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Background: Due to the increasing need for a detailed biomechanical analysis of anterior cruciate ligament 
(ACL) lesions, the aim of the study was to develop a method of direct measurement of the three-dimensional 
tibial translation and rotation based on stress MRI. 
Methods: For the purpose of the study, thirty patients with acute ACL rupture and 17 healthy control subjects 
were selected. Based on clinical examination, they were qualified for MRI examination using the Arthroholder 
Device prototype to perform anterior tibial translation. Each examination was performed at 30° of knee flexion, 
initially without tibia translation and then using the force applied to the calf of 80 N. The femur and tibia were 
separately registered using rigid local SimpleITK landmark refinement; translation and rotation parameters 
were then calculated using the 3D transformation algorithms. The significance level was set at 0.05. 
Results: Initially, the device and method for obtaining the parameters of the 3D translation and rotation 
were validated. The pooled Standard Deviation for translation parameters was 0.81 mm and for rotation 
parameters 0.87°. Compared to the control group, statistically significant differences were found in 
parameters such as Anterior Shift [(median ± interquartile range) 3.89 mm ±6.55 vs. 0.90 mm ±2.78, 
P=0.002238] and External Rotation (−0.55° ±3.88 vs. −2.87° ±2.40, P=0.005074). Statistically significant 
correlations were observed in combined groups between Anterior Shift and parameters such as External 
Rotation (P=0.001611), PCL Tibial Attachment Point (pPCL) Anterior Shift (<0.000001), Rolimeter 
Measurement (P=0.000016), and Side-to-Side Difference (SSD) (P=0.000383). A significant statistical 
correlation was also observed between External Rotation and parameters such as Rolimeter (P=0.02261) and 
SSD (P=0.03458). 
Conclusions: The analysis of the anterior tibia translation using stress MRI and the proposed three-
dimensional calculation method allows for a detailed analysis of the tibial translation and rotation parameters. 
The correlations showed the importance of external rotation during anterior tibial translation.
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Introduction

The anterior cruciate ligament (ACL) is one of the most 
important structures responsible for proper movement 
control and stabilization of the knee joint. Injury to the 
anterior cruciate ligament leads to complex knee instability, 
including disruption of tibial translation and rotation. 
Evaluation of knee stability after injury of the anterior 
cruciate ligament should be performed based both on physical 
examination [Lachman test (1) and Pivot Shift test (2)]  
and standard magnetic resonance imaging (MRI). After the 
Lachman test was described over 30 years ago (1), many of 
the clinical examination devices were developed, such as 
the instrumented version of the Lachman test performed 
on a KT 1000 (3) device or a Rolimeter (4). However, the 
general rules of calculation of tibia translation remained 
unchanged: anterior translation of tibia was achieved by 
the anteriorly directed force applied to the calf on 30° knee 
flexion, and tibia anterior translation in the sagittal plane 
was recorded using various devices (4-6).  

Several devices have been described to test the anterior 
tibial translation by MRI (7-10), but none have been 
validated. The previously described devices were not 
used for the purpose of three-dimensional calculations. 
Moreover, the devices were not available for distribution 
with the possibility of adapting the device to our MRI 
laboratory. For this reason, a prototype of the device was 
developed.

When performing the anterior translation of the tibia 
in general, the resulting displacement is not just one 
plane movement. The result comprises both translation 
and rotation, which is defined as a three-dimensional 
transformation. Several methods based on transformation 
calculations have been described (11). The reference points 
used for calculations in these methods were attached to the 
skin and were mobile during the examination (12,13). To 
perform accurate 3D transformation calculations, landmarks 
should be precisely correlated with the anatomical regions 
and remain unchanged during tibial translation to reduce 
measurement error. In several papers, bony landmarks for 
the knee joint were developed (14), but all these anatomical 
references were dedicated to CT imaging techniques 
(11,15-19).

When performing a CT scan, the contrast between 
bone and soft tissues is high, which makes it easy to 
identify landmarks on the bone. Also, methods that enable 
automatic alignment of bone contours, called automatic 
registration, allow for greater accuracy, as the software 

aligns the entire bone volume. For MRI, the levels of bone-
soft tissue contrast are not sufficient to manually define 
landmarks the same as in CT. The software is also unable 
to determine the contours of the bones with automatic 
registration. Nowadays, MRI is a gold standard technique 
for a ligamentous knee injury, and the landmarks for 3D 
transformation calculations should be easy to find and 
establish during the MRI examination (20).

The purpose of the study was to develop a reproducible 
model of calculations of 3D tibia translation in ACL-
injured knees using an Arthroholder device during the MRI 
examination. 

Methods

Participants

After obtaining IRB approval from the Local Ethical 
Committee of Bielsko-Biała, 175 patients admitted to our 
clinic between January 2018 and December 2019 with 
possible ACL injury were screened (Figure 1). The study 
was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). The informed consent was 
taken from all the patients. Seventy-one patients who had 
an acute knee pivoting injury (less than three weeks) were 
included in the study. Exclusion criteria for both groups 
were: age <18 and >60 years old, BMI >30, limited range of 
motion of the knee to perform MRI, systemic and chronic 
disorders, claustrophobia, previous injuries to the index 
knee, and inability to perform MRI examination (metal 
hardware, pacemakers, etc.). Sixty-four patients who met 
the study criteria had a stress MRI examination. After the 
examination, two patients were excluded from the study 
due to PCL damage, and 15 patients were excluded due to 
technical errors during MRI examination, such as improper 
setting of the device or MRI parameters. They were then 
divided into two groups: the ACL injured group and the 
control group. Inclusion criteria for the ACL-injured 
group were ACL tear and positive Lachman and Pivot-
Shift tests. 

In 14 patients in the research group, ACL damage was 
confirmed arthroscopically.

The stress MRI examination

All participants had an MRI examination using the 
Arthroholder device prototype manufactured by IDD 
Medical Startup, Bielsko-Biała, Poland. The device is a knee 
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mounting system with force applied to the calf directed 
anteriorly, perpendicular to the tibia. It uses a calibrated 
air pump system to determine the value of the translation 
force. 

After positioning the Arthroholder on the MRI table, the 
knee flexion was adjusted to 30 degrees, which was verified 
with a goniometer. A tight at an angle of 75° to the ground 
plane was fixed to the Arthroholder base using a wide strap. 
The first MRI was initially performed with the knee resting 
on the Arthroholder without touching the tibial support to 
the skin. Then, without changing the patient’s position, a 
second study was performed using a force of 80 N applied 
to the calf. The direction of the force vector applied to the 
calf was set at an angle of 75° to the ground plane (Figure 2). 
The loading force of 80 N was generated by a piston, which 
was connected to a pump and controlled by the calibrated 
pressure gauge.

The protocol of MRI knee examination used for 
calculations is based on axial and sagittal ACL oblique 
plane orientation. All MRI planes were obtained in 
PD sequences on a Philips Ingenia 3.0T MR (Philips, 
The Netherlands), and a dStream Flex L (Philips, The 
Netherlands) coil was used. The tibial plateau was 
positioned by the technician to be perpendicular to the 
XY plane. The detailed technical parameters of the MRI 

protocol used were as follows:
	 Oblique sagittal ACL PD TSE (TR: 2,800 ms; TE: 

40 ms; FOV: 140 mm × 140 mm rectangular; Matrix: 
704×704; Pixel size: 0.198864 mm × 0.198864 mm; 
NSA: 1.5; Slice thickness: 1.6 mm; Slice spacing:  
1.76 mm; Number of slices: ~40; Fat saturation: 
none; Acquisition duration: ~2 min 30 s).

	 Axial PD TSE (TR: 2,400 ms; TE: 45 ms; FOV: 
160 mm × 160 mm rectangular; Matrix: 640×640; 
Pixel size: 0.25 mm × 0.25 mm; NSA: 1; Slice 
thickness: 3 mm; Slice spacing: 3.3 mm; Number 
of slices: ~36; Fat saturation: mSPIR; Acquisition 
duration: ~2 min 30 s).

In addition, the following 3D volume isotropic protocol 
was used to validate the registration method:
	 PD 3D TSE (TR: 1,300 ms; TE: 22 ms; FOV:  

160 mm × 160 mm × 140 mm; Matrix: 576×576; 
Pixel size: 0.277778 mm × 0.277778 mm; NSA: 2; 
Slice thickness: 0.698; Slice spacing: 0.349; Number 
of slices: ~400; Fat saturation: SPAIR; Acquisition 
duration: ~6 min).

Point marking and registration

The PDW sagittal and axial series were examined using 

Figure 1 Flow chart of study identification, inclusion, and exclusion criteria.

Excluded (n=7)
•	 Age <18 and >60 years old
•	 BMI >30
•	 limited range of motion of the knee to perform MRI
•	 Systemic and chronic disorders
•	 Claustrophobia
•	 Previous injuries to the index knee
•	 Inability to perform MRl examination  

(metal hardware, pacemakers, etc.)

Excluded (n=17) 
•	 PCL tear
•	 Technical errors during 

the MRI examination

ACL injured group (n=30)
•	 ACL tear
•	 Positive Lachman test
•	 Positive Pivot Shift

Control group (n=17) 
•	 No ACL tear
•	 Negative Lachman test
•	 Negative Pivot Shift

Assessed for eligibility (n=175)

Stress MRl examination (n=64)

Acute knee pivoting injury (less than 3 weeks) (n=71)
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Osirix 10.0 (Pixmeo, Switzerland) software. 
The set of landmarks proposed by Xue (18) and ISB (21) 

were initially considered; however, due to the difficulty 
of automatic registration based on MRI images, those 
landmarks were not used. The new landmarks were selected 
based on areas of high contrast differences in the sagittal 
oblique and axial sections. For each examination, six points 
were marked as described (Table 1).

Two orthopedic surgeons with several years of experience 
in interpreting MRI images marked landmarks three times 
for each examination.

Selected points were redefined using Slicer 4.10 (The 
Slicer Community, USA) Landmark Registration with small 
region SimpleITK v4.13.3 (Insight Software Consortium, 
USA) automatic registration algorithms (22). Point locations 
based on the XYZ coordinate system were exported for 
further analysis. Femoral points were used for registration 
using the CloudCompare software (EDF, France) (23). 
Points exported from MRI examination without the use 
of force (Flc, Fmc, Fin) were used as reference points. Points 
exported from MRI examination with the use of force were 
used as the aligned set of points (Flc', Fmc', Fin'). 

Automatic registration

SimpleITK v4.13.3 registration algorithms were used 
to redefine registration points in small regions. Fully 
automated registration algorithms such as BRAINS v3.0.0 
(NITRC, USA) (24), General Registration ITK v4.13.3 (22) 
(Insight Software Consortium, USA) and Elastix v5.0.0 (25)  
(LUMC, Netherlands) with ROI masks were tested; 
however, none of them provided accurate registration 
due to shifting landmarks during the performed MRI 

examinations. Only marking the points with the use of 
semiautomatic registration gave measurable results. 

Translation and rotation calculations

Two sets of tibial points (Pf, P_pl, P_pcl and Pf', Ppl', Ppcl') were 
prepared for seven parameters of Helmert transformation 
model calculations. The general form can be written as (26): 

 ( ) , 1. ,i ip dR q t i mϕ= + = … 	 [1]

where i is the number of points that have known coordinates 
in the two XYZ systems, pi, and qi, d is a scale factor, R is the 
product of three elementary rotation matrices around XYZ 
axes, and t is the translation vector in the XYZ space. The 
R3×3 matrix can be written as (26-28):

 ( ) ( ) ( ) ( )1 2 3R R R Rϕ α β γ= 	 [2]

where:
 

( )1

cos sin 0
sin cos 0

0 0 1
R

α α
α α α

− 
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  

 

( )2

cos 0 sin
0 1 0

sin 0 cos
R

β β
β

β β

− 
 =  
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	 [3]

 

( )3

1 0 0
0 cos sin
0 sin cos

R γ γ γ
γ γ

 
 = − 
  

The given parameters allow transforming a set of points 
qi, into another set pi. To determine translation t and 
rotation R parameters of given sets of points pi,qi, a least-
squares solution should be applied (26,29):

Figure 2 Arthroholder device positioning before examination. 1, hinge for adjusting the angle of the thigh. 2, thigh-locking strap. 3, air 
piston generating anterior tibial translation. 4, MRI coil.

Fixed

Force

75°

30
°
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Table 1 Registration points

Symbol Name Description Schematic

Flc Femoral lateral condyle point Inner top edge of the lateral condyle

Fmc Femoral medial condyle point Inner top edge of the medial condyle

Fin Intercondylar notch point Center of the intercondylar notch in line 
through a femoral physeal scar

Ff Proximal fibula point The top of the fibula

Fpl Posterior cruciate ligament point PCL tibial attachment

Flc Patella ligament point Top central edge of the patellar ligament 
attachment

 2

1

m

i i
i

F p dRq t
=

= − −∑ 	 [4]

The solution should be independent of d, which can be 
obtained by (26):

 
( ) 2

1

m

i i
i

p R q tϕ
=

− −∑ 	 [5]

Detailed calculations and unit conversions were 

performed using 3D-Transformation-Matrix-Calculator 
v1.0 (Wojtin, Poland) software (30) based on the open-
source singular value decomposition of 4×4 transformation 
matrix algorithms (31-33). These algorithms are based 
on the general principles of the Helmert transformation 
explained above. 

The registration of landmarks was visually verified  
(Figure 3), and individual patient data was presented in 
graphics (Figure 4).
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Statistical analysis

All data were collected and analyzed using the PQStat 
v1.6 (PQStat Software, Poland) software. The normal 
distribution of each parameter was tested with the Shapiro–
Wilk test. For all parameters, the median ± interquartile 
range was calculated and presented (Figure 5). The Mann-
Whitney test was used to compare the groups. Spearman’s 
rank correlation coefficient was calculated to achieve a 
relationship between translation and rotation values. The 
intraclass correlation coefficient (ICC) was calculated for 
the purpose of assessing the reliability of measurements. 
Statistical significance was set at P<0.05.

Validation and calibration

Calibrating the tibial translation force, 30 measurements 
were made with a dynamometer applied to the tibial element 
of the device, and then the pressure values were determined 
on a standardized pressure gauge connected to the pump. 
On the basis of the performed calibration, the translation 
force was set to 80±5 N each time during the examination.

To validate the tibia translation with the device, a 
Rolimeter was used (Table 2). In each test performed by 
two experienced orthopedic surgeons, the Rolimeter 
measurement was taken with a knee flexion of 30 degrees 
in the Lachman test. Then, after mounting the knee in the 
Arthroholder device, the measurement was taken again with 
the use of the Rolimeter. The Rolimeter’s zero state was set 
without using tibial translation force, then the Rolimeter 
measurement was taken using 80 N force applied to the 

calf. The Side-to-Side Difference (SSD) of the Rolimeter 
measurement was also calculated.

To validate the landmark registration method, an 
additional 3D VISTA sequence was performed in 10 
patients. The landmarks were marked three times by two 
experienced orthopedic surgeons in both the 3D VISTA 
sequence (0.7 mm slice thickness) and the standard PD 
sequence (2 mm slice thickness). Then, a semiautomatic 
landmark registration was performed and transition 
parameters were compared (Table 2). Both MRI sequences 
were performed during one examination.

Results

The mean ± SD age of the ACL injured group was  
37±9.8 years (27% women, 73% men), The mean ± SD age 
of the control group was 36±9.4 years (30% women, 70% 
men), ranging in booth groups from 19 to 54 years. 

When the group with the damaged ACL was compared 
to the control group, statistically significant differences were 
found in the evaluation of all point distances, anterior shift, 
external rotation, Rolimeter, and SSD; these are presented 
in Figure 5. 

Several dependencies between particular translation and 
rotation  parameters were noticed. Statistically significant 
correlations between Anterior Shift and parameters such 
as Rolimeter measurement, SSD, External Rotation, 
pPCL Anterior Shift, between the External Rotation and 
the Rolimeter measurement, and SSD were observed in 
combined groups (Figure 6A-6F). 

Figure 3 An example of MRI visual verification of semiautomatic registration. (A) MRI without anterior translation; (C) Stress MRI with 
tibial anterior translation; (B) A (dotted yellow line) + C (solid white line) images combined with 50% transparency. The anterior translation 
of the tibia was visualized. The arrow shows the correct alignment of the femur.

A B C
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Discussion

The most important finding of this study was the 
development of a 3D translation and rotation computation 
method based on semi-automatic registration and its 
implementation for stress MRI. 

Fully-automated registration is widely used in the 
various fields of radiology (34,35); in this case, however, 
its use caused complications because of the repositioning 
of the bones and soft tissue compression by the device, 
even when area masks were used (36). Previously published 
CT (21) landmarks are not suitable for MRI registration 
due to difficulty in localizing bone regions on MRI PD 
sequences. For these reasons, new landmark locations 
adapted for semiautomated MRI registration were 
proposed. Registration of small areas around landmarks 
was used, which to be effective must rely on the analysis of 
contrasts between the bone and the surrounding tissue (34). 
Therefore, the location of the points was chosen so that the 
smallest possible cross-section would have as many areas of 
contrast as possible. It is also important that the location 
of landmarks cannot change during the translation and 
rotation of the tibia relative to the thigh (37).

Stress MRI examination allows for achieving parametric 
results, which can lead to a detailed analysis of the mechanics 
of the tested knee. The natural muscle tension during 
stress MRI allows distinguishing this method from those 
previously used, which were performed on cadavers (20)  
or under anesthesia (38). Muscle tension plays an important 
role in the stability of the knee, and this is taken into 
account when this method is used (39). 

The tibia transition stress imaging calculation methods 
such as stress MRI or stress radiography cannot rely 
only on the 2D anterior shift parameter (40). The tibial 
transformation values must be presented as a combination 

Figure 4 An example of left knee separate translation and rotation 
parameters visualization (knee flexion, tibial anterior translation, 
tibial internal rotation, pPCL anterior displacement, knee varus, 
and tibial medial translation). The dashed outlines relate to the 
initial position of the tibia. The rotation scale was set to 1:1. The 
translation was visualized where 1 pixel in a 96 dpi SVG format 
image stands for 1 mm in an MRI scan. The bone shape shown 
in the graphics is only a reproducible diagram to illustrate the 3D 
references.

–5.97°±0.61

1.00 mm ± 0.61

4.69 mm ± 0.61

5.39 mm

–5.65°±0.61

–0.38°±0.61

Table 2 Landmark registration validation table

Lateralization (mm) Anterior shift (mm) Proximal shift (mm) Knee flexion (°) Varus (°) External rotation (°)

Pooled SD

Rolimeter – 1.22 – – – –

PD 0.85 0.51 1.22 0.68 0.98 1.2

3D VISTA 0.75 0.40 1.11 0.63 0.78 0.95

ICC

Rolimeter – 0.994205 – – – –

PD/3D VISTA 0.959001 0.993994 0.984733 0.998301 0.983295 0.985244

For all results, P<0.000001. SD, standard deviation; ICC, intraclass correlation coefficient.
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Figure 5 Median and interquartile range translation chart (pPCL Anterior Shift P=0.002238; Lateralization P=0.362296; Anterior 
Shift P=0.002238; Proximal Shift P=0.130879; Knee Flexion P=0.826566; Varus P=0.496259; External Rotarion P=0.005074; Rolimeter 
P=0.000001; SSD P=0.000008). pPCL, PCL Tibial Attachment Point; SSD, Side-to-Side Difference.
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of translation and rotation in which the rotation plays an 
important role in the tibial movement (40). This was also 
confirmed in this study by showing correlations between the 
individual components of the three-dimensional translation 
and rotation and differences in these values compared to the 
control group. 

The presented results showed differences compared 
to the control group not only in the case of anterior 
translation, but also in the rotation of the tibia. The 
correlations between external rotation and anterior shift, as 
well as between the values of the Rolimeter measurements, 
are particularly noteworthy. It is known that damage to 
individual bundles affects the rotation of the tibia (41). The 
importance of rotation is especially relevant in the case 
of diagnosis of knee laxity (42), but the assessment of this 
parameter has not been widely used so far.

The complex analysis of tibial translation and rotation 
introduces new precise numerical parameters in the clinical 
evaluation of knee instability. This gives new possibilities 
of biomechanical analysis of the knee joint as well as the 

quality of the performed ACL repair procedures, which 
require further research.

It should be noted that a small group of patients and 
the low diversity of the research group were limitations of 
this research, which should be improved in future studies. 
Moreover, patients with limited range of knee mobility 
were not examined using stress MRI due to the assumed 
discomfort during the examination.

Conclusions

The semiautomatic registration method allows for a 
detailed analysis of the tibial translation and rotation 
parameters during stress MRI in the knees with damaged 
ACL. Particularly noteworthy is the strong correlation 
of external rotation parameters to the anterior tibia 
translation, as well as to the value of the Rolimeter 
measurement.  The described method has cl inical 
application in the accurate diagnosis of ACL lesions, but it 
requires further research.
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Figure 6 Correlation charts between Anterior Shift and (A) Rolimeter {ACL injured group [I]: P=0.00561, r=0.49326; ACL non-injured 
group [N]: P=0.020858, r=0.571071; Combined groups [C]: P=0.000016, r=0.5896}. (B) SSD (I: P=0.153015, r=0.267476; N: P=0.000824, 
r=0.749777; C: P=0.000383; r=0.501612). (C) External Rotation (I: 0.165844, r=0.259659; N: P=0.102109, r=0.423529; C: P=0.001611; 
r=0.452053). (D) pPCL Anterior Shift (I: P=0.001375, r=0.557388; N: P<0.000001, r=0.95; C: P<0.000001; r=0.779108). External 
Rotation and (E) Rolimeter (I: P=0.983716, r=−0.003892; N: 0.801726, r=0.068241; C: P=0.02261, r=0.335583), (F) SSD (I: P=0.872322, 
r=−0.030636; N: P=0.03367, r=0.5326; C: P=0.020317; r=0.341183). ACL, anterior cruciate ligament; pPCL, PCL Tibial Attachment Point; 
SSD, Side-to-Side Difference.
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