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Background: Multiparametric dual-energy computed tomography (mpDECT) is widely used to 
differentiate various kinds of tumors; however, the data regarding its diagnostic performance with machine 
learning to diagnose breast tumors is limited. We evaluated univariate analysis and machine learning 
performance with mpDECT to distinguish between benign and malignant breast lesions.
Methods: In total, 172 patients with 214 breast lesions (55 benign and 159 malignant) who underwent 
preoperative dual-phase contrast-enhanced DECT were included in this retrospective study. Twelve 
quantitative features were extracted for each lesion, including CT attenuation (precontrast, arterial, 
and venous phases), the arterial-venous phase difference in normalized effective atomic number (nZeff), 
normalized iodine concentration (NIC), and slope of the spectral Hounsfield unit (HU) curve (λHu). 
Predictive models were developed using univariate analysis and eight machine learning methods [logistic 
regression, extreme gradient boosting (XGBoost), stochastic gradient descent (SGD), linear discriminant 
analysis (LDA), adaptive boosting (AdaBoost), random forest (RF), decision tree, and linear support vector 
machine (SVM)]. Classification performances were assessed based on the area under the receiver operating 
characteristic curve (AUROC). The best performances of the conventional univariate analysis and machine 
learning methods were compared using the Delong test.
Results: The univariate analysis showed that the venous phase λHu had the highest AUROC (0.88). 
Machine learning with mpDECT achieved an excellent and stable diagnostic performance, as shown by the 
mean classification performances in the training dataset (AUROC, 0.88–0.99) and testing (AUROC, 0.83–
0.96) datasets. The performance of the AdaBoost model based on mpDECT was more stable than the other 
machine learning models and superior to the univariate analysis (AUROC, 0.96 vs. 0.88; P<0.001).
Conclusions: The performance of the AdaBoost classifier based on mpDECT data achieved the highest 
mean accuracy compared to the other machine learning models and univariate analysis in differentiating 
between benign and malignant breast lesions.
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Introduction

Breast cancer is the most commonly diagnosed cancer in 
women (1). Recognition of the status of breast tumors 
is essential for reducing unnecessary biopsies of benign 
tumors and is vital for treatment decision-making. Magnetic 
resonance imaging (MRI) is a key means for diagnosing 
breast lesions and subsequently choosing the appropriate 
therapy. It is sensitive and is increasingly being used for 
clinical purposes, such as to assess the extent of malignant 
breast lesions and monitor the response to chemotherapy 
(2,3). However, MRI is limited by low specificity, high 
costs, and incompatible implanted devices (4,5). Thus, the 
accurate differentiation of breast lesions using MRI remains 
challenging.

Dual-energy computed tomography (DECT) has 
promising clinical applications in oncological imaging 
for the characterization of tumors (6), including the 
differentiation between benign and malignant tumors (7-10).  
DECT can provide various quantitative parameters for 
objective quantitative analysis of breast tumors while 
screening for lung metastases and inflammation lesions 
compared with mammograms and ultrasounds. Currently, 
some studies have investigated the role of DECT in 
the diagnosis of breast cancer via multiple quantitative 
parameters (11). One study using DECT quantitative 
parameters showed that the iodine concentration was 
higher in breast tumors than in the pectoral muscle and 
normal breast tissue (12). Another study (10) demonstrated 
that DECT is a reliable imaging technique with good 
consistency among observers and can be used for the 
locoregional staging of breast cancers.

Moreover, the iodine concentration and attenuation [at 
70 and 40 kiloelectron volts (keV)] of benign tumors were 
significantly lower than those of malignant breast tumors. 
Our previous research (13) found that DECT parameters, 
including normalized iodine concentration (NIC) and 
normalized effective atomic number (nZeff), could be used to 
discriminate the expression status of immunohistochemical 
biomarkers of breast cancer. However, to the best of our 
knowledge, there are no related studies on the diagnostic 
performance of multiparametric DECT (mpDECT) in 
differentiating between benign and malignant breast lesions.

Machine learning methods can generate predictive 

models by extensively searching the model and parameter 
spaces, which is different from traditional statistical 
methods that typically consider and evaluate a limited set of 
assumptions (14-17). One previous study (18) demonstrated 
that combining low-dose perfusion breast CT parameters 
and machine learning approaches is a useful noninvasive 
method for predicting the molecular subtypes and 
prognostic biomarkers of breast cancer. Another study (19)  
showed that machine learning with multiparametric MRI 
of the breast enables early prediction of pathological 
complete response to neoadjuvant chemotherapy, as well as 
survival outcomes, with high accuracy. However, to the best 
of our knowledge, no study has evaluated the diagnostic 
performance of machine learning using mpDECT in 
differentiating between benign and malignant breast lesions.

Previous studies have demonstrated the potential for the 
application of imaging features with machine learning in 
breast cancer; however, the potential of mpDECT has not 
yet been fully tapped. Thus, this study aimed to evaluate the 
diagnostic performance of conventional univariate analysis 
and machine learning with mpDECT in distinguishing 
between benign and malignant breast lesions.

Methods

Participant characteristics

The study was approved by the ethics committee 
of  Chongqing Univers i ty  Cancer  Hospita l  (No. : 
CZLS20200215-A), and individual consent for this 
retrospective analysis was waived. This study was conducted 
per the Declaration of Helsinki (as revised in 2013). The 
inclusion criteria were as follows: (I) dual-phase contrast-
enhanced DECT scan of the thorax; (II) pathological 
biopsy-confirmed breast malignant or benign lesions; (III) 
women ≥18 years who were not pregnant or breastfeeding; 
and (IV) patients with no history of chemotherapy or 
radiation therapy in the breast space. The exclusion criteria 
were as follows: (I) patients with incomplete pathological/
medical information; (II) patients who underwent 
breast mass biopsy within 1 week before the initial CT 
examination; (III) cases involving invisible target lesions 
on CT images; (IV) poor image quality (severe motion 
artifacts or poor signal-to-noise ratio); and (V) patients with 
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obesity causing breast mass beyond the field of view. Details 
regarding patient exclusions can be found in Figure 1.

Between June 2019 and April 2020, 172 patients who 
fulfilled the inclusion criteria were enrolled in our study. All 
patients underwent DECT scanning once. Among them, 
117 patients were diagnosed with malignant breast lesions, 
42 patients were diagnosed with unilateral malignant 
breast lesions (and the other side was diagnosed as benign 
breast lesions), and 13 patients were diagnosed with benign 
breast lesions. For all patients, the following information 
was recorded: age, the largest diameter of the lesion, 
menstruation state, and histopathological information. The 
overall workflow chart of this study is shown in Figure 2.

DECT image acquisition

DECT data were acquired on a 2.5 generation dual-
energy dual-source CT unit (SOMATOM Drive, Siemens 
Healthineers, Germany). Automatic exposure control 
(CARE Dose 4D, Siemens Healthineers) was used in our 
study scans. The scanner settings were as follows: rotation 
time, 0.28 s; collimation, 64×0.6 mm; pitch, 0.55; reference 
tube current-time product, 71 milliamperes second for the 
100 kilovolt tube and 60 milliamperes second for the Sn140 
kilovolt tube; reformatted section increment, 1.5 mm; and 
reformatted section thickness, 1.5 mm. All participants were 

scanned craniocaudally in the supine position. Noncontrast 
DECT images were obtained first. The iodinated nonionic 
contrast agent (Ioversol, 320 mg/mL iodine, HENGRUI 
Medicine, China) was administered through the ulnar 
vein by a dual-head injector. The dosage was 1.5 mL/kg 
with a flow rate of 2.5 mL/s, followed by a bolus injection 
of 30 mL saline administered at the same flow rate. The 
arterial phase scanning was initiated using a bolus-tracking 
method with a 100 Hounsfield unit (HU) threshold in 
the descending aorta and an additional delay of 10 s. The 
venous phase scan delay time was 25 s after the end of the 
arterial phase scan.

DECT quantitative features

DECT imaging data were analyzed using viewer software 
on a syngo.via workstation (syngo.via VB20A, Dual Energy, 
Siemens Healthineers, Germany). Standard linear-blended 
images were reconstructed by applying a blending factor 
of 0.5 (M_0.5; 50% of the low kV and 50% of the high kV 
spectrum) for attenuation (HU) measurements. We measured 
the attenuation in three phases (precontrast, arterial, and 
venous phases). Dual-energy quantitative parameters 
were measured in the arterial and venous phases by two 
radiologists (XXW, with 8 years of experience in breast 
diagnostic imaging, and XFZ, with 3 years of experience in 

Figure 1 Flowchart of study participant enrolment and selection process. DECT, dual-energy computed tomography; CT, computed 
tomography.

Patients undergo DECT scan of the thorax, pathological 
diagnosis of primary breast lesion, age ≥18 years women, not 

pregnant, not breastfeeding and no history of chemotherapy or 
radiation therapy from June 2019 to April 2020.

(n=298)

90 clinical-related exclusions:
•	 incomplete pathological information (n=25)
•	 incomplete medical information (n=10)
•	 undergone biopsy before CT examination within one week (n=55)

36 imaging-related exclusions:
•	 invisible target lesion on CT images (n=10)
•	 poor image quality (n=12)
•	 breast mass exceeding the field of view due to obesity (n=14)

208 patients for further review

172 patients with 214 breast lesions (55 benign and 159 malignant)

Training dataset 
Benign (n=38) 

Malignant (n=105)

Testing dataset 
Benign (n=17) 

Malignant (n=54)
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post-processing of DECT) who were blinded to the biopsy 
results of the breast tumors. A region of interest (ROI) was 
placed in the breast lesion area as large as possible, excluding 
the areas of calcification, obvious gross necrosis, or large 
vessels. The mean area of all ROIs was 421.61 (range,  
110.28–1,253.15) mm2. The NIC and nZeff were obtained 
through the breast lesions iodine concentration (mg/cm3) 
and effective atomic number dividing by the aortic iodine 
concentration and the effective atomic number. The slope 
of the spectral HU curve (λHu, HU/keV) was computed 
according to the following equation (20):

( )40keV 70keVHu HU HU 30keVλ = − 	 [1]

Eqs. [2-4] for calculating the differences in quantitative 
DECT features between the arterial phase and venous 
phase were as follows:

 arterial  phase venous phaseNIC NIC NIC∆ = − 	 [2]

 eff eff  arterial  phase eff  venous phasenZ nZ nZ∆ = − 	 [3]

 Hu Hu  arterial  phase Hu  venous phase∆λ = λ −λ 	 [4]

Conventional univariate analysis

Univariate analysis of all mpDECT features was performed 

to differentiate between benign and malignant breast 
lesions. The optimal cut-off points of all mpDECT features 
for predicting benign and malignant breast lesions were 
determined by the Youden index (21). The area under the 
receiver operating characteristic curve (AUROC) was used 
as the classification metric and was used to evaluate the 
model’s predictive ability.

Machine learning

A recursive feature elimination (RFE) method combined 
with random forest (RF) was used to select the optimal 
sequence of  features  in  our s tudy.  The concrete 
implementation was as follows: (I) train the RF model with 
10-fold cross-validation (CV); (II) calculate the importance 
of permutation features; (III) keep the most important 
features; (IV) repeat steps 1 through 3 until optimal 
performance is achieved; and (V) select the subset of a 
feature that predicts the best performance (22).

Eight machine learning models, including logistic 
regression, extreme gradient boosting (XGBoost), stochastic 
gradient descent (SGD), linear discriminant analysis (LDA), 
adaptive boosting (AdaBoost), RF, decision tree, and linear 
support vector machine (SVM), were applied with the 
mpDECT to distinguish between benign and malignant 

Figure 2 The overall workflow chart of this study. CT, computed tomography; RFE, recursive feature elimination; RF, random forest; 
XGBoost, extreme gradient boosting; SGD, stochastic gradient descent; LDA, linear discriminant analysis; AdaBoost, adaptive boosting; 
SVM, linear support vector machine; NIC, normalized iodine concentration; AUROC, area under the receiver operating characteristic curve.

Dual energy CT

Best 
performance 

model 

12
quantitative

features

Conventional
univariate analysis

Machine learning
•	 XGboosting
•	 SGD
•	 LDA
•	 Adaboosting
•	 RF
•	 Decision tree
•	 Linear SVM
•	 Logistic regression

Feature selection
RFE based on RF

1.0

0.8

0.6

0.4

0.2

0.0

S
en

si
tiv

ity

0.0        0.2       0.4        0.6        0.8        1.0
1-Specificity



814 Lan et al. Machine learning with dual energy CT in breast tumors

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(1):810-822 | https://dx.doi.org/10.21037/qims-21-39

breast lesions. A python (version 3.7.6) library named scikit-
learn (version 0.22) was used in our study. The specific 
parameters of machine learning can be seen in Figure S1.

For more information about each algorithm, see 
Appendix 1. Each particular learning algorithm was used 
to provide the best performance model for fitting the input 
DECT data and correctly predicting benign or malignant 
breast lesions. Our data were divided into a training group 
(used to train the model) and a testing group (used to 
evaluate the model’s generalization ability) at a ratio of 
67%:33%. Five-fold CV was used to distinguish between 
the benign and malignant breast lesions groups to improve 
the performance evaluation and manage the stochasticity 
in machine learning models. The AUROC was used as the 
performance metric.

Statistical analysis

Statistical analyses were performed by using commercially 
statistical software (SPSS software, version 25.0; USA). 
We randomly selected 30 patients to assess inter-observer 
agreement in the analysis of the mpDECT features. The 

ROIs of mpDECT measurements were repeated twice, 
with an interval of at least 1 month, following the same 
procedure. Our study used the intraclass correlation 
coefficient (ICC) with a two-way random effects model 
of consistency. In the univariate analyses, 12 mpDECT 
features were compared using the independent sample t-test 
(normal distribution) or Mann-Whitney U-test (non-normal 
distribution). Menstruation state was assessed using the 
χ2 test. The Delong test was used within the conventional 
univariate analysis and machine learning models to 
compare the difference between the AUROCs. The level of 
significance was defined as P<0.05.

Results

Participant characteristics

In total, 172 participants with 214 histopathologically 
confirmed breast lesions were included in our study. The 
patients’ clinicopathological characteristics are shown in 
Table 1. Histopathologically, 159 malignant lesions and 55 
benign lesions were diagnosed. No statistically significant 

Table 1 Clinicopathological characteristics

Characteristics
Training dataset Testing dataset

P value
Malignant (n=105) Benign (n=38) P value Malignant (n=54) Benign (n=17) P value

Age, mean ± SD, years 53.7±11.12 50.8±7.01 0.834 51.8±5.23 50.5±8.21 0.104 0.085

Largest diameter, cm 3.01±1.26 2.71±0.62 0.773 2.91±1.21 2.45±0.73 0.427 0.341

Menstruation state 0.053 0.164 0.162

Premenopausal women 42 20 30 8

Postmenopausal women 63 18 24 9

Benign

Adenosis – 16 – 7

Fibroadenoma – 14 – 6

Intraductal papilloma – 7 – 4

Cyst – 1 – 0

Malignant

Invasive ductal/lobular carcinoma 88 – 46 –

Medullary carcinoma 1 – 0 –

Mucinous carcinoma 2 – 1 –

Phyllodes tumor 2 – 1 –

Ductal carcinoma in situ 12 – 6 –

https://cdn.amegroups.cn/static/public/QIMS-21-39-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-21-39-supplementary.pdf
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differences were observed between the training and testing 
datasets in terms of age, largest diameter of the lesion, and 
menstruation state.

Our study’s mean cumulative CT dose index was 
5.42±1.94 mGy, while the mean dose length product was 
166.12±56.04 mGy cm, and the average effective dose was 
2.31±0.78 mSv for each phase.

Conventional univariate analysis

The ICCs of the study for inter-observer variability in terms 
of mpDECT were 0.930 (0.759–0.990). The mpDECT 
between benign and malignant breast lesions is shown in 
Table 2. The results showed that, except for ΔnZeff (P=0.728), 
the 11 other quantitative parameters of malignant lesions 
were higher than those of benign lesions (P<0.001– 
0.002). In the univariate analysis, the venous phase λHu 
had the highest AUROC (0.88), followed by arterial phase 
attenuation (0.87) and venous phase attenuation (0.87) 
(Figure S2). The representative images are shown in Figure 3.

Optimum ranking of the features

The mpDECT model was based on RFE incorporated 
with RF, and the importance of the features in the model 

for the prediction of benign and malignant breast lesions 
is summarized in Figure 4. The most relevant features for 
predicting benign and malignant breast lesions were those 
quantitative features, including arterial phase λHu, venous 
phase λHu, arterial phase attenuation, arterial phase NIC, 
venous phase attenuation, and venous phase attenuation 
phase NIC. According to the ranking of importance scores, 
we selected six of the most important features to construct 
models with eight machine learning algorithms.

Diagnostic performance of the eight machine learning 
models

All models performed excellently, with high AUROC values 
in training (AUROCs, 0.88–0.99) and testing (AUROCs, 
0.83–0.96) datasets (Figure S3). Table 3 and Figure 5 
summarize the AUROCs for all models in the training and 
testing datasets. Among them, AdaBoost showed the highest 
performance and outperformed the decision tree models 
(AUROC 0.96 vs. 0.83; P=0.034). There was no statistically 
significant difference in our study between the performance 
of the AdaBoost and that of the other six groups of models, 
including XGBoost, SGD, LDA, AdaBoost, RF, and linear 
SVM, in the prediction of benign and malignant breast 
lesions (P=0.060–0.838).

Table 2 Comparison of mpDECT between benign and malignant lesions of the breast and the performance of conventional univariate analysis

Feature Benign (n=55) Malignant (n=159) t/Z value P value Cut off AUROC
Sensitivity 

(%)
Specificity 

(%)

Arterial phase NIC 0.033±0.036 0.110±0.068 −8.043 <0.001 0.052 0.86 83.0 76.4

Venous phase NIC 0.176±0.132 0.350±0.144 −7.900 <0.001 0.211 0.81 83.0 67.3

ΔNIC 0.143±0.120 0.240±0.109 −5.547 <0.001 0.178 0.74 71.7 69.0

Arterial phase λHu (HU/keV) 0.487±1.079 1.714±0.827 −8.701 <0.001 0.930 0.85 86.2 81.8

Venous phase λHu (HU/keV) 0.927±0.912 2.518±0.962 −10.717 <0.001 1.880 0.88 80.5 83.6

ΔλHu (HU/keV) 0.440±0.941 0.814±0.693 −3.129 0.002 −0.030 0.62 91.8 30.9

Arterial phase nZeff 0.684±0.032 0.725±0.042 −6.537 <0.001 0.720 0.79 61.0 92.7

Venous phase nZeff 0.824±0.035 0.868±0.052 −5.789 <0.001 0.840 0.79 81.1 67.9

ΔnZeff 0.140±0.032 0.143±0.054 −0.348 0.728 0.160 0.57 43.4 72.7

Precontrast phase attenuation (HU) 29.55±10.85 39.52±11.92 −5.465 <0.001 37.10 0.74 60.4 76.4

Arterial phase attenuation (HU) 31.70±13.24 54.56±15.55 −9.745 <0.001 42.40 0.87 83.6 81.8

Venous phase attenuation (HU) 38.28±16.00 65.64±18.28 −9.862 <0.001 54.00 0.87 77.4 83.6

The data is represented as means ± standard deviation. mpDECT, multiparametric dual-energy computed tomography; AUROC, area  
under the receiver operating characteristic curve; NIC, normalized iodine concentration; λHu, slope of the spectral Hounsfield unit curve; 
nZeff, normalized effective atomic number; HU, Hounsfield unit.

https://cdn.amegroups.cn/static/public/QIMS-21-39-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-21-39-supplementary.pdf
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Figure 6 presents the boxplot illustration of the mean 
performance of five-fold CV in the training dataset along 
with eight machine learning models in looking for the most 
stable, high accuracy, and low variance model for predicting 
benign and malignant breast lesions. AdaBoost was the most 
stable model (least variance), with AUROC values of 0.99 
and 0.96 in the training and testing datasets, respectively 
(Figure 7). Therefore, we chose the AdaBoost model to 
compare with the univariate analysis. The AUROC of 
AdaBoost was significantly higher than that determined by 
univariate analysis [AUROC of AdaBoost, 0.96 vs. AUROC 
of venous phase λHu, 0.88 (P<0.001); AUROC of AdaBoost, 
0.96 vs. AUROC of arterial phase attenuation, 0.87 

(P<0.001); and AUROC of AdaBoost, 0.96 vs. AUROC of 
venous phase attenuation, 0.87 (P<0.001), respectively].

Discussion

This study applied conventional univariate analysis 
and machine learning with mpDECT of the breast to 
distinguish between benign and malignant breast lesions. 
With the univariate analysis, the venous phase λHu offered 
the highest AUROC. Of all machine learning models, the 
AdaBoost classifier model using mpDECT was more stable 
than the other machine learning models and outperformed 
conventional univariate analysis in differentiating between 

Figure 3 Representative DECT images of contrast-enhanced venous phase in four breast lesion patients. Patient 1: pathological diagnosis of 
a 34-year-old woman with right breast mucinous carcinoma (arrows). According to the multiple parameters of DECT, benign breast lesions 
were diagnosed (false negatives). Patient 2: a 52-year-old woman was diagnosed with left breast invasive ductal carcinoma (arrows) on both 
histopathology and multiple parameters of DECT (true positive). Patient 3: pathological diagnosis of a 45-year-old woman with left breast 
adenosis (arrows). According to the multiple parameters of DECT, malignant breast lesions were diagnosed (false positive). Patient 4: a 
45-year-old woman was diagnosed with right breast fibroadenoma (arrows) on both histopathology and multiple parameters of DECT (true 
negative). DECT, dual-energy computed tomography; NIC, normalized iodine concentration; λHu, slope of the spectral Hounsfield unit 
curve, nZeff, normalized effective atomic number, HU, Hounsfield unit.
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benign and malignant breast lesions.
DECT can reconstruct multiparametric images and 

corresponding quantitative parameters as analysis tools 
and quantitative indicators for clinical diagnosis (23,24). 
The effective atomic number can quantitatively depict 
the changes in the X-ray absorption rate for various 
materials and reflect the atomic number of composite 
materials; the higher the compound density, the higher 

the effective atomic number (25). We concluded that the 
nZeff of malignant breast lesions was higher than that of 
benign lesions. These differences may be due to the varying 
anatomical structures of malignant and benign lesions 
caused by the uneven density of breast cell components (1).  
The iodine concentration can be used to quantitatively 
reflect the vascularization of various tissues and local 
corresponding blood volume (6,26,27). New tumor vessels 

Figure 4 Important features (horizontal) in the mpDECT (vertical) model for predicting malignant and benign breast lesions. mpDECT, 
multiparametric dual-energy computed tomography; λHu, slope of the spectral Hounsfield unit curve; NIC, normalized iodine concentration; 
nZeff, normalized effective atomic number.

Table 3 Classification performance of mpDECT models using various models in the training and testing datasets

Model

AUROC Sensitivity Specificity F1 score

Training 
dataset

Testing  
dataset

Training  
dataset

Testing  
dataset

Training  
dataset

Testing  
dataset

Training  
dataset

Testing  
dataset

Logistic regression 0.88 0.86 0.87 0.92 0.92 0.82 0.88 0.91

XGBoost 0.99 0.93 0.95 0.72 0.97 1.00 0.96 0.75

SGD 0.93 0.92 0.85 0.92 0.92 0.82 0.87 0.91

LDA 0.96 0.94 0.91 0.89 0.92 0.94 0.92 0.90

AdaBoost 0.99 0.96 0.98 0.78 1.00 1.00 0.98 0.80

RF 0.98 0.95 0.97 0.79 0.97 1.00 0.97 0.82

Decision tree 0.93 0.83 0.94 0.89 0.92 0.76 0.94 0.87

Linear SVM 0.95 0.95 0.92 0.85 0.94 1.00 0.93 0.87

mpDECT, multiparametric dual-energy computed tomography; AUROC, area under the receiver operating characteristic curve; XGBoost, 
extreme gradient boosting; SGD, stochastic gradient descent; LDA, linear discriminant analysis; AdaBoost, adaptive boosting; RF, random 
forests; SVM, support vector machine.
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Figure 5 Radar plot illustrations of mean performance in the training and testing datasets to recognize the most stable learning model 
machine (with high accuracy and low variance) for predicting malignant and benign breast lesions. XGBoost, SGD, LDA, AdaBoost, RF, and 
linear SVM. XGBoost, extreme gradient boosting; SGD, stochastic gradient descent; LDA, linear discriminant analysis; AdaBoost, adaptive 
boosting; RF, random forest; SVM, support vector machine.

Figure 6 A boxplot illustration of the mean performance of various machine learning algorithms using five-fold CV in the training dataset 
to predict malignant and benign breast lesions. The AUROC was used as the classification metric. XGBoost, SGD, LDA, AdaBoost, RF, and 
linear SVM. CV, cross-validation; AUROC, area under the receiver operating characteristic curve; XGBoost, extreme gradient boosting; 
SGD, stochastic gradient descent; LDA, linear discriminant analysis; AdaBoost, adaptive boosting; RF, random forest; SVM, support vector 
machine.
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in malignant lesions usually contain immature microvessels, 
increasing blood flow within the tumor (28). We found 
that the NIC was higher in malignant breast lesions than 
in benign lesions, which is consistent with the findings of 
a recent study (29). This result might mean that malignant 
breast lesions have more underlying microvascular and 
tumor angiogenesis than benign lesions. λHu demonstrates 
the attenuation changes of the lesion when enhanced by 
a contrast agent; the faster the spectral curve changes, the 
higher the proportion of contrast agent in the lesions (30). 
From our results, we found that the venous phase λHu had 
the highest diagnostic value for differentiating between 
benign and malignant breast lesions. We obtained similar 

results to the most recent study (20), indicating that λHu was 
the best parameter for identifying metastatic sentinel lymph 
nodes in breast cancer.

RFE is  a  common integrated tool  with strong 
information feature search capabilities. This algorithm 
calculates and updates the importance level and eliminates 
the least important features (31). RF is a good candidate 
for integrating large amounts of omics data. It can often 
deal with high-dimensional-related problems, confirm the 
strong predictors of a specified outcome, and not require 
assumptions about the underlying model (22). However, 
high-dimensional datasets have a common problem: the 
existence of correlated predictors will affect RF’s ability 
to recognize the strongest predictors by reducing the 
estimated importance scores of relevant variables. The RFE 
algorithm incorporated with RF was the suggested solution, 
which presents a promising machine learning algorithm 
for medical imaging (22). Our study used this method and 
obtained a ranking of the importance of mpDECT features. 
Among them, six quantitative features were found to be 
important for accurately distinguishing between benign and 
malignant breast lesions.

In contrast to prior research (11), we used multiple 
quantitative parameters extracted from DECT. We 
extracted and calculated 12 features per lesion and used 
eight machine learning algorithms. We demonstrated 
that the AdaBoost classifier model was more stable than 
the other machine learning models and outperformed the 
conventional univariate analysis in differentiating between 
benign and malignant breast lesions. The AdaBoost method 
is different from the other seven data mining methods of 
the machine learning model. It first creates a group of weak 
classifiers by assigning appropriate extra weight to them 
and then combines them into a strong model. AdaBoost 
has unique advantages in accuracy rate and training time 
compared with other data mining methods (32). To the 
best of our knowledge, no research has evaluated the value 
of machine learning approaches in differentiating between 
benign and malignant breast lesions using mpDECT. The 
results of our study confirmed the robust performance of 
the AdaBoost model.

According to the National Comprehensive Cancer 
Network (NCCN) guidelines for breast cancer (33), chest 
diagnostic CT with contrast is routinely recommended 
in clinical stage I–IIb (if directed by signs or symptoms) 
and IIIa above breast cancer patients for screening lung 
metastases and other lesions. Primary breast lesions 
are also included in the screening field. This ‘one scan, 

Figure 7 A boxplot illustration of the mean performance of 
various machine learning algorithms using five-fold CV in the 
training dataset to predict malignant and benign breast lesions. 
The AUROC was used as the classification metric. XGBoost, 
SGD, LDA, AdaBoost, RF, and linear SVM. CV, cross-validation; 
AUROC, area under the receiver operating characteristic curve; 
XGBoost, extreme gradient boosting; SGD, stochastic gradient 
descent; LDA, linear discriminant analysis; AdaBoost, adaptive 
boosting; RF, random forest; SVM, support vector machine.
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many searches’ approach can provide information about 
lung lesions and provide additional DECT quantitative 
parameters of primary breast lesions to assist clinical 
diagnosis. Unfortunately, at present, the clinical value of 
DECT in breast cancer screening and diagnosis is relatively 
limited, and we are also looking forward to furthering 
research that explores the clinical value of DECT in breast 
cancer screening and diagnosis.

Our study has several limitations that should be noted. 
Firstly, this study was performed using one DECT device 
from a single institution. Secondly, the participants 
underwent thoracic DECT scans to evaluate the breast 
lesion stage and the presence of potential lung metastasis 
lesions or other potential lung lesions, which may be 
considered a selection bias. Finally, fewer participants with 
benign lesions were included, resulting in an imbalance 
in the sample size. It should be noted that most patients 
underwent DECT for breast cancer staging, while patients 
with benign breast tumors rarely underwent DECT. 
Therefore, few benign tumors were included in this study.

In conclusion, the performance of AdaBoost based 
on mpDECT was superior to that of the other machine 
learning models and conventional univariate analysis in 
differentiating between benign and malignant breast lesions. 
The combination of machine learning with mpDECT may 
provide valuable information for differential diagnoses 
to guide clinical treatment decisions. This is a key step in 
achieving precision medicine in breast cancer.
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Machine learning algorithm

Logistic regression models the conditional probability using a logistic function, which depends on the odds, based on 
the values of the independent variables. Logistic regression tries to minimize the negative log-likelihood of conditional 
probability via optimization algorithms. It is designed to find cumulative logistic distribution by measuring the relationship 
between one dependent and one or more independent variables (34).

Boosting algorithms change the training data distribution iteratively using a base classifier to predict the hard-to-classify 
exemplars. Boosting assigns a weight to each training exemplar, and they can be changed at the end of each round of boosting 
adaptively (35).

SGD is a method for unconstrained optimization problems that try to learn linear scoring by assigning weights and 
intercept parameters to minimize the loss function (36).

LDA finds a linear combination of attributes, which separates two or more classes by determining a subspace of lower 
dimension of the original data. Statistical measures, such as variance and mean, are used to determine separability. LDA 
maximizes the projected class means by minimizing the class variance in that direction by fitting a Gaussian density to each 
class with the assumption that all classes share the same covariance matrix (37).

RF are based on the concept of decision trees. A decision tree represents patterns and structures in the input data with 
hierarchical and sequential nodes that form tree-like structures. A decision tree comprises (I) internal nodes, (II) branches, 
and (III) terminal nodes. RF constructs many decision trees from a dataset, combines the results from all the trees, and makes 
a prediction with a majority vote (bootstrap aggregation) to make predictions on classification or regression (19).

Linear SVM is a classifier that finds a hyperplane based on the maximal margin rule to separate the data into two classes. 
It can be applied to linearly separable data sets and nonlinearly separable data sets using nonlinear kernels. The nonlinear 
data have to be transformed into a new linear space from its original coordinate space. Thus, in a new coordinate space, the 
linear decision boundaries could separate the sample data (38). The specific parameter setting of machine learning is shown in 
Figure S1.

In this study, the optimum ranking of the features based on their importance in the models was reported employing RFE. 
This method can select features by recursively considering smaller and smaller sets of features by training a classifier on 
the initial set of features and weights. Then, features with the absolute minimum weights are pruned from the current set 
features. By repeating this procedure, the desired optimum number of features with the maximum accuracy is identified.
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Figure S1 Specific parameters of machine learning
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Figure S2 ROC curves of univariate logistic regression model using mpDECT to predict malignant and benign breast lesions. (A) The NIC; 
(B) the nZeff; (C) the λHu; and (D) attenuation. ROC, receiver operating characteristic; mpDECT, multiparametric dual-energy computed 
tomography; NIC, normalized iodine concentration; nZeff, normalized effective atomic number; λHu, slope of the spectral Hounsfield unit 
curve; AUROC, area under the receiver operating characteristic curve.
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Figure S3 ROC curves of mpDECT model using logistic regression, XGBoost, SGD, LDA, RF, decision tree, and linear SVM classifier 
using five-fold CV in the prediction of malignant and benign breast lesions. (A) Five-fold CV; (B) training and testing dataset. ROC, 
receiver operating characteristic; mpDECT, multiparametric dual-energy computed tomography; XGBoost, extreme gradient boosting; 
SGD, stochastic gradient descent; LDA, linear discriminant analysis; AdaBoost, adaptive boosting; RF, random forest; SVM, support vector 
machine; CV, cross-validation; AUROC, area under the receiver operating characteristic curve.
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