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Background: Acquiring sparse-view cone-beam computed tomography (CBCT) is an effective way to 
reduce the imaging dose. However, images reconstructed by the conventional filtered back-projection method 
suffer from severe streak artifacts due to the projection under-sampling. Existing deep learning models have 
demonstrated feasibilities in restoring volumetric structures from the highly under-sampled images. However, 
because of the inter-patient variabilities, they failed to restore the patient-specific details with the common 
restoring pattern learned from the group data. Although the patient-specific models have been developed 
by training models using the intra-patient data and have shown effectiveness in restoring the patient-specific 
details, the models have to be retrained to be exclusive for each patient. It is highly desirable to develop a 
generalized model that can utilize the patient-specific information for the under-sampled image augmentation.
Methods: In this study, we proposed a merging-encoder convolutional neural network (MeCNN) to realize 
the prior image-guided under-sampled CBCT augmentation. Instead of learning the patient-specific structures, 
the proposed model learns a generalized pattern of utilizing the patient-specific information in the prior images 
to facilitate the under-sampled image enhancement. Specifically, the MeCNN consists of a merging-encoder 
and a decoder. The merging-encoder extracts image features from both the prior CT images and the under-
sampled CBCT images, and merges the features at multi-scale levels via deep convolutions. The merged 
features are then connected to the decoders via shortcuts to yield high-quality CBCT images. The proposed 
model was tested on both the simulated CBCTs and the clinical CBCTs. The predicted CBCT images were 
evaluated qualitatively and quantitatively in terms of image quality and tumor localization accuracy. Mann-
Whitney U test was conducted for the statistical analysis. P<0.05 was considered statistically significant.
Results: The proposed model yields CT-like high-quality CBCT images from only 36 half-fan projections. 
Compared to other methods, CBCT images augmented by the proposed model have significantly lower 
intensity errors, significantly higher peak signal-to-noise ratio, and significantly higher structural similarity 
with respect to the ground truth images. Besides, the proposed method significantly reduced the 3D distance 
of the CBCT-based tumor localization errors. In addition, the CBCT augmentation is nearly real-time.
Conclusions: With the prior-image guidance, the proposed method is effective in reconstructing high-
quality CBCT images from the highly under-sampled projections, considerably reducing the imaging dose 
and improving the clinical utility of the CBCT.
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Introduction

Accurate target localization is essential to ensure the 
delivery precision in the radiation therapy, which is 
especially true for the stereotactic body radiotherapy 
(SBRT) due to its high fractional dose and tight planning 
target volume margins. Cone-beam computed tomography 
(CBCT) has long been developed to provide the volumetric 
imaging of the up-to-date patient anatomy to minimize 
the target localization errors. However, the associated 
X-ray radiation has the potentials to induce cancers (1). As 
a fractional verification tool, it is more necessary for the 
CBCT to reduce imaging dose under the principle of “as 
low as reasonably achievable (ALARA)”. There are two 
common ways to reduce the CBCT imaging dose. One is 
to lower the tube current or exposure time of the X-ray 
source, and the other is to acquire the CBCT in a sparse-
view method. In this study, we focused on the second way to 
reduce the CBCT imaging dose.

The clinical widely-used Feldkamp-Davis-Kress (FDK) 
algorithm (2) is infeasible to reconstruct high-quality 
CBCT images from the sparse projections. It suffers from 
streak artifacts due to the projection under-sampling. In 
the past years, various algorithms have been proposed to 
address the ill-conditioning in the under-sampled CT/
CBCT reconstruction.

One category is based on the compressed sensing (CS) 
theory. With a proper sparsity regularization, CS can 
reconstruct high-quality images from far fewer projections 
than required by the Nyquist-Shannon sampling theorem. 
Total variation (TV) has been developed to remove the 
noises and streak artifacts. Sidky and Pan (3) proposed 
the adaptive-steepest-descent (ASD)-projection-onto-
convex-sets (POCS) to improve the CBCT image quality 
against the streak artifacts. In the proposed algorithm, TV 
regularization was utilized to penalize the image gradients 
in a globally uniform method, inevitably smoothing out 
the anatomical edges. Later, various edge-preserving 
algorithms (4-8) have been proposed to alleviate the edge 
over-smoothing. In these methods, edges were detected 
either on the intermediate images (4-7) or on the deformed 
prior images (8), and then a weighted TV regularization 
was applied during the iterative reconstruction. The edge-

preserving performance relies on the edge detection 
accuracy, which is usually limited by the degraded 
intermediate image quality.

Another  category i s  based on the pr ior- image 
deformation. Previously, we developed an algorithm (9-12) 
to estimate the onboard CBCT using the prior CT images, 
deformation models and onboard projections. In this 
method, the onboard CBCT is considered as a deformation 
of the prior CT. The problem is formulated as a 3D/2D 
registration problem. The deformation vector fields (DVFs) 
between the prior CT and onboard CBCT are solved by 
minimizing the deformed-CT projection errors meanwhile 
maintaining reasonable DVF smoothness. This algorithm 
realized high-quality CBCT images from under-sampled 
or limited-angle projections. However, the reconstruction 
process is time-consuming due to the iterative optimization 
on the DVFs, and the reconstruction images are prone to 
deformable registration errors, especially in the regions with 
low contrast or large prior-to-onboard anatomical changes.

In  recent  years ,  deep learning,  espec ia l ly  the 
convolutional neural networks (CNNs), has been widely 
explored in the sparse-view CT/CBCT reconstruction. 
The CNN models were developed either (1) to integrate 
into the existing reconstruction algorithms such as iterative 
reconstruction (8) and filtered back-projection (13),  
or (2) to work with the existing algorithms as pre-
processing or post-processing tools. Lee et al. (14) proposed 
a deep neural network to synthesize the fully-sampled 
sinogram for the sparse-view CT reconstruction. Han  
et al. (15) proposed a CNN model to enhance the sparse-
view CT reconstructed using the filtered back-projection 
algorithm. We previously developed a symmetric residual 
CNN model (16) to augment the edge information in 
the CS-based under-sampled CBCT images. These deep 
learning models realized high image quality of the under-
sampled CT/CBCT. However, when the projections are 
highly under-sampled, the deep learning models need to 
fill in most missing data, which highly depends on the 
patient-specific anatomies. The deep learning models 
trained using a group of patient data did not account 
for the inter-patient variabilities, and therefore suffered 
from degraded reconstruction results. To address this 
problem, patient-specific training strategy (17,18) has been 
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explored to account for the patient-specific anatomies. In 
these methods, deep learning model was trained for each 
individual patient using the augmented intra-patient data. 
The patient-specific information contained in the prior 
images was encoded in the deep learning model during the 
training process. Compared to the conventional group-data-
trained deep learning models, these patient-specific models 
achieved considerable improvements in the under-sampled 
CT/CBCT image quality, especially when the projections 
are highly under-sampled. However, the patient-specific 
model is exclusively trained for an individual patient, and 
has to be retrained for each new patient. Training of the 
deep learning models is usually time- and computing 
resource-consuming. Therefore, it is desirable to train a 
generalized model that utilizes the patient-specific prior 
information for image augmentation. 

In this study, we proposed a merging-encoder CNN 
(MeCNN) to realize the prior-image-guided under-sampled 
CBCT augmentation, which utilized the patient-specific 
prior information in an inter-patient generalized method. 
Overall, MeCNN has an encoder-decoder architecture. 
In the encoder, image features are extracted from both the 
prior CT images and the under-sampled CBCT images. 
And the prior image features are merged with the under-
sampled image features at multi-scale levels. In the decoder, 
merged features are used to restore the high-quality CBCT 
images. Major contributions of this work include: (I) the 
proposed method can reconstruct high-quality CBCT 
images using only 36 half-fan projections, substantially 
reducing the CBCT imaging dose; (II) we proposed a novel 
merging-encoder CNN to learn a generalized pattern of 
utilizing patient-specific prior information in the under-
sampled image augmentation; (III) the proposed method 
was trained on the public datasets, and was tested on both 
the simulated and the clinical CBCTs from our institution. 
Results demonstrated the effectiveness of the proposed 
model in augmenting the under-sampled CBCT image 
quality with the prior-image guidance. Comparison with 
other state-of-the-art methods confirmed the superiority of 
the proposed method.

Methods

Problem formulation

Let x∈RI×J×K represent the real-value CBCT images with a 
dimension of I×J×K voxels reconstructed from the under-
sampled projections using FDK (2), y∈RI×J×K represent the 

corresponding prior CT images, and z∈RI×J×K represent 
the corresponding ground-truth CBCT images. Then the 
problem can be formulated as solving a map from the data 
pair (x,y) to the data z so that

 ( )
2

2
min ,

f
arg f x y z− 	 [1]

where f is the image augmentation function that can be 
estimated by a deep learning model.

Network architecture

In this study, we proposed a deep learning model to 
augment the image quality of the under-sampled CBCT 
with the prior image guidance. The model takes the data 
pair consisting of the high-resolution prior CT images and 
the under-sampled CBCT images as inputs, and generates 
high-quality augmented CBCT images. The proposed 
model contains two parts: (I) a pre-alignment network 
and (II) a merging-encoder CNN (MeCNN). The overall 
workflow is shown in Figure 1. 

Pre-alignment network
Due to the fixed shape of the convolutional kernels, CNN 
has limited capabilities of addressing image deformations. 
To assist the prior-image guidance, a pre-alignment network 
was designed to preliminarily align the prior CT images 
with the under-sampled CBCT images. The network takes 
(I) the prior CT images and (II) the under-sampled CBCT 
images as inputs, and generates (I) the pre-processed CBCT 
images with the under-sampling artifacts preliminarily 
removed and (II)  the deformed prior CT images. 
Specifically, a U-shape CNN (as shown in the orange 
box in Figure 2) is first used to preliminarily remove the 
artifacts in the under-sampled CBCT images, yielding the 
pre-processed CBCT. It is modified based on the classical  
U-Net (19), which has demonstrated effectiveness in 
reducing the under-sampling artifacts (15,18). Then an 
asymmetric CNN (as shown in the blue box in Figure 2) 
takes the prior CT and the pre-processed CBCT images 
as inputs and predicts the DVFs between them. At last, a 
spatial transformation layer generates the deformed prior 
CT based on the prior CT and the predicted DVFs (20). 
More details of the pre-alignment network can be found in 
the Figure 2.

Merging-encoder convolutional neural network 
(MeCNN)
In this study, we proposed a merging-encoder architecture 
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Figure 1 Overall workflow of the proposed prior-image-guided under-sampled CBCT augmentation. A pre-alignment network is designed 
to preliminarily remove the artifacts in under-sampled CBCT, yielding the pre-processed CBCT, and then aligns the prior CT to the pre-
processed CBCT. And then a MeCNN further enhances the pre-processed CBCT image quality with the prior CT guidance. The dotted 
boxes indicate the data concatenation in the channel dimension. The semi-transparent images indicate the intermediate images in the 
workflow. The black arrows indicate the data flow. Numbers near the arrows indicate the flow sequence. CBCT, cone-beam computed 
tomography; MeCNN, merging-encoder convolutional neural network.

to encode the prior-image features in the under-sampled 
CBCT augmentation process. The merging-encoder has 
two branches for the prior CT and the pre-processed 
CBCT, respectively, to extract and merge image features at 

multi-scale levels, which can be formulated as Eq. [2]. The 
merged features are then connected to the decoder at multi-
scale levels using shortcuts to yield high-quality CBCT 
images.

Input: Prior CT Pre-processed CBCT Deformed prior CT

3.

2.

1. 4.

5.

6.

Pre-alignment network MeCNN

U-shape model for
preliminary CBCT 

enhancement 
Merging-encoder

Asymmetric CNN 
for prior CT
alignment

Decoder

Output:
Augmented CBCT

Input:
Under-sampled CBCT

 ( )( )
( )( )( )( )

, CT ,

CT

, ,CT i 1

Relu BN ,  1

MaxPool Relu BN ,else

i j i j

i

i j i j

W I b if i
C

W C b
−

− −

 ⊗ + =
= 

⊗ +


 ( )( )
( ) ( )( )( )( )( )

, CBCT ,

CBCT

, ,CBCT i 1 CT i 1

Relu BN ,  1

MaxPool Relu BN concat , , else

i j i j

i

i j i j

W I b if i
C

W C C b
−

− − − −

 ⊗ + =
= 

⊗ +


i = 1, 2, …, L, and j = 1, 2, …, K	

[2]

where ICT is the input prior CT image, ICBCT is the input pre-
processed CBCT image, Ci is the image features extracted 
by the i-th convolutional layer, Wi and bi are the kernel 
weights and bias of the i-th convolutional layer, respectively, 
L is the convolutional layers in the each encoder branch, 
K is the convolutional kernel size, ⊗ is the convolutional 
operation, MaxPool is the maximum pooling operation, Relu 
is the operation of the rectified linear unit, BN is the batch 

normalization operation, concat is the feature concatenation 
in channels. More details of the proposed MeCNN can be 
found in the Figure 3.

Experiment design

Model training
In the training process, we built a training dataset 
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Figure 2 The architecture of the pre-alignment network. The orange box in left indicates the U-shape CNN to preliminarily remove the 
artifacts in the under-sampled CBCT images. The output of the U-shape CNN is then concatenated with the prior CT, and fed into the 
asymmetric CNN (indicated by the blue box in right) for the prior CT alignment. Black arrow indicates the convolution block consisting of 
a convolutional layer (kernel size: 3×3×3, stride: 1), a batch normalization layer and a leaky relu layer (leaky rate is 0 for the U-shape CNN, 
and is 0.2 for the asymmetric CNN). Green arrow in the U-shape CNN indicates the convolution block consisting of a convolutional layer 
(kernel size: 1×1×1, stride: 1), a batch normalization layer and a relu layer. Red arrow in the asymmetric CNN indicates a convolutional layer 
(kernel size: 3×3×3, stride: 1). Blue arrow in the asymmetric CNN indicates the spatial transformation layer which deforms the input image 
with the input DVF. Dotted arrow and dotted box indicate the data concatenation in channels. ↓2 indicates the maximum pooling layer 
(pooling size: 2×2×2). ↑2 indicates the up-sampling layer (up-sampling rate: 2×2×2). drop(r) indicates the dropout layer with a dropout rate of r. 
Numbers in the rounded rectangles are the data channels. CNN, convolutional neural network; CBCT, cone-beam computed tomography.

Figure 3 The architecture of the MeCNN. Black arrow indicates the convolution block consisting of a convolutional layer (kernel size: 
3×3×3, stride: 1), a batch normalization layer and a leaky relu layer. Dotted arrow and dotted box indicate the data concatenation in channels. 
↓2 indicates the maximum pooling layer (pooling size: 2×2×2). ↑2 indicates the up-sampling layer (up-sampling rate: 2×2×2). drop(r) 
indicates the dropout layer with a dropout rate of r. Numbers in the rounded rectangles are the data channels. MeCNN, merging-encoder 
convolutional neural network.
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containing 25 patients with lung cancers. Patient data 
were enrolled from the public datasets of SPARE (21),  
4D-Lung (22) and DIR-LAB (23). For the model 
validation, we enrolled 3 patients with lung cancers from 
our institution under an IRB-approved protocol. 

For each patient, a 4D-CT scan containing 10 
respiratory phases was collected. And for each 4D-CT, the 
end-of-expiration (EOE) phase and the end-of-inspiration 
(EOI) phase were chosen: one was used as the prior 
CT images, and the other was used as the ground truth 
CBCT images, and vice versa. Our previous study (20) has 
demonstrated that the deformation between the EOI and 
EOE phases can well represent the motions and anatomy 
deformations between the prior CT and onboard CBCT. 
To mimic the clinical positioning mismatch between the 
plan CT and onboard CBCT in typical modern linac, 
the prior CT was rotated with a random angle within ±2º 
along the patient superior-inferior (SI) direction.

To simulate the under-sampled CBCT, half-fan digitally 
reconstructed radiographs (DRRs) were calculated 
from the ground truth CBCT images at 36 uniformly 
distributed angles over 360º. The projection parameters 
were set to match with the clinical CBCT acquisition 
settings: the detector was shifted 14.8 cm for the half-fan 
projection acquisition, the projection matrix was 512×384 
with a pixel size of 0.776 mm × 0.776 mm, the source-to-
ioscenter distance was 100 cm, and the source-to-detector 
distance was 150 cm. The under-sampled CBCT images 
were then reconstructed from DRRs using FDK (2). All 
the image data were resized to 250×256×96 voxels with a 
voxel size of 1.5 mm × 1.5 mm × 2.0 mm.

The data pairs containing the under-sampled CBCT 
image and prior CT images were fed into the proposed 
network. Model weights were optimized by minimizing 
the mean-squared-error (MSE) between the augmented 
CBCT images and the ground truth CBCT images. 
Optimizer was set to “Adam” (24). Learning rates were set 
to 0.01 and gradually reduced to 0.001 for the U-shape 
CNN (in the pre-alignment network) and the MeCNN, 
and were set to 1×10−4 and gradually reduced to 1×10−5 for 
the asymmetric CNN (in the pre-alignment network). The 
proposed model was trained in an end-to-end method. 
Batch size was 1 due to the memory limitation. The best 
checkpoint was selected based on the validation errors.

Evaluation using intra-scan simulated CBCT 
To evaluate the performance of the proposed model in 
handling the CBCT under-sampling, 4D-CT data of 11 

patients with lung cancers were enrolled in the testing 
dataset from our institution under an IRB-approved 
protocol. For each patient, EOE and EOI phase were 
chosen: one was used as the prior CT, and the other was 
used as the ground truth CBCT, and vice versa. The 
simulation of the under-sampled CBCT followed the same 
process as the training data. The prior CT and the under-
sampled CBCT were fed into the trained model. The 
predicted CBCT was compared against the ground truth 
CBCT images both qualitatively and quantitatively using 
metrics of root mean squared error (RMSE), peak signal-
to-noise ratio (PSNR), and structure similarity (SSIM) (16). 
Lower RMSE, higher PSNR, and higher SSIM indicate 
better image quality. Metrics were calculated within the 
body, the lung, the bone, and the clinical GTV regions.

To further demonstrate the clinical value of the 
proposed model, tumor localization accuracy was evaluated 
using the enhanced CBCT. In this study, only rigid 
registrations with the 3D translations were performed since 
only rigid translations are applied for target localization 
in clinical practice. For each patient, two registration 
studies were conducted: (I) EOE phase served as the prior 
CT and EOI phase served as the onboard CBCT, and (II) 
EOI phase served as the prior CT and EOE phase served 
as the onboard CBCT. To simulate the initial positioning 
errors, the volume serving as the prior CT was randomly 
translated in left-right (LR), anterior-posterior (AP) and 
superior-inferior (SI) directions. Rigid registrations with 
only translations were conducted between the onboard 
CBCT and the prior CT. To avoid the uncertainties 
of manual registrations, automatic registrations were 
performed based on the mutual information in the tumor 
regions using the open-source Elastix (SimpleITK v1.2.4). 
The tumor localization accuracy is defined as 

 ( ) ( ) ( )2 2 2  CBCT uCBCT CBCT uCBCT CBCT uCBCTErr x x y y z z= − + − + − 	[3]

where xCBCT, yCBCT, and zCBCT are the patient positioning 
shifts determined by the ground truth CBCT images, 
and xuCBCT, yuCBCT, and zuCBCT are the shifts determined by 
the sparse-view CBCT images reconstructed by various 
methods in the LR, AP and SI directions, respectively.

Evaluation using inter-scan simulated CBCT 
Large anatomy variations can happen from the prior CT 
to the onboard CBCT, which are hard to be handled by 
deformation models. To evaluate the performance of the 
proposed model in handling such large variations, we 
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enrolled a case from the 4D-Lung dataset. For this case, 
two 4D-CT scans of the patient were selected. The EOE 
phase of the first 4D-CT scan was used as the prior CT, 
and the EOE phase of the second 4D-CT scan was used as 
the ground truth CBCT. As shown in Figure 4, there are 
large anatomy variations between the two scans. Sparse-
view CBCT was simulated from the ground truth CBCT 
following the same configurations in the training process. 
The sparse-view CBCT and the prior CT were fed into the 
trained model, and the augmented CBCT was compared 
against the ground truth CBCT. In addition, step-by-step 
results of the proposed method were also compared to 
demonstrate the effectiveness of the proposed MeCNN. 
Note that although this case was enrolled from the 
4D-Lung dataset, it was not included in the training dataset.

Evaluation using clinical CBCT
To further validate its clinical utility, performance of the 
proposed model was tested on a lung cancer patient using 
the clinical planning CT and the onboard breath-hold 
CBCT from our institution. The CBCT projections were 
acquired by the TrueBeam (Varian Medical Systems, Inc., 
Palo Alto, CA) using 20 mA and 15 ms and extracted under 
an IRB-approved protocol. The projection acquisition 
settings were the same as mentioned in the section of Model 
training,  except that the detector was shifted 16.0 cm  

for the half-fan projection acquisition. The reference 
CBCT images were reconstructed by the Varian iTools-
Reconstruction (Varian Medical Systems iLab GmbH) using 
full-sampling acquisition of 894 projections with scatter 
and intensity correction. To alleviate the image quality 
degradation resulting from the clinical projection scatters 
and noises, sparse-view CBCT images were reconstructed 
from DRRs which were simulated from the iTools-
reconstructed reference CBCT images. Specifically, 36 
uniformly distributed DRRs over 360º were simulated from 
the reference CBCT images using the same acquisition 
settings as the clinical projections. The planning CT and 
the under-sampled CBCT were fed into the trained model. 
The predicted CBCT was compared against the reference 
fully-sampled CBCT images. Due to the limited image 
quality of the reference CBCT images, only qualitative 
evaluations were performed. Noted that, once the model 
was trained on the DRRs, no further re-training or fine-
tuning was conducted for the clinical projections.

Comparison with the state-of-the-art methods
The performance of the proposed model was compared 
to several state-of-the-art methods, including FDK (2), 
ASD-POCS (3), and 3D U-Net (18). (I) FDK is a CBCT 
reconstruction algorithm that is widely used in clinical 
practice. In this study, intensity values of the FDK images 

Figure 4 Representative slices of step-by-step results of the proposed method. (A) are the input prior CT images, (B) are the input sparse-
view CBCT images, (C) are the pre-processed CBCT images predicted by the U-shape CNN, (D) are the deformed prior CT predicted 
by the asymmetric CNN, (E) are the final augmented CBCT images predicted by the proposed method, and (F) are the ground truth 
CBCT images. Display range is [−1,000, 400] HU. Red arrows indicate image details for visual inspection. CBCT, cone-beam computed 
tomography; CNN, convolutional neural network.
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were rescaled to the range of the ground truth CBCT 
using the z normalization. (II) ASD-POCS is an iterative 
reconstruction algorithm based on the CS theory using the 
TV regularization. (III) 3D U-Net is modified based on the 
classical U-Net (19) to adapt to the 3D image data. Details 
of the model architecture can be referred to in (18). The 
model takes 3D sparse-view CBCT images as input and 
generates augmented 3D CBCT images. In the training 
process, EOI or EOE phase of the 4D-CT scan was used as 
the ground truth CBCT, and was used to simulate the input 
sparse-view CBCT. The model was trained and validated 
using the same datasets and configurations as mentioned in 
the section of Modeling training.

Statistical analysis 

Mann-Whitney U test was conducted using Matlab 2019a 
to evaluate the differences between metrics of the proposed 
method and those of other methods mentioned in the 
previous section.

P<0.05 was considered statistically significant.

Results

Evaluation using intra-scan simulated CBCT

Figure 5 shows the representative slices of the simulated 
CBCT reconstructed by various algorithms. Due to the 
projection under-sampling, FDK images suffered from 

severe streak artifacts, making the structure edges distorted 
and undistinguishable. The ASD-POCS images well 
removed the streak artifacts, but they had blurred edges 
and some small pulmonary structures were smoothed 
out. The 3D U-Net enhanced the pulmonary structure 
details. However, as indicated by the arrows in Figure 5, 
the bone edges were still blurred and even missing, and the 
soft tissues were not well restored. In comparison, CBCT 
images reconstructed by the proposed model demonstrate 
high quality in the pulmonary structures, bones, and soft 
tissues.

Table 1 shows the quantitative analysis of the CBCT 
image quality. Metrics were calculated in the body, the lung, 
the bone, and the clinical GTV regions of all the 11 testing 
patients. Metrics of the prior CT demonstrated the obvious 
variations from the prior CT to the onboard CBCT. 
Compared to the FDK, ASD-POCS, and 3D U-Net, the 
proposed method had better performance in the under-
sampled CBCT augmentation by demonstrating lower 
RMSE, higher PSNR, and higher SSIM. All the P values 
were less than 0.05, demonstrating that the improvements 
made by the proposed method were significant over other 
methods. The quantitative results agreed with the visual 
inspection.

Table 2 shows the tumor localization errors of the sparse-
view CBCT reconstructed by various methods. Compared to 
the FDK, ASD-POCS and 3D U-Net, the proposed method 
had better tumor localization accuracy. All the P values for 

Figure 5 Representative slices of the CBCT images reconstructed by various algorithms. (A) is the prior CT, (B,C,D,E) are the CBCT 
images reconstructed by the FDK, ASD-POCS, 3D U-Net and the proposed model, respectively. (F) is the corresponding ground truth 
CBCT images. Display range is [−1,000, 400] HU. Red arrows indicate image details for visual inspection. CBCT, cone-beam computed 
tomography; FDK, Feldkamp-Davis-Kress.

Prior CT FDK ASD-POCS 3D U-Net Proposed Groud truthA B C D E F
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the 3D error distance were less than 0.05, indicating that 
the proposed method significantly improved the CBCT-
based IGRT accuracy compared to other methods. Results 
demonstrated the clinical value of the CBCT quality 
improvements made by the proposed method.

Evaluation using inter-scan simulated CBCT

Figure 4 shows the step-by-step results of the proposed 
method. Prior CT (in the first column) demonstrated 
large anatomy variations from the ground truth CBCT (in 
the last column). Streaks in the input FDK-based sparse-
view CBCT images were well removed by the U-shape 
CNN (in the third column). But as indicated by the red 
arrows in the pre-processed CBCT, the soft tissues were 
not well enhanced, and the bone edges were blurred and 
even missing. These details were well restored by the 

asymmetric CNN (in the fourth column) which aligned 
the prior CT to the pre-processed CBCT in a deformable 
way. However, the spatial deformation can hardly handle 
the large anatomy variations. Obvious errors appeared near 
the tumor regions as indicated by the red arrows in the 
deformed prior CT images. The proposed MeCNN (in the 
fifth column) corrected the errors in the deformed prior 
CT while maintaining the CT-like appearance. The CBCT 
augmented by the proposed MeCNN showed clear and 
accurate pulmonary tissues, soft tissues, and bone edges.

Evaluation using clinical CBCT

Figure 6 shows the representative slices of the clinical 
CBCT reconstructed by various algorithms. The FDK 
and the ASD-POCS showed similar performance to the 
simulated CBCT evaluation results (in Figure 5). Due to 

Table 2 Tumor localization errors of the CBCT images reconstructed by various algorithms

Directions FDK ASD-POCS 3D U-Net Proposed

Left-right 1.9±1.2 1.0±1.0 0.2±0.1 0.2±0.1

Anterior-posterior 1.7±1.7 1.1±1.1 0.4±0.3 0.2±0.1

Superior-inferior 1.7±1.0 0.9±0.8 0.5±0.5 0.4±0.4

3D distance 3.5±1.6 2.0±1.5 0.8±0.5 0.5±0.4

CBCT, cone-beam computed tomography.

Table 1 Quantitative analysis of the CBCT images reconstructed by various algorithms

Metrics Prior CT FDK ASD-POCS 3D U-Net Proposed

Body RMSE 0.037±0.013 0.050±0.012 0.051±0.015 0.020±0.005 0.015±0.003

Body PSNR 29.76±3.039 26.33±1.975 28.53±2.232 34.42±2.161 37.02±1.930

Body SSIM 0.880±0.047 0.613±0.057 0.756±0.041 0.831±0.020 0.960±0.011

Lung RMSE 0.054±0.015 0.041±0.010 0.044±0.011 0.022±0.004 0.019±0.004

Lung PSNR 26.28±2.480 28.08±1.996 29.21±1.951 33.53±1.703 34.51±1.763

Lung SSIM 0.711±0.072 0.667±0.058 0.695±0.045 0.896±0.021 0.914±0.019

Bone RMSE 0.033±0.012 0.048±0.012 0.062±0.018 0.032±0.007 0.021±0.003

Bone PSNR 30.77±3.384 26.61±2.062 26.17±2.204 30.32±1.734 30.88±1.398

Bone SSIM 0.961±0.020 0.872±0.028 0.864±0.018 0.941±0.016 0.976±0.006

GTV RMSE 0.035±0.018 0.041±0.013 0.046±0.022 0.024±0.006 0.018±0.005

GTV PSNR 31.22±4.236 28.23±2.432 29.84±3.260 33.06±1.994 35.53±2.25

GTV SSIM 0.934±0.044 0.870±0.040 0.879±0.079 0.966±0.014 0.979±0.009

CBCT, cone-beam computed tomography.



4776 Jiang et al. Prior-image-guided under-sampled CBCT augmentation

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(12):4767-4780 | https://dx.doi.org/10.21037/qims-21-114

the projection noises, the CBCT images enhanced by the 
3D U-Net showed artifacts as demonstrated by red arrows 
(Figure 6C1). The proposed model overcame the artifacts 
with the guidance of the prior images, demonstrating CT-
like image quality with clear and accurate structures.

Runtime

The proposed MeCNN model was implemented with 
the Keras (v2.2.4) framework using TensorFlow (v1.11.0) 
backend. The model training and evaluations were 
performed on a computer equipped with a GPU of NVIDIA 
Quadro RTX 8000 (48GB memory), a CPU of Intel Xeon, 
and 128GB memory. The entire workflow shown in Figure 1  
took about 3.3 seconds to predict the augmented CBCT 
volumes (dimensions: 256×256×96, voxel size: 1.5 mm × 1.5 mm 
× 2.0 mm).

Discussion

CBCT has been widely used in clinics as a fractional 
verification tool to ensure the patient positioning accuracy 
in the radiation therapy. Considering the potential cancer-
inducing risks associated with the X-ray radiation, it is 
desirable to reduce the CBCT imaging dose while maintaining 
the high image quality. In this study, we proposed a method to 
enhance the quality of the CBCT images reconstructed from 
highly under-sampled projections. It takes advantage of the 

deep learning-based algorithms to remove the under-sampling 
artifacts and enhance structure edges. Meanwhile, it utilizes the 
patient-specific prior information via a novel merging-encoder 
to account for the inter-patient variabilities, addressing the 
severe ill-conditioning in the highly under-sampled CBCT 
reconstruction. 

Although trained on EOI and EOE phase data, the 
proposed model was not trained to predict deformations 
or organ/tumor locations in the CBCT. Instead, the model 
was trained to learn from the corresponding anatomical 
structures in the high-quality prior CT images to augment 
those in the CBCT. When there is deformation from 
CT to CBCT, the model needs to learn to register the 
corresponding structures under deformation before image 
augmentation. In this sense, simulating deformations 
from prior image to current image is important to train 
the model. However, this deformation does not need to 
match exactly with a patient’s CT-CBCT deformation 
since the model is trained to learn the fundamental rules 
of image registration and augmentation regardless of any 
specific deformation. In our training process, we mimic the 
deformation from prior to current images using the EOI 
and EOE phases from a 4D-CT scan, which represents the 
largest deformation in a breathing cycle. In addition, data 
augmentation was performed in the training process to 
simulate the positioning errors.

As demonstrated by the results, our proposed MeCNN 
method realized high-quality CBCT images with accurate 

Figure 6 Representative slices of the clinical CBCT images reconstructed by various algorithms. (A) is the prior CT, (B,C,D,E) are the 
CBCT images reconstructed by the FDK, ASD-POCS, 3D U-Net and the proposed MeCNN model, respectively. (F) is the corresponding 
reference CBCT reconstructed from fully-sampled projections. Display range is [−1,000, 400] HU. Red arrows indicate image details for 
visual inspection. CBCT, cone-beam computed tomography; MeCNN, merging-encoder convolutional neural network.

Prior CT FDK ASD-POCS 3D U-Net Proposed Fully-sampled
CBCT

A B C D E F

1
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structures from only 36 half-fan projections. The patient-
specific information-guided augmentation pattern learned 
by the proposed model is applicable to all patients without 
the need for retraining. Results in this study preliminarily 
demonstrated that the proposed model is robust against 
the detector shift in the half-fan acquisition (training 
shift: 14.8 cm, clinical testing shift: 16.0 cm). Whether the 
model is robust against other changes in the acquisition 
configurations requires further evaluation, which is 
warranted in the future studies.

The FDK algorithm (2) reconstructed the CBCT images 
by back-projecting the projections along the ray directions, 
suffering from severe streak artifacts when the projections 
were under-sampled. The compressed sensing theory-based 
algorithm (3) introduced the TV regularization to penalize 
the image gradients while maintaining the projection 
fidelity during the iterative reconstruction, effectively 
suppressing the streak artifacts and noises. However, the 
TV regularization item also penalized the structure edges 
globally, which blurred the edges and even smoothed out 
small structures in the under-sampled images. 

Conventional deep learning-based algorithms (15,16) 
trained the model based on large numbers of samples, 
mapping the under-sampled images to their fully-sampled 
counterparts. These models aimed to learn a common 
pattern to restore volumetric information from the under-
sampled images. However, medical images contain a lot 
of patient-specific structure details. When the projections 
are highly under-sampled, these details in the input under-
sampled images can be indistinguishable from artifacts, 
and can hardly be accurately restored with a common 
pattern learned from group data. As shown in the results 
(Figures 5,6), the 3D U-Net that employed the conventional 
group-based training strategy had limited performance 
in enhancing the soft tissues, bone edges, and small 
structures, since these details were mixed with the streak 
artifacts in the input under-sampled images. And these 
errors can hardly be corrected by further enhancement 
using additional group-trained models without any patient-
specific constraint. Another concern for the deep learning 
models is the robustness against the variations from the 
training dataset (25,26). The input images are the only 
volumetric information source for the models to enhance 
the image quality. Artifact or noise variations in the input 
images can cause the models to misbehave in unexpected 
ways. As demonstrated by the results of the clinical CBCT 
evaluation (in Figure 6), the input under-sampled images 
were reconstructed from the clinical projections, which 

had different scatters, noises, and streak artifacts from 
the training data. The restoring pattern learned by the 
3D U-Net from the training DRRs cannot handle such 
variations. Thus, the CBCT images enhanced by the 3D 
U-Net showed unexpected artifacts.

The strategy that adopts the intra-patient data to 
account for the inter-patient variabilities has demonstrated 
effectiveness in enhancing the image quality of the 
highly under-sampled images (17,18). The patient prior 
information helps the models to accurately recover the 
patient-specific details. However, these methods adopted 
the patient-specific training strategy by training models on 
the intra-patient data. The model weights were optimized 
to fit the specific patient data. Consequently, the trained 
models were exclusive for individual patients and cannot 
be generalized among different patients. When a new 
patient came, a new model was required to be trained 
using the patient prior data, consuming a lot of time and 
computing resources. In comparison, our proposed method 
extracted the patient-specific features from the prior CT 
images, which were merged with the under-sampled CBCT 
features to yield CT-like high-quality CBCT images. The 
proposed model took the prior images together with the 
under-sampled CBCT images as inputs. Instead of learning 
the patient-specific structures (17,18), the proposed 
method learned a generalized pattern to utilize the prior 
information for the onboard image enhancement. As a 
result, once trained, the proposed model can be applied 
to different patients without any further re-training 
or finetuning. Results demonstrated that the proposed 
merging-encoder architecture is effective in restoring the 
patient-specific structure details from the highly under-
sampled CBCT projections. Besides, improvements in the 
tumor localization accuracy demonstrated the clinical value 
of the proposed method. In addition, with the guidance 
of the patient-specific prior images, the proposed model 
preliminarily showed robustness against the input image 
quality variations (in Figure 6). The structure texture 
features extracted from the high-quality prior CT were used 
to complement the anatomy geometry features extracted 
from the under-sampled CBCT. Thus, the predicted CBCT 
images had CT-like high quality with clear and accurate 
structures.

The proposed MeCNN has some limitations. Firstly, 
in the merging-encoder, convolutional layers were used to 
extract and merge image features. Due to the fixed shapes 
of the convolutional kernels, it has limited capabilities in 
handling the image deformations. To address this problem, 
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we designed a pre-alignment network to alleviate the 
structure mismatches between the prior and the onboard 
images. Nevertheless, the DVFs were imperfect due to the 
limited quality of the pre-processed CBCT. The residual 
deformation errors, especially those in the low contrast 
regions, can have adverse effects on the augmented CBCT. 
In the future, advanced convolution operations, such as the 
deformable convolutions (27), can be used to handle the 
image deformations in a more robust method. Secondly, as 
shown in the second row of Figure 4, although the structure 
errors in the deformed prior CT were well corrected by 
the proposed MeCNN, there are still some voxels having 
inaccurate intensity. In the training process, the data were 
augmented mainly accounting for the deformations and 
positioning errors between the prior CT and onboard 
CBCT. Large anatomy variations were not considered. As 
such, obvious deformation errors in the deformed prior 
CT could introduce some inaccurate intensities to the 
MeCNN-enhanced CBCT. Advanced data augmentation 
techniques, such as random structure shading in the prior 
CT, can be explored in future studies to further improve 
its robustness. Thirdly, scatters and noises in the clinical 
projections can severely degrade the input under-sampled 
CBCT image quality, and consequently degrade the 
model’s augmentation performance. As demonstrated by 
the results, the proposed MeCNN showed robustness 
against the residual noises in the projections. But additional 
scatter correction techniques are still required for the 
proposed method, avoiding the input image being too 
corrupted to augment. In the future studies, our proposed 
model can be incorporated with more advanced projection 
scatter and noise correction techniques, such as the deep 
learning-based projection correction, to address the clinical 
cases in an end-to-end way.

Conclusions

The proposed model demonstrated the effectiveness in 
augmenting the image quality of the under-sampled CBCT 
with the prior image guidance. It can generate high-
quality CBCT images using only about 4% of the clinical 
fully-sampled projections (36 projections out of about 900 
projections), considerably reducing the imaging dose and 
improving the clinical utility of CBCT.
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