recalled echo.

Figure 2 Network architecture for lesion detection using weakly supervised learning. A task of classifying healthy (blue) vs. AIS (red) and HI 
(green) tissue in DWI images. DWI, diffusion-weighted imaging; AIS, acute ischemic stroke; HI, hemorrhagic infarction.

Table 2 Training set patient characteristics

Training set AIS data (n=417) HI data (n=240)

Age, mean [min–max] 62 [31–86] 68 [24–93]

Male sex, n (%) 218 (52.1) 124 (51.6)

Classification, number of slices (%)

Normal 7,036 (82.0) 4,101 (76.0)

AIS 1,597 (18.0) 426 (8.0)

HI 0 840 (16.0)

Consistency test (manual 1–2)

Kappa coefficient 0.97 0.98

AIS, acute ischemic stroke; HI, hemorrhagic infarction.

Weak labels

Full labels

Input

Backbone Feature maps

Probability Map Generation

W
ith stroke lesions or not
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Visual assessment of HI lesions in DWI by 2 experienced 
neuroradiologists

Concurrent HI lesions for each patient in the HI test set 
and non-HI group were visually assessed independently by 
two neuroradiologists (Dr. Liu and Dr. Zhang, with 15 and 
25 years of experience in neuroradiology, respectively) who 
were blinded to the GRE. Any disagreements were resolved 
by consensus (18). Visual assessment and lesion annotation 
were performed in two different groups. As image analysis 
for DWI included both ADC and b0 images, the presence 
of HI lesions on b0 images was determined by investigators 
with knowledge of lesion presence on DWI. A HI lesion 
was judged as visible on b0 imaging when hypointensity 
was present in a region corresponding to the AIS lesion on 
DWI. The human and weakly supervised approach reading 
times were recorded. 

Weakly supervised model architecture 

In our experiments, the images were first normalized to 
zero mean and unit variance, and then concatenated in 
channel-wise fashion. We chose to use the visual geometry 
group network with 16 layers (VGG-16) (19) and the 
residual neural network with 50 layers (ResNet-50) (11,20) 
as the convolutional neural network (CNN) backbone. 
The backbone was used to extract the features (21)1. 
Conventionally, in a CNN that is designed for classification, 

the last convolution layer is usually followed by a fully 
connected layer to output the classification result (22). In 
this study, since the objective was to detect the lesion while 
the labels were the manual annotation denoting whether 
or not a slice contained a stroke lesion, we replaced the 
4096-dimension fully connected layers in the original 
VGG-16 and ResNet-50 by a global average pooling layer 
followed by an output layer (i.e., a fully connected layer). 
The global average pooling layer output the mean value 
of each feature map, and the mean values were further 
processed by a fully connected layer which output the 
classification result. In the training stage, the CNN was 
trained as a classifier with binary cross entropy being used as 
the loss function. Notably, although only AIS subjects were 
included in our work, as each AIS subject includes slices 
both with and without AIS lesions, the CNN was trained to 
classify AIS slices and non-AIS slices as well as HI slices and 
non-HI slices. In the testing stage, as our objective was to 
localize the stroke lesions, we needed to convert the trained 
CNN classifier such that the network could output an 
attention map that showed where the lesions were located. 
We directly output the feature maps of the last convolutional 
layer and used the weighted sum as the localization result 
to generate a class activation map (CAM) (23), where the 
weights were copied from the last fully connected layer 
in the training stage. The CAMs were then normalized 
and used to localize the lesions. The CNN architecture is 

Table 3 Test set patient characteristics

Test set
AIS data HI data

Basal ganglia (n=80) Pons (n=80) Centrum semiovale (n=80) HI group (n=65) Non-HI group (n=65) P

Age, years 61 [23–71] 66 [45–88] 65 [39–73] 58 [25–79] 64 [23–70] 0.28

Male sex, n (%) 42 (52.5) 38 (47.5) 47 (58.6) 38 (58.5) 36 (55.4) 0.64

Lesion volume

AIS, mm3 58.3 [8–313] 35.0 [6–150] 31.4 [10–62] 5,940.6 [215–28,701] 4261.7 [638–27,365] 0.08

HI, mm3 0 0 0 925.4 [26–12,420] 0

Consistency test

ICC 0.96 0.97 0.96 0.97 0.96

Data are given as median [min–max]. AIS, acute ischemic stroke; HI, hemorrhagic infarction; ICC, intraclass correlation coefficient.

1 As the VGG-16 and ResNet-50 were applied in their original form, please refer to (Simonyan K, Zisserman A. Very Deep Convolutional 
Networks for Large-Scale Image Recognition. arXiv 14091556. 2014) and (He K, Zhang X, Ren S, Sun J, editors. Deep Residual Learning 
for Image Recognition. IEEE Conference on Computer Vision & Pattern Recognition; 2016) for detailed network architectures.
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detailed in the Supplementary file. 
The output of the CNN indicated the probability that 

a pixel should be labeled as lesion tissue, and a threshold 
δ was required to convert the probability score map to 
a binary segmentation. The threshold was selected by 
maximizing the F1 score on the validation set. 

The experiments were performed on a computer with 
an Intel Core i7-7800K CPU, 64GB RAM and Nvidia 
GeForce 1080Ti GPU with 11GB memory. The computer 
operated on Ubuntu Linux 16.04 LTS with CUDA 9.0. The 
network was implemented on Keras 2.0.2 (www.keras.io).  
The MR image files were stored as Neuroimaging 
Informatics Technology Initiative format, and processed using 
Simple Insight ToolKit (SimpleITK, www.simpleitk.org)  
[1.2.0]. We used ITK-SNAP [3.8.0] (www.itksnap.org) (21) 
for image annotation and the visualization of results.

Statistical analysis

Statistical analyses were performed using SPSS (version 
22.0, IBM Corporation, Armonk, NY, USA). Receiver 
operating characteristic (ROC) curves were constructed 
and the area under the curve (AUC) was calculated to 
compare the efficacy of each model. First, we proposed 
several lesion-wise metrics using three-dimensional (3D) 
connected component analysis to evaluate the performance 
of the networks. We measured the lesion-wise sensitivity 
and positive predictive value. The number of failure-to-
detect subjects (FD-S) was used to evaluate the subject-level 
performance. 

Next, we compared the performance of the weakly 
supervised approach with human visual assessment by 
analyzing their sensitivities, specificities, positive predictive 
values, negative predictive values, and AUCs in detecting 
concurrent HI lesions. Sensitivity and specificity were 
compared using McNemar tests, while positive and negative 
predictive values were compared using the Generalized 
Score Statistics method, as appropriate. The Z-test was 
used to compare the AUC. P values <0.05 were considered 
to indicate statistical significance. Additional statistical 
comparisons are described in the Supplementary file.

Results

Patients

Of the 1,027 enrolled patients, 657 were used to train and 
370 patients were used to test the methods. There were no 

significant differences between the training and test sets in 
baseline characteristics of age or sex. Of the 1,027 patients, 
657 belonged to the AIS database, including 417 in the 
training set and 240 in the test set, and 370 belonged to the 
HI database, including 240 in the training set and 130 in 
the test set. The patients’ characteristics are summarized in 
Tables 2,3.

Network performance in detecting AIS lesions

We evaluated the network slice-wise classification 
performance by evaluating the ROC curves, as shown 
in Figure S1. It is clear in Figure S1 that both classifiers 
possessed superior performance in identifying image slices 
with stroke lesions. In particular, the ResNet-50 achieved 
an AUC score of 0.966, which highlighted the considerable 
potential of this deep learning method to aid clinicians’ 
diagnoses. The confusion matrix for slice-wise classification 
performance is displayed in Figure 3. ResNet-50 showed 
significantly higher lesion-wise sensitivity and positive 
predictive value of the pons group than did VGG-16 
(P<0.001), as shown in Table 4. All of the FD-S appeared 
in the pons group, and 14 subjects were missed by VGG-
16 compared with 1 subject by ResNet-50. Although 
the lesion-wise positive predictive values of ResNet-50 
tended to be superior to those of VGG-16 in the centrum 
semiovale group (P<0.001) and the basal ganglia group 
(P=0.03), the sensitivities were similar. 

Identification of concurrent HI lesions in AIS patients 

The lesion-level sensitivities and positive predictive 
values of VGG-16 were 0.834 and 0.912, respectively, for 
AIS detection, and 0.725 and 0.772, respectively, for HI 
detection. With ResNet-50, the lesion-level sensitivities and 
positive predictive values were 0.877 and 0.914, respectively, 
for AIS detection, and 0.847 and 0.879, respectively, 
for HI detection. As shown in Table 4, the lesion-level 
performance of ResNet-50 was better than that of VGG-
16 (P<0.05). Figure 4 shows that the trained ResNet-50 
could spatially locate the AIS and HI lesions. Based on 
the visual assessment of concurrent HI lesions from 
neuroradiologist (initial human interobserver agreement: 
75.3% with a κ of 0.48), HI lesions were identified 
with a patient-level sensitivity of 0.862 and a specificity 
of 0.969. ResNet-50 exhibited a significantly higher 
sensitivity in detecting concurrent HI lesions compared to 
neuroradiologist visual assessment (Table 5). Although the 

https://cdn.amegroups.cn/static/public/QIMS-21-324-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-21-324-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-21-324-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-21-324-supplementary.pdf
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specificities of the human results in identifying concurrent 
HI lesions were high, ResNet-50 demonstrated comparable 
specificity. Furthermore, ResNet-50 had a higher AUC in 
differentiating AIS patients with or without HI compared 
to visual assessment [95% confidence interval (CI): 0.003–
0.105; Z=2.073; P=0.038].

Costs and benefits of the weakly supervised learning

In the training stage, VGG-16 and ResNet-50 took  
2.2 hours and 2.5 hours, respectively. In the testing stage, 
VGG-16 and ResNet-50 took 0.46 and 0.87 s, respectively. 
The weakly supervised approach significantly reduced the 
labeling time compared to the fully supervised approach 
(10.115 vs. 2.663 min; P<0.001), as shown in Figure 5. Also, 
ResNet-50 involved less reading time than did human visual 
assessment in identifying concurrent HI lesions in AIS 

patients (39.921 vs. 0.873 s; P<0.001). 

Discussion

The contributions of this paper are summarized as follows. 
First, ResNet-50 improved the sensitivity of detecting small 
AIS lesions in different positions, especially for pontine 
lesions. Next, a weakly supervised method was proposed, 
which could sensitively identify concurrent HI lesions in 
AIS patients using DWI and effectively reduce the time of 
lesion labeling and film reading. Our algorithm is capable 
of rapidly and accurately identifying AIS and concurrent HI 
lesions, which can minimize the occurrence of misdiagnosis, 
avoid inappropriate treatment, and improve the quality of 
medical care.

We trained and validated two neural networks to 
detect small stroke lesions in different regions. ResNet-50 

Table 4 Lesion-wise performance of VGG-16 and ResNet-50 on the test set

Indicators

Acute ischemic stroke
Hemorrhagic infarction

Basal ganglia Pons Centrum semiovale

VGG ResNet P VGG ResNet P VGG ResNet P VGG ResNet P

Sensitivity 0.954 0.965 >0.99 0.795 0.964 <0.001 1 1 >0.99 0.725 0.847 <0.001

PPV 0.643 0.804 0.03 0.504 0.889 <0.001 0.541 0.851 <0.001 0.772 0.879 0.04

FD-S 0 0 – 14 1 – 0 0 – 5 1 –

VGG-16, visual geometry group network-16; ResNet-50, residual neural network-50; PPV, positive predictive value; FD-S, the number of  
failure-to-detect subjects.

Figure 3 Confusion matrix of VGG-16 and ResNet-50. VGG-16, visual geometry group network-16; ResNet-50, residual neural network-50.
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Figure 4 Three examples of HI patient imaging (A, B, C, and D). In the ground truth images, the AIS and HI lesions are annotated in red 
and green, respectively. AIS, acute ischemic stroke; HI, hemorrhagic infarction.

Table 5 Subject-level performance of human and weakly supervised methods for the identification of concurrent hemorrhagic infarction lesions 
pending on DWI

Methods Sensitivity P Specificity P PPV P NPV P AUC P

Human 0.846 – 0.969 – 0.945 – 0.863 – 0.908 –

ResNet-50 0.984 0.004 0.954 >0.99 0.955 0.80 0.984 0.01 0.969 0.02

VGG-16 0.923 0.06 0.938 0.50 0.938 0.52 0.924 0.26 0.931 0.36

P value denotes the P value derived from comparisons with human results. DWI, diffusion-weighted imaging; ResNet-50, residual neural 
network-50; VGG-16, visual geometry group network-16; PPV, positive predictive value; NPV, negative predictive value; AUC, area under 
the curve.

showed superior sensitivities compared to VGG-16, which 
highlighted the importance of using a residual structure. 
The residual structure can make the network much deeper 
and avoid the vanishing gradient problem (24). Notably, 
an overall several times increase of FD-S in the pons 
group detected by VGG-16 (versus ResNet-50) should be 
emphasized in terms of patient safety because false negative 
cases may have an increased risk of inappropriate treatment. 
There are several possible explanations for why all of the 

failed detections for AIS regions were in the pons. It may 
be due to a small sample size of pons infractions in the data 
set. In the training set, 103 cases (24.7%) had posterior 
circulation cerebral infarction, of which 72 cases (17.2%) 
had pontine infarction. A total of 128 AIS image sets from 
72 patients with pontine infarction were included for 
network training, slightly lower than the number of some 
other artificial intelligence studies (25,26). Furthermore, 
an epidemiological study showed that approximately 

DWI ADC GRE Ground True Class Activation Map
AIS AISHI HIb0

A

B

C

D
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20–25% of ischemic strokes affect posterior circulation 
brain structures. The number of pontine infarctions 
in the training set was consistent with epidemiological 
characteristics. Second, magnetically susceptible artifacts 
may be the main cause of this issues; these artifacts originate 
from the inhomogeneous magnetic field and the magnetic 
susceptibility differences between brain tissue and the air-
containing areas of the skull (Figure S2) (27). 

In addition, the positive predictive value of the centrum 
semiovale group was lower than that of the basal ganglia 
group in VGG-16. This result may be due to T2 shine-
through that is caused by the demyelination of white matter. 
ResNet-50 has solved the above problems remarkably 
well. Although the CAM did not use the correct regions 
of images in some case, we would like to mention that 
this problem usually occurs in the ImageNet data set with 
millions of images of 1,000 classes. Our study involved 
thousands of image slices with significantly fewer classes; 
that is, 2 classes for the AIS task and 3 classes for the HI 
task. The images were all brain MR images, which were not 
as diverse as those in the ImageNet data set. In addition, 
a total of 1,027 patients were included in this study for 
analysis; compared to previous artificial intelligence studies 
related to stroke (Table S1), the sample size of this study 
was sufficient.

This study was designed to examine the value of a weakly 
supervised method to automatically identify the HI lesions 
in AIS patients. HI may occur as part of the spontaneous 
evolution of AIS, or is precipitated by the use of 

thrombolytic therapy. A spontaneous HI can occur prior to 
any treatment and may seriously influence patient prognosis 
if it is not promptly detected (28). In addition, therapy-
related HI, or post-therapy HI, is a medical emergency, 
with deterioration typically occurring quickly after onset. 
As shown in Figure 4, it was difficult for us to determine the 
existence of HI lesions in DWI by human visual assessment. 
Subject C had an old hemorrhagic lesion in the contralateral 
hemisphere of the AIS lesion, which was not misdiagnosed 
as a HI. Although the AIS and HI lesion volume of subject 
D were only 327 and 302 mm3, respectively (Figure S3), 
ResNet-50 accurately located the lesion and was not 
affected by the magnetic susceptibility artifact. Moreover, 
weakly supervised learning has the potential to reduce the 
labeling workload. Full annotation of lesion outlines takes 
up to approximately 10 minutes per subject, while weak 
labeling can be completed in approximately 2 minutes (29). 
This indicates that the algorithm can be perfectly trained 
on more patients, which makes it possible to provide more 
consistency in larger data sets.

There are several limitations in the present study that 
should be noted. First, the lesion segmentation accuracy 
needs to be further improved. In this paper, due to the data 
training of weakly supervised learning, the information that 
was provided by weakly supervised labels was significantly 
less than that provided by fully supervised labels. Although 
this method can accurately mark the locations of lesions, it is 
less able to provide detailed parameters, such as the size of a 
lesion. Second, although some examples demonstrated that 

Figure 5 Scatter plots of labeling and reading time. (A) Comparison of time taken to annotate lesions by full label and weak label in the HI 
test set; (B) comparison of time taken to read DWI to identify concurrent HI lesions by human and ResNet-50. **P<0.001. GRE, gradient-
recalled echo; HI, hemorrhagic infarction; DWI, diffusion-weighted imaging.
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this method can distinguish HI lesions from hemosiderin 
deposits, this has not been systematically confirmed and 
requires further verification. This method still depends on 
the clinical history and changes in the patients’ symptoms. 
Third, the lesion-wise specificity was not included in our 
analysis due to the fact that specificity is a true-negative–
related metric, and it was difficult to define a true-negative 
lesion in our task. Fourth, in order to further evaluate the 
detection accuracy of the proposed method, multicenter 
studies that standardize the imaging protocols and the post-
processing procedures are warranted. 

Conclusions

ResNet-50 offers superior performance to VGG-16 for 
identifying small AIS lesions in different positions. Our 
study provides a weakly supervised approach based on 
ResNet-50 to identify sensitively concurrent HI lesions in 
AIS patients. The proposed approach helps to reduce the 
difficulty in obtaining expert labels and has the potential to 
minimize the occurrence of misdiagnosis when GRE is not 
routinely performed.
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Supplementary

Table S1 Sample size of artificial intelligence studies related to stroke

Title Journal Train data Test data

Evaluation of Diffusion Lesion Volume Measurements in Acute Ischemic Stroke Using  
Encoder-Decoder Convolutional Network

Stroke 296 134

Machine Learning for Detecting Early Infarction in Acute Stroke with Non-Contrast-enhanced CT Radiology 157 100

Deep Learning-Derived High-Level Neuroimaging Features Predict Clinical Outcomes for Large 
Vessel Occlusion

Stroke 250 74

Machine Learning Approach to Identify Stroke Within 4.5 Hours Stroke 299 56

Figure S1 The receiver operating characteristic (ROC) curve of 
the residual neural (ResNet-50) and visual geometry group (VGG-
16) network classifiers shows the false positive rate (x-axis) vs. the 
true positive rate (y-axis). The areas under the ROC curve (AUCs) 
for the ResNet-50 and VGG-16 networks were both superior in 
being able to identify lesions in acute ischemic stroke (AIS) image 
slices. 

Figure S2 Challenge examples in ischemic stroke segmentation. 
In example 1, the yellow arrow identifies the hyperintensity that 
is a true acute ischemic stroke lesion, and the red arrows identify 
hyperintensity due to magnetic susceptibility artifacts. In example 2, 
the red arrows identify hyperintensity due to the T2 shine-through 
effect.
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Figure S3 Scatter plots of lesions volume in the hemorrhagic infarction (HI) test set. (A) The volume (median and interquartile range) of 
HI in the test set was measured by the ground truth (n=65). (B) The volume in small HI lesion volume cases (n=41).

Convolutional neural network (CNN) architecture

Unlike the classical networks, such as AlexNet and visual 
geometry group network (VGG-16), we used a global 
average pooling layer followed by a dense layer, which 
indicated the probability that the current slice contained 
a lesion, instead of using several fully connected layers 
at the top of the convolution layer. Each image slice was 
resampled to a voxel size of 0.87×0.87 mm and then cropped 
to a matrix size of 256×256. All of the images were then 
normalized to images with zero mean and unit variance. 

In the training stage, the feature maps in the last 
convolution layer were processed by a global average 
pooling (GAP) layer, which output the mean value of each 
feature map. The mean values were further processed by 
a dense layer for classification. In the testing stage, we 
directly output the feature maps of the last convolutional 
layer and used the weighted sum as the localization results 
to generate a CAM. The weights were obtained by copying 
the weights of the last dense layer. A probability map could 
then be obtained by normalizing the pixel intensities as 
follows:

 
i

CAM
max

ˆi
cls

ii

xx y
x

∈

= × ,

where xi is the intensity of pixel i on the CAM and  ˆclsy  is the 
output value of the classifier, which indicates the probability 
that any lesion is found in the slice.

CNNs, such as VGG-16 and residual neural network 
(ResNet-50), were initially designed for classification. 

In the classification task, determining the kind of object 
presented in the image is the goal; therefore, it is not 
necessary to preserve the spatial location information of an 
object. These CNNs were thus designed with very small-
sized feature maps in the last several convolution layers. 
In our task, we aimed to determine two issues: whether 
a lesion can be detected and the location of the lesion. 
Therefore, we needed to extract the sematic information 
and simultaneously preserve the spatial information. To this 
end, we used a truncated version of the well-applied CNN 
by only using the output of the convolution layer, which 
provided feature maps with heights and widths that were at 
most 8 times smaller than the original input.

Transfer learning techniques in which the network 
weights were initialized through use of the ImageNet 
pretrained weights  were used to improve the performance 
of the network on small data sets. The whole network was 
then fine-tuned by using the stochastic gradient descent 
(SGD) method with the Nesterov momentum as the 
optimizer, an initial learning rate of 0.001 and a momentum 
of 0.9. During training, 300 image slices were randomly 
chosen from the training set for validation. A dynamic 
training policy was adopted, in which we monitored the loss 
value for the validation samples at the end of each training 
epoch, and the learning rate was reduced by a factor of 
 0.1  if the validation loss did not improve for 10 epochs. 
Data augmentation methods, including random flipping 
along 2 axes and random rotation, were adopted to prevent 
overfitting, where the rotation were restricted within a 
range of [−30°,30°]. An early-stopping method, in which the 



© Quantitative Imaging in Medicine and Surgery. All rights reserved.  https://dx.doi.org/10.21037/qims-21-324

training is stopped if no progress is made in 30 epochs, was 
also adopted to avoid overfitting.

Statistical analysis

To evaluate the performance of the CAM-based methods, 
we proposed several lesion-wise metrics using 3D connected 
component analysis. In particular, for a single subject, a 
probability map was first generated for each individual 
slice, and the probability maps were stacked on the z-axis 
to generate the predicted probability map of the subject. 
We then converted the predicted probability map to a 
binary segmentation map by thresholding and subsequently 
measured the per-subject mean numbers of false-positive 
lesions (mFP-L), false-negative lesions (mFN-L), and true-
positive lesions. A false-negative lesion (FN-L) was defined 
as a connected volume on the ground truth label that had 
no overlapping volume with any connected volumes on 
the predicted segmentation. A false-positive lesion (FP-L)  
was defined as a connected volume on the predicted 
segmentation that had no overlapping volume with that 
on the ground truth. If a region on both the ground truth 
and predicted segmentation overlapped with each other, we 

defined it as a true-positive lesion (TP-L). The mFP-L and 
the mFN-L were then calculated by respectively averaging 
the FN-Ls and FN-Ls for all tested subjects. We further 
defined the lesion-wise sensitivity and precision as follows:

 TPLSensitivity Recall
TPL FNL

= =
+

 TPLPrecision Positive predictive value
TPL FPL

= =
+

to evaluate the lesion-wise performance. In addition, the 
subject-wise detection rate is important in clinical diagnosis. 
We used the number of failure-to-detect subjects (FD-S) to 
evaluate the subject-level performance.

To verify the consistency of the labels that were twice 
given by the experts, the intraclass correlation coefficient 
(ICC) and κ coefficient were computed between the 2 
lesion measurements. Two-paired-sample Wilcoxon and 
Kruskal-Wallis tests were performed to determine whether 
the VGG-16 and ResNet-50 were significantly different 
in terms of parameters. The full and weak labeling time, as 
well as the human and machine reading time, was compared 
using the 2-paired sample Wilcoxon test.
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