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Background: To validate the feasibility of generating high-resolution intravascular 3.0 Tesla (T) magnetic 
resonance imaging of the coronary artery wall to further plaque imaging.
Methods: A receive-only 0.014-inch diameter magnetic resonance imaging guidewire (MRIG) was 
manufactured for intravascular imaging within a phantom experiment and the coronary artery wall of the 
swine. For coronary artery wall imaging, both high-resolution images and conventional resolution images 
were acquired. A 16-channel commercial surface coil for magnetic resonance imaging was employed for the 
control group.
Results: For the phantom experiment, the MRIG showed a higher signal-to-noise ratio than the surface 
coil. The peak signal-to-noise ratio of the MRIG and the surface coil-generated imaging were 213.6 and 
19.8, respectively. The signal-to-noise ratio decreased rapidly as the distance from the MRIG increased. For 
the coronary artery wall experiment, the vessel wall imaging by the MRIG could be identified clearly, whereas 
the vessel wall imaging by the surface coil was blurred. The average signal-to-noise ratio of the artery wall 
was 21.1±5.40 by the MRIG compared to 8.4±2.19 by the surface coil, where the resolution was set at  
0.2 mm × 0.2 mm × 2 mm. As expected, the high-resolution sequence clearly showed more details than the 
conventional resolution sequence set at 0.7 mm × 0.7 mm × 2.0 mm. Histological examination showed no 
evidence of mechanical injuries in the target vessel walls.
Conclusions: The study validated the feasibility of generating magnetic resonance imaging (MRI) at  
0.2 mm × 0.2 mm × 2 mm for the coronary artery wall using a 0.014 inch MRIG. 
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Introduction

Atherosclerotic cardiovascular disease is the leading cause 
of death worldwide. Although tremendous efforts have 
been made to prevent, diagnose, and treat the disease over 
the past few decades, mortality continues to increase (1,2). 
Atherosclerosis primarily begins when plasma cholesterol 
levels become elevated. This scenario, among other factors, 
leads to the formation of atherosclerotic plaques (3).  
Plaque in the artery wall narrows the artery lumen and 
may result in myocardial infarction or cerebral stroke. 
Studies have demonstrated that most acute infarctions 
are correlated with vulnerable plaques (4). Vulnerable 
plaques are characterized by luminal surface ulceration, 
intraplaque hemorrhage, a fissured fibrous cap, and lipid-
rich necrotic core, neovascularization, and inflammation, 
plaque remodeling, and increased size (5). Rupture of a 
vulnerable plaque leads to platelet accumulation and artery 
occlusion, resulting in organ infarction. Magnetic resonance 
imaging (MRI) is useful for detecting carotid artery plaques 
and their components, and the imaging modality has helped 
prevent cerebral infarction (6-10).

In recent years, deep coronary artery wall MRI has been 
introduced for detecting coronary artery plaques (11). Due to 
the limitations of the current MRI technique, a voxel size of 
0.7 mm × 0.7 mm × 2 mm is usually used in human coronary 
artery wall imaging at 3.0 Tesla (T) (12,13). However, 
the voxel size is larger than the artery wall, which has a 
thickness of approximately 0.2–0.3 mm (14). Therefore, the 
vulnerability of the plaque is difficult to determine directly. 

Performing MRI on deep arteries can provide low-
resolution images, which presents a challenge in plaque 
imaging. An intravascular MRI technique was developed, 
which involved the placement of a magnetic resonance (MR) 
radio frequency (RF) coil into the target vessel to generate 
intravascular high-resolution wall imaging to address this 
challenge (15,16). Due to the limited space in vessels, the 
intravascular RF coil design and the miniature coaxial 
transmission line coils (17,18), including loopless MR RF 
antenna, were advantageous because they were able to fit 
into smaller vessels and were more easily manipulated (19).  
The loopless MR antenna, also known as the MRIG, 
added additional functionality by acting as a conventional 
guidewire for MR-guided intravascular intervention, such 
as balloon angioplasty (20). The MRIG was further refined 
to 0.014 inches (about 0.35 mm) in diameter and used on  
1.5 T MRI for coronary artery imaging (21,22). 

Studies have shown that intravascular imaging can 

acquire high-resolution vascular images of 0.08 mm in ex 
vivo tissues with a 2.2 mm loopless antenna detector (23). 
Given the improved sensitivity, the higher magnetic field 
strength is expected to be beneficial in high-resolution 
image acquisition (24-30). To the best of our knowledge, no 
reports exist on the feasibility of high-resolution imaging 
with an MRIG as thin as 0.014 inches at 3.0 T MRI. 

This study aimed to validate the feasibility of generating 
a high-resolution intravascular 3.0 T MRI of the coronary 
artery wall for further plaque imaging.

Methods

Devices

In this  s tudy,  a  3 .0  T “receive  only”  MRIG was 
manufactured from a 0.014 inch diameter coaxial cable 
(UL1005, Sumitomo Electric Inc., Osaka, Japan) to fit inside 
the coronary artery. The coaxial cable conductors were 
made of Sn-Cu alloy (Sn: 8.8×106 S/m, Cu: 5.8×107 S/m).  
We used a soft coaxial cable as the material of the MRIG, as 
it had a higher conductivity compared to the Nitinol-based 
MRIG (Nitinol: 1×106 S/m) (31) and was safer for coronary 
artery intervention. The inner conductor with an insulation 
layer was extended 10 cm beyond the outer conductor 
shield, and the total length of the MRIG was longer than  
40 cm. The insulation layer broadened the longitudinal 
region over which images could be acquired (32) and 
improved the strength of the inner conductors. 

The proximal end of the coaxial cable was connected to 
a 3.0 T MR scanner (GE Discovery 750W, GE Healthcare, 
Best, USA) through a matching/tuning circuit (Figure 1A). 
Regarding the circuit, the S11 of the MRIG (Figure 1B) 
was adjusted to below −20 decibel (dB) at the operating 
frequency of 127.7 megahertz (MHz). As shown in Figure 
1A, the capacitances C2 and C3 at 13 picofarads (pF), and 
the inductors L1 and L2 at 120 nanohenry (nH) formed a 
parallel resonant circuit. The bias voltage was transmitted 
via the coaxial cable, and the switching diodes D1 and D2 
were driven by the bias voltage. When the switches were 
on, the 2 detuning circuits showed high impedance. It 
likely protected the scanner from unexpected high voltage 
surges. By adjusting the capacitances of C4, C5, and C6, a 
wide range of frequencies covering the operating frequency 
was achieved (Figure 2). We set the capacitance of C1 to 1 
microfarad (μF) to isolate the direct current (DC) signal. In 
addition, the inductors L3, L4, and L5 at 2.7 μH were used 
to isolate the alternating current (AC) signal. 
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In vitro study

To test the functionality of the MRIG, in vitro experiments 
were performed. We constructed a plastic box containing 
a plastic tube inside to mimic the vessel, and filled the 
plastic tube with 0.9% normal saline (Figure 3). The outside 
diameter of the tube measured approximately 3 mm, and the 
thickness was 0.5 mm. The plastic box and the tube were both 
made of polyethylene, through which no MR signal could be 
generated. We placed the MRIG into the plastic tube “vessel”. 
Axial T2-weighted MRI of the plastic tube “vessel” was 
then acquired using a fast spin-echo (FSE) sequence where 
repetition time (TR) =3,000 ms, echo time (TE) =68 ms,  

echo train length =6, field of view (FOV) =100 mm  
× 100 mm, matrix =512×512, slice thickness =2 mm, and 
number of averages =4. With the same MR parameters 
and position, we acquired phantom imaging with a 
commercial 16-channel surface coil placed approximately  
5 cm superior to the plastic tube.

Ex vivo study

For the ex vivo study, we placed a fresh adult swine heart 
into a plastic box filled with 0.9% normal saline. After 
placing the MRIG into the left anterior descending (LAD) 
branch of the coronary artery, an MRI of the coronary 

Figure 1 Design of the 0.014 inch MRIG. The MRIG was connected to a coaxial cable through a tuning/matching Circuit (A) and was 
placed in the plastic tube “vessel” of the box (150 mm × 100 mm × 90 mm) filled with 0.9% normal saline (B). MRIG, magnetic resonance 
imaging guidewire.

Figure 2 The frequency range of S11 was measured when the MRIG was loaded and unloaded. By adjusting the tuning and matching 
circuit, the resonance frequency of unloaded S11 ranged from 95 to 163 MHz, and the resonance frequency of loaded S11 ranged from 101 
to 153 MHz, both of which covered the operating frequency of 127.7 MHz. The unloaded S11 was obtained by exposing the MRIG to air, 
and the loaded S11 was obtained by inserting the MRIG into the phantom. MRIG, magnetic resonance imaging guidewire.
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artery wall was acquired. Axial T2-weighted imaging of the 
LAD branch was performed using a FSE sequence with TR 
=3,000 ms, TE =68 ms, echo train length =6, FOV =100 mm 
× 100 mm, matrix =512×512, slice thickness =2 mm, and 
number of averages =4. Maintaining the same position, we 
adjusted the FOV and matrix size to 110 mm × 110 mm and 
160×160, respectively. We then acquired high-resolution 
and conventional resolution images of the same LAD branch 
of the coronary artery. The commercial surface coil was 
placed about 5 cm superior to the LAD branch to acquire 
wall imaging using the same settings. The experiments were 
repeated 4 times, and images were acquired from 4 different 
swine hearts using the same guidewires.

Data analysis

After obtaining all the images, the noise was acquired by 
maintaining all conditions and manually setting the RF gain 
to 0. The signal-to-noise (SNR) of each voxel was calculated 
using the following formula (33):

 T

T

S SSNR
S Sψ

=  [1]

where S is the signal intensity of each channel and ψ is the 
noise resistance. A reference line was drawn through the 
tube center to demonstrate the spatial SNR distribution 
visually in the phantom study, and the value that varied with 
distance from the center was plotted. 

In the ex vivo study, the highest achievable SNR was 

measured by placing the region of interest (ROI) at the 
brightest part of the coronary artery walls. To calculate the 
average SNR of the swine arterial wall (Sw), we measured 
the average SNR (St) of the total area and the average SNR 
(Sl) of the vessel lumen. The Sw was calculated using the 
following formula (34):
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Where At is the total vessel area, and Al is the vessel 
lumen area.

Histology

After achieving MRI, the coronary artery segments were 
harvested and cryosectioned at 5 μm. We then performed 
histological examinations with hematoxylin and eosin (HE) 
staining to detect the integrity of the artery wall. 

Results

In the in vitro experiments, both the MRIG and commercial 
surface coil functioned well as receiver coils when used 
with the 3.0 T MR scanner. In both images, the plastic tube 
“vessel” was able to be identified at the resolution of 0.2 mm 
× 0.2 mm × 2 mm. The vessel wall imaging by the MRIG 
could be clearly identified, whereas the plastic tube “vessel” 
imaged by the surface coil was blurred (Figure 3A,B).  
As shown in Figure 3C, a series of SNR values along 

Figure 3 Phantom study with a plastic tube that mimicked a vessel. Axial T2-weighted MRIs with the MRIG (A) compared to the 
commercial 16-channel surface coil (B). The SNR was compared with two detectors on the reference line, in a space where the plastic tube 
“vessel” and MRIG showed no signal (C). MRIG, magnetic resonance imaging guidewire.
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the reference line through the plastic tube “vessel” was 
achieved. The peak SNR of the MRIG and the surface coil-
generated imaging was 213.6 and 19.8, respectively. The 
signal decreased rapidly as the distance from the MRIG 
increased. The calculated curve indicated that the SNR was 
higher than the surface coil in the range of ±0.5 cm near the 
intersection of the inner conductor and the outer conductor 
of the MRIG. 

In the ex vivo experiments, LAD branch wall imaging 
was acquired using the MRIG and the surface coil (Figure 4). 

As shown in the images, the MRIG-acquired LAD branch 
wall was able to be identified at the resolution of 0.2 mm 
× 0.2 mm × 2 mm. The surface coil-acquired LAD branch 
wall was blurred. Compared to the high-resolution images, 
the conventional resolution images of 0.7 mm × 0.7 mm × 
2 mm lacked the detail of the high-resolution images. The 
highest achievable SNR of the artery wall was 56.7±20.1 
compared to the SNR of 19.1±4.1 that was obtained by 
the surface coil. The average SNR (Sw) of the artery wall 
obtained by the MRIG was 21.1±5.40, compared to the 
SNR of 8.4±2.19 obtained by the surface coil (Figure 5). In 
Figure 6, as expected, the average SNR in ROIs obtained 
using the MRIG were 16.9, 15.2, and 15.5, which was much 
higher than the SNR of 6.2, 7.3, and 6.6, obtained using the 
surface coil. 

The HE staining in Figure 7 showed no evidence of 
injury at the target vessel walls.

Discussion

It is difficult to build an MRIG inserted into a vessel 
smoothly without scratching the vessel wall and causing 
spasms. To achieve this, the tip of the MRIG needs to be 
soft while maintaining a certain degree of toughness. To this 
end, we stripped off the outer conductor of a commercial 
coaxial cable but maintained its insulating layer. This 
insulating layer wrapped around the inner conductor to 
sufficiently maintain its mechanical properties.

In conclusion, we validated the feasibility of safely 
generating 0.2 mm × 0.2 mm × 2 mm MR images of the 
coronary artery wall in rich detail using a 0.014-inch 
MRIG. The technique helps to lay the foundation of 
clinical practice for high-resolution MRI of coronary artery 
plaques.

Figure 4 Cross-sectional view of the MRIs of the left LAD branch of the coronary artery of a swine. High-resolution images (A, B) obtained 
at 0.2 mm × 0.2 mm × 2 mm and conventional resolution images (C, D) obtained at 0.7 mm × 0.7 mm × 2 mm were achieved using the 
MRIG (A, C) and surface coil (B, D), respectively. LAD, left anterior descending; MRIG, magnetic resonance imaging guidewire.

Figure 5 Measurements of the average SNR (Sw) of the LAD 
branch and the highest achievable SNR (maximum value in SNR 
map) showing a higher SNR obtained using the MRIG than that 
which was obtained using the surface coil. The highest achievable 
SNR of the artery wall was 56.7±20.1 compared with the SNR 
of 19.1±4.1 that was obtained using the surface coil. The average 
SNR obtained using the MRIG was 21.1±5.40, compared to 
8.4±2.19 obtained using the surface coil, where the resolution 
was set to 0.2 mm × 0.2 mm × 2 mm. SNR, signal-to-noise; LAD, 
left anterior descending; MRIG, magnetic resonance imaging 
guidewire.
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