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Background: To evaluate the segmental myocardial extracellular volume (ECV) fraction and to define a 
threshold ECV value that can be used to distinguish positive late gadolinium enhancement (LGE) segments 
from negative myocardial segments using dual-layer spectral detector computed tomography (SDCT), with 
magnetic resonance imaging (MRI) as a reference.
Methods: Fifty-six subjects with cardiac disease or suspected cardiac disease, underwent both late iodine 
enhancement on CT (CT-LIE) scanning and late gadolinium enhancement on MRI (MRI-LGE) scanning. 
Each procedure occurred within a week of the other. Global and segmental ECVs of the left ventricle were 
measured by CT and MRI images. According to the location and pattern of delayed enhancement on MRI 
image, myocardial segments were classified into 3 groups: ischemic LGE segments (group 1), nonischemic 
LGE segments (group 2) and negative LGE segments (group 3). The correlation and agreement between 
CT-ECV and MRI-ECV were compared on a per-segment basis. Receiver operating characteristic (ROC) 
curve analysis was performed to establish a threshold for LIE detection.
Results: Among the 56 patients, 896 segments were analyzed, and of these, 73 segments were in group 1, 
229 segments were in group 2, and 594 segments were in group 3. In segmental analysis, CT-ECV in group 
3 (27.0%; 24.9–28.9%) was significantly lower than that in group 1 (33.2%; 30.7–36.3%) and group 2 (34.9%; 
32.3–39.8%; all P<0.001). Good correlations were seen between CT-ECV and MRI-ECV for all groups 
(group 1: r=0.920; group 2: r=0.936; group 3: r=0.799; all P<0.001). Bland-Altman analysis between CT-
ECV and MRI-ECV showed a small bias in all 3 groups (group 1: –2.1%, 95% limits of agreement −11.3–
7.1%; group 2: −0.6%, 95% limits of agreement −13.1–11.9%; group 3: 1.0%, 95% limits of agreement 
−12.7–14.7%). CT-ECV could differentiate between LGE-positive and LGE-negative segments with 83.1% 
sensitivity and 93.3% specificity at a cutoff of 31%.
Conclusions: ECV values derived from CT imaging showed good correlation and agreement with MR 
imaging findings, and CT-ECV provided high diagnostic accuracy for discriminating between LGE-positive 
and LGE-negative segments. Thus, cardiac CT imaging might be a suitable noninvasive imaging technique 
for myocardial ECV quantification.
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Introduction

Myocardial extracellular volume (ECV) fraction with 
magnetic resonance imaging (MRI) is now the reference 
standard for the noninvasive assessment of myocardial 
fibrosis (1-4). Myocardial ECV is elevated in a variety of 
cardiomyopathies, including both ischemic and nonischemic 
cardiomyopathy (5,6). However, cardiac MRI examinations 
are not appropriate for patients with claustrophobia or 
metallic implants.

Recently, ECV quantification derived from CT has 
been reported in several studies with a good correlation 
between CT-ECV and MRI-ECV (7-11). Iodine density 
images derived from dual-energy CT represent distribution 
of iodine in a voxel in a state of equilibrium. After contrast 
injection, ECV by cardiac CT is calculated from an 
iodine density map (incorporating the patient’s hematocrit 
level), thus reducing the possibility of misregistration 
between the pre- and postcontrast CT images and 
improving measurement accuracy (10). A previous study 
also demonstrated a threshold value of CT-ECV that 
distinguishes healthy myocardium from cardiomyopathy (12).  
However, ECV assessment among ischemic, nonischemic, 
and late gadolinium enhancement (LGE) negative 
myocardial segments using dual-layer spectral detector CT 
has not been studied.

The aim of this study was to evaluate segmental 
myocardial ECV fraction and to define a threshold ECV 
value to distinguish LGE-positive segments from LGE-
negative myocardial segments using dual-layer spectral 
detector CT with MRI as a reference.

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study 
was approved by the Institutional Committee of Ethics of 
Peking Union Medical College Hospital. All participants 
signed written informed consent before cardiac CT and 
MRI scans.

Study population

In this prospective study, consecutive patients diagnosed 
with cardiac disease or with suspected cardiac disease 
underwent both late iodine enhancement (LIE) on CT 
(CT-LIE) and MRI-LGE on separate occasions within 
a week from each other between December 2018 and 
December 2020. Patient exclusion criteria included allergy 
to iodine and gadolinium contrast agents, insufficient renal 
function, claustrophobia, non-MRI compatible devices (such 
as metallic implants), age <20 years, and previous cardiac 
surgery, or pregnancy. In total, 126 patients with cardiac 
disease or with suspected cardiac disease were initially 
included. The flowchart of population enrollment is showed 
in Figure 1.

Cardiac CT examination

Cardiac CT was performed with a dual-layer spectral CT 
scanner (IQon, Philips Healthcare, Best, the Netherlands). 
Patients received oral β-blockers 1 hour before CT scanning 
when the heart rate was >70 beats/min. All patients received 
sublingual nitroglycerin 3 min before scanning and were 
given breath-holding instructions before scanning.

Coronary CT angiography was performed using a 
prospective axial scanning mode if the patients had a heart 
rate <70 beats/min or a retrospective helical scanning mode 
if the patients had a heart rate >70 beats per minute. The 
acquisition parameters were as follows: detector collimation, 
64×0.625 mm; gantry rotation time, 0.27 s; tube voltage, 
120 kVp; and tube current automatic modulation. The 
acquisition ranged from the carina to the level of the 
diaphragm. A 20 G dual-syringe power injector was used to 
intravenously inject 0.9 mL/kg of contrast agent (Iopamiro, 
370 mgI/mL; Bracco Sine Pharma, Shanghai, China) at a 
4.5–5 mL/s flow rate, followed by 40 mL saline flush at the 
same flow rate.

Immediately after coronary CT angiography, 0.5 mL/kg  
of iodinated contrast medium (Iopamiro, 370 mgI/mL; 
Bracco Sine Pharma, Shanghai, China) was injected at  
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2.5–3 mL/s flow rate. In total, 1.4 mL/kg of iodinated 
contrast medium, with the maximum dose of contrast 
medium not exceeding 100 mL, was injected (9,13). CT-
LIE images were obtained 7 min after coronary CT 
angiography using the prospective axial scanning mode. 
The scanning parameters were the same as those of the 
coronary CT angiography imaging. The effective radiation 
dose (ED) of CT was calculated as follows: dose-length 
product (DLP) × conversion factor of 0.014 (14).

Cardiac MRI examination

Cardiac MRI was performed using a 3T whole-body 
scanner (MAGNETOM Skyra, Siemens Healthineers, 
Erlangen, Germany), with an 18-element body matrix coil 
and a 32-element spine array coil. A bolus of gadolinium 
contrast agent (Gadobenate Dimeglumine, Beijing BEILU 
Pharmaceutical Co, Ltd, Peking, China) was injected at a 
0.05 mmol/kg dose and at a 4 mL/s flow rate for obtaining 
first pass perfusion images. Then 0.1 mmol/kg gadolinium 
contrast agent was immediately injected at a 1 mL/s flow 
rate. MRI-LGE images were obtained 10 minutes after 
contrast was injected with a 2D phase-sensitive inversion-
recovery (PSIR) gradient-echo pulse sequence. The image 
acquisition parameters were as follows: repetition time (TR) 
5.2 ms, echo time (TE) 1.96 ms, flip angle (FA) 20 degrees, 
and a voxel size of 1.4 mm × 1.4 mm × 8.0 mm. Native and 
15 minute postcontrast T1 mapping data were scanned 

in identical imaging locations with 3 short-axis slices (at 
apical, mid, and basal portions of the left ventricle), using 
a modified Look-Lockers inversion recovery (MOLLI) 
sequence. The image acquisition parameters included the 
following: TR 2.7 ms, TE 1.12 ms, FA 20 degrees, and 
a voxel size of 1.4 mm × 1.4 mm × 8.0 mm. MRI-ECV 
was semiautomatically measured using dedicated cardiac 
MRI software CVI42 (Version 5.3, Circle Cardiovascular 
Imaging, Calgary, Canada) by contouring the endocardium 
and epicardium on the MRI-ECV maps.

Image analysis

All CT images were transferred to a commercial spectral 
workstation (IntelliSpace Portal Version 10.0, Philips 
Healthcare).

On CT-LIE images, the iodine density map was applied 
to the short-axis plane with an 8 mm slice thickness and 
no gap. Three short-axis slices (apical, mid, and basal left 
ventricle) from CT-LIE images were matched with the 
T1 map images from the cardiac MRI. Regions of interest 
(ROIs) were manually drawn in each segment of the 
myocardium according to the American Heart Association's 
16-segment model of the left ventricle, with the extreme 
edges of the myocardium being avoided (15,16). A circular 
ROI was placed in the blood pool to avoid papillary muscle 
(Figure 2). After the iodine density value (in mg/mL) was 
obtained from all the ROIs, the CT-ECV per segment was 

Figure 1 The flowchart shows study population enrollment. CT, computed tomography; MRI, magnetic resonance imaging.

126 patients were initially included
• Having or suspected of cardiac disease
• Referred to cardiac CT or cardiac MRI

81 patients were eligible

56 patients were finally enrolled 

Patients were excluded (n=45)
• Iodine contrast agent allergy (2)
• Non-MRI compatible devices (4)
• Previous cardiac surgery

- Percutaneous coronary intervention (18)
- Coronary bypass graft surgery (12)
- Heart valve replacement surgery (9)

Cardiac CT or cardiac MRI were not performed 
within a week (n=25)

• Patients refused (15)
• Patients could not been contacted (10)
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calculated as follows (17): CT-ECV (%) = (1 – hematocrit) × 
(iodine density in myocardium)/(iodine density in the blood 
pool). To calculate the reproducibility of measurements, 2 
radiologists independently measured both CT-ECV and 
MRI-ECV.

On cardiac MRI-LGE imaging, the presence of LGE 
was defined as positive when myocardial enhancement was 
found in both short-axis and matching long-axis images (18).  
The LGE pattern was classified as subendocardial, 
transmural, midwall, epicardial, patchy, and none. Based 
on CT and MRI findings, we classified myocardial 
segments into 3 groups: ischemic LGE segments (group 1),  
nonischemic LGE segments (group 2) and LGE-negative 
segments (group 3). An ischemic pattern was defined 
as subendocardial or transmural myocardial delayed 
enhancement on MRI image corresponding to the perfusion 
territory of a coronary artery, and a nonischemic pattern 
demonstrated that myocardial delayed enhancement was not 
limited to a vascular territory (19-21). An ischemic segment 
and nonischemic segment were defined as LGE-positive 
segments, and an LGE-negative segment was defined as a 
myocardial segment without delayed enhancement. MRI-
LGE images were independently observed by 2 experienced 
radiologists. Discrepancies were resolved with a third 
radiologist.

Statistical analysis

Continuous variables are expressed as the mean ± standard 
deviation or median (interquartile range). A paired t-test 
was used to compare mean CT-ECV and MRI-ECV. 
An independent Mann-Whitney U test was used to 

compare ECVs among the 3 groups. The correlations and 
agreement between CT-ECV and MRI-ECV on a per-
segment basis were evaluated using Spearman correlation 
and Bland-Altman analyses. ROC curve analysis, with 
the corresponding area under the curve (AUC), was 
performed to establish a threshold for LIE. Interobserver 
reliability for each imaging modality was tested using an 
intraclass correlation coefficient (ICC). A P value <0.05 was 
considered statistically significant. All statistical analyses 
were performed using MedCalc (version 19.6.4) and SPSS 
(version 25, IBM corporation, Armonk, NY, USA) software.

Results

Baseline characteristics

Based on the inclusion and exclusion criteria, a total of 56 
patients (32 males and 24 females; mean age, 52±16 years) 
were enrolled in our study and underwent both CT-LIE 
and MRI-LGE within a week. The patient characteristics 
are presented in Table 1.

Among the 56 patients, 10 patients had ischemic LGE, 
28 patients had nonischemic LGE, and 18 patients had 
no LGE on cardiac MRI. Nonischemic patients included 
those with dilated cardiomyopathy (n=12), hypertrophic 
cardiomyopathy (n=2), hypertensive cardiomyopathy (n=4), 
arrhythmogenic cardiomyopathy (n=2), noncompaction of 
left ventricular myocardium (n=2), connective tissue disease 
(n=2), peripartum cardiomyopathy (n=1), and unknown 
conditions (n=3).

Among the 56 patients, 896 segments were analyzed; of 
these, 302 segments had LGE, with 73 segments in group 

Figure 2 Example of ECV quantification. An iodine map from dual-layer spectral detector CT (B) was matched with the T1 map images 
from cardiac MRI (A). CT, computed tomography; ECV, extracellular volume fraction; MRI, magnetic resonance imaging.
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1 and 229 segments in group 2; meanwhile, 594 segments 
group 3 showed no LGE. On MRI-LGE imaging, 18% 
(55/302) of segments showed a subendocardial pattern, 
13% (38/302) showed a transmural pattern, 26% (77/302) 
showed a midwall pattern, 5% (16/302) showed an 
epicardial pattern, and 38% (116/302) showed a patchy 
pattern. The median DLP and mean ED of the LIE images 
were 188.4±65.7 mGy·cm and 2.6±0.9 mSv, respectively. 
The scan parameters are shown in Table 2.

Myocardial ECV in per-subject analysis

In a per-subject analysis, the myocardial ECV of CT 
imaging was 28.7% (26.5–31.9%), and that of MRI 
imaging was 28.4% (26.6–32.2%). There was no significant 
difference between CT-ECV and MRI-ECV (P=0.383). 

Interobserver agreement for ECV on CT imaging and MRI 
was excellent (ICC=0.889 and 0.904, respectively).

Myocardial ECV in per-segment analysis

In a per-segment analysis ,  the CT-ECV value of 
subendocardial, transmural, midwall, epicardial, and patchy 
pattern was 35.9% (27.5–50.1%), 40.7% (29.5–54.3%), 
34.4% (26.9–47.4%), 38.8% (30.1–50.4%), and 37.0% (26.0–
50.9%), respectively. The CT-ECV in group 1 (33.2%; 30.7–
36.3%) and group 2 (34.9%; 32.3–39.8%) was significantly 
higher than that of group 3 (27.0%; 24.9–28.9%; all P values 
<0.001). These results are summarized in Figure 3.

Good correlations were seen between CT-ECV and 
MRI-ECV measurements for group 1 (r=0.920), group 2 
(r=0.936), and group 3 (r=0.799; all P values <0.001). Bland-
Altman analysis between CT-ECV and MRI-ECV showed 
a small bias (group 1: −2.1%, 95% limits of agreement 
−11.3–7.1%; group 2: −0.6%, 95% limits of agreement 
−13.1–11.9%; group 3: 1.0%, 95% limits of agreement 
−12.7–14.7%; Figures 4,5).

From ROC curve analysis, CT-ECV differentiated 
between LGE-positive and LGE-negative segments, with 
an 83.1% sensitivity and a 93.3% specificity at a cutoff 
of 31%; the area under the curve of ROC was 0.957. 
The same analysis also suggested that CT-ECV could 
differentiate between ischemic LGE myocardial segments 
and LGE-negative myocardial segments (sensitivity 93.2%; 

Figure 3 The mean CT-ECV values on ischemic LGE myocardial 
segments (group 1), nonischemic LGE myocardial segments (group 
2), and LGE-negative myocardial segments (group 3). CT-ECV in 
group 3 was significantly lower than that in group 1 and group 2 (all 
P values <0.001). CT, computed tomography; ECV, extracellular 
volume fraction; LGE, late gadolinium enhancement.

Table 1 Patient demographics

Characteristic Value

Male/female 32/24

Age (years) 52.1±16.5

Body mass index (kg/m2) 24.0±4.0

Hematocrit (%) 41.1±5.3

Diabetes 23 (41.1)

Hypertension 25 (44.6)

Hyperlipidemia 10 (17.9)

Smoking 15 (26.8)

Data are expressed as the mean ± standard derivation or N (%).

Table 2 Parameters for myocardial delayed iodine enhancement  
imaging

Parameter Value

Scan mode Prospective electrocardiogram gating

Peak tube voltage (kVp) 120

Tube current (mA) 124.7±31.9

Total contrast dose (mL) 89.5±11.6

CTDIvol (mGy) 15.0±4.5

DLP (mGy·cm) 188.4±65.7

ED (mSv) 2.6±0.9

Data are expressed as the mean ± standard derivation. CTDIvol, 
volume computed tomography dose index; DLP, dose-length 
product; ED, effective radiation dose.
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Figure 4 Scatter plots and Bland-Altman plots. The scatter plots show the results of correlation (A, C, and E) and Bland-Altman plots show 
the results of agreement (B, D, and F) for comparisons between CT- and MRI-derived ECV on ischemic LGE segments, nonischemic LGE 
segments, and LGE-negative myocardial segments. CT, computed tomography; ECV, extracellular volume fraction; LGE, late gadolinium 
enhancement; MRI, magnetic resonance imaging.
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specificity 78.0%; AUC 0.936) and between nonischemic 
LGE myocardial segments and LGE-negative myocardial 
segments (sensitivity 86.0%; specificity 93.3%; AUC 0.964; 
Figure 6).

Discussion

This study showed the feasibility of quantifying myocardial 
ECV using dual-layer spectral detector CT with the iodine 
density maps. First, our results demonstrated a strong 
correlation with a small bias between segmental CT-ECV 
and MRI-ECV. Second, our results suggested that an ECV 
>31% could differentiate between LGE-positive and LGE-

negative segments.
There are two methods to calculate CT-ECV: the 

subtraction-derived method and the iodine density-derived 
method. The subtraction-derived method requires the 
acquisition of precontrast and delayed images to obtain 
ECV value. It is relatively difficult to perfectly match these 
2 images because of the movement of the heart and the 
diaphragm. Misalignment may cause deviation of ECV 
value. The iodine density-derived method of calculating 
ECV has notable advantages over the subtraction-derived 
method. ECV derived from iodine density images needs 
only a single delayed acquisition. This method does not 
require image co-registration, enabling precise evaluation 

Figure 5 Example of ECV maps. Comparison of a CT-derived ECV map (A) and an MRI-derived ECV map (B) in a 50-year-old man. 
Increased ECV values were observed on both CT-ECV and MRI-ECV of the basal inferolateral LV myocardium (ECV =53% and 50%, 
respectively). CT, computed tomography; ECV, extracellular volume; LV, left ventricle; MRI, magnetic resonance imaging.

Figure 6 ROC curves. Results from ROC curve analysis (with a corresponding AUC) to differentiate LGE-positive and LGE-negative 
myocardial segments (A). Results from ROC curve analysis (with a corresponding AUC) to differentiate ischemic LGE myocardial segments 
and LGE-negative myocardial segments (B), and to differentiate non-ischemic LGE myocardial segments and LGE-negative myocardial 
segments (C). AUC, area under the curve; LGE, late gadolinium enhancement; ROC, receiver operating characteristic.
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of ECV. Emoto et al. (10) evaluated CT-derived ECV 
quantification between the subtraction-derived method and 
the iodine density-derived method using dual-layer spectral 
detector CT, and compared the quantification outcomes 
to those determined by MRI. The evaluation revealed that 
the iodine density-derived method yielded more accurate 
myocardial ECV quantification than did the subtraction-
derived method and had a strong correlation with MRI. 
Our results also confirmed a strong correlation of CT-ECV 
using iodine density maps from dual-layer spectral detector 
CT, with MRI-ECV demonstrating a small bias.

Some recent studies have investigated the feasibility of 
CT-ECV in different cardiac diseases, including cardiac 
amyloidosis (22), hypertrophic cardiomyopathy (23), dilated 
cardiomyopathy (24), heart failure (7), and in hemodialysis 
patients (25). Ohta et al. (24) evaluated CT-ECV in both 
nonischemic dilated cardiomyopathy patients and normal 
participants, and defined a threshold (a cutoff of 28.82%) 
to distinguish healthy myocardial tissue from dilated 
cardiomyopathy patients. However, this study did not 
include ischemic cardiomyopathy patients, and the ECV 
results were not compared with MRI-ECV. Abadia et al. (12)  
investigated the CT-ECV of healthy myocardium, 
nonischemic cardiomyopathy, and ischemic cardiomyopathy, 
and set a threshold (a cutoff of 29.5%) to discriminate 
healthy participants from cardiomyopathy patients, but 
the CT-ECV was not compared with MRI-ECV in this 
work. In our study, we found a strong correlation of CT-
ECV with MRI-ECV and set a cutoff value (31%) with a 
83.1% sensitivity in differentiating between LGE-positive 
and LGE-negative segments. However, approximately 
17% of LGE-positive patients showed false-negative 
results on CT image. Possible explanations for this are 
the misdiagnosis of small thin fibrosis. In the case of a 
subendocardial enhancement, the signal intensity in the 
delayed enhancement area is similar to that from the 
adjacent blood pool; therefore, it is difficult to differentiate 
subendocardial enhancement from the blood pool. 
Subepicardial enhancement and midwall enhancement are 
also misdiagnosed in iodine density images due to a lower 
contrast to noise ratio compared to other LGE patterns. 
Thus, it is necessary to further perform MRI examination 
for these small LGE patterns.

To date, a standard contrast injection protocol has not 
been established for ECV quantification on cardiac CT. 
Two common contrast injection methods were used in 
the present study. Lee et al. (16) chose a single contrast 
injection protocol with an infusion of 1.8 mL/kg of body 

weight to obtain coronary CT angiography and CT delayed 
enhancement imaging. Ohta et al. (9) used a 2-contrast 
injection protocol: one with an infusion of 0.9 mL/kg of 
body weight for coronary CT angiography followed by 
another injection of 0.5 mL/kg of body weight immediately 
after coronary CT angiography. To obtain good contrast 
between myocardial tissue and the left ventricular cavity 
on CT delayed enhancement images, the amount of iodine 
contrast medium used for calculating ECV has ranged from 
120 to 147 mL in some previous studies (23,26,27). These 
relatively big volumes of iodine contrast in a single contrast 
injection protocol may result in a high density of contrast 
material in the right heart cavities, which may cause streak 
artifacts affecting the lumen evaluation of the proximal right 
coronary artery. Thus, the contrast medium injection in our 
study was performed twice in the CT protocol in order to 
better assess the coronary artery lumen while evaluating the 
myocardium.

Several limitations must be considered in this study: 
first, cardiac CT-ECV measurements were compared with 
cardiac MRI findings rather than with histologic findings 
because the latter is hard to obtain, and a previous study 
has reported that CT-ECV correlated well with histologic 
quantification and MRI-ECV for detecting myocardial 
fibrosis (8). Second, this study did not compare CT-ECV 
values based on the percentage of LGE in the segment. 
Further studies are needed to explore the feasibility of CT-
ECV in different delayed enhancement patterns, which is 
helpful for clinical management. Third, a relatively high 
contrast volume was used to obtain CT-LIE images for 
ECV measurements (a total of 89.5 mL contrast dose in our 
study), and further studies need to investigate the feasibility 
of ECV quantification with a low contrast volume using 
dual-layer spectral CT for reducing the risk of contrast-
induced nephropathy.

Conclusions

ECV derived from CT showed good correlation and 
agreement with MRI findings, and CT-ECV provided 
high diagnostic accuracy to allow discrimination between 
LGE-positive and LGE-negative segments. Thus, cardiac 
CT might be a suitable noninvasive imaging technique for 
myocardial ECV quantification.
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