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Introduction

Osteoarthritis is a debilitating and expensive joint disease 
that affects a large portion of the adult population 
worldwide (1). Currently, joint space narrowing as shown 
by a standing radiograph is the clinical gold standard 
for detecting osteoarthritis, but this does not allow for 
early detection or assessment of cartilage health. Imaging 
biomarkers may provide a way to detect joint diseases 
such as knee osteoarthritis at an early stage in a minimally 
invasive way.

Computed tomography (CT) and magnetic resonance 
imaging (MRI) have been used in various studies to 
detect morphology (2,3), structure (4,5), and content of 
molecules such as collagen and glycosaminoglycans (GAGs) 
in articular cartilage (6-8). Though MRI enables non-
invasive assessment of cartilage, some patients are not good 
candidates for MRI exams due to circumstances such as 
medical device implants, claustrophobia, or inability to 
stay motionless for long periods of time. In these cases, 
contrast enhanced CT, where an iodinated contrast agent is 
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injected intra-articularly into the joint, is an alternative to 
MRI for assessment of cartilage. In addition, because CT 
scans are generally faster and less expensive than MRI, they 
can be valuable for capturing instantaneous morphology of 
cartilage at multiple time points.

This ability is particularly useful for techniques such 
as weight bearing CT imaging of the knee (9,10), which 
aim to detect small morphological changes in soft tissues 
such as articular cartilage compression over time. New 
developments in motion correction (11-17) have enabled 
imaging of weight bearing subjects with higher image 
quality. Weight bearing CT has been used previously to 
detect joint space width (18,19), knee alignment (18,20), 
and features of osteoarthritis (21) in bones, but examples 
of measurement of soft tissue morphology in the knee are 
limited due to difficulties in segmenting soft tissues from 
CT images. In addition, new methods of assessing cartilage 
integrity using contrast agent diffusion are being developed 
(4,5,8,22-27). Reliable cartilage segmentation methods are 
required to ensure that areas of cartilage with increased 
attenuation due to contrast agent diffusion are included but 
that areas of similar attenuation where contrast agent has 
mixed with synovial fluid are excluded. Bone can be readily 
segmented from CT images without any contrast agent 
present (28), but cartilage, which can only be segmented  
in vivo in the presence of a contrast agent, is more difficult. 
Cartilage boundaries are clearest immediately after contrast 
injection. However, as contrast diffuses into the cartilage 
and with successive physiologic clearance of the contrast 
agent out of the joint, the sharp boundary between the 
cartilage and the surrounding fluid begins to blur over 
time. Clearance of the contrast agent out of the joint space 
reduces image contrast between the bone, iodine, and 
cartilage, making differentiation between tissues more 
challenging. If manual or threshold-based segmentation 
only identifies cartilage regions with minimal attenuation, 
the segmented cartilage morphology will be inaccurate 
due to exclusion of superficial tissue that contains diffused 
contrast agent. This is an important limitation as many 
studies assessing cartilage integrity using CT often use time-
delayed images, or images taken up to 45 minutes after the 
initial injection (4,22). In addition, the ideal time between 
injection and CT imaging can vary between joints (29),  
is application-dependent, and cannot be predicted in 
advance due to patient variability, which could be a source 
of error in any cartilage morphology observations or 
calculation of other quantitative metrics following imaging.

Previous studies have validated or used cartilage 

segmentations from CT arthrography datasets, however 
these studies used manual or semi-automated segmentation 
methods which did not take diffusion into account and/
or were not described in detail (4,23,24,30). Other similar 
methods (31) have been reported with promising results, 
but have not yet been validated against a ground truth 
measurement. In addition, segmentation methods are often 
validated using volume metrics (30) such as differences in 
total volume and Dice’s coefficient, which are sufficient for 
computing quantitative parameters in a specific area of an 
image, but insufficient when trying to assess local cartilage 
surface morphology with precision over multiple scan time 
points. For potential applications such as tracking cartilage 
strain over time in CT arthrograms, detection of small 
changes in the cartilage surface location that do not have 
large effects on cartilage volume measurements is critical. 
As a result, this application requires a precise segmentation 
technique designed to detect the cartilage surface in a very 
specific area of the joint where there is contact between soft 
tissues.

The goal of this study was to assess the utility of a 
watershed algorithm for the repeated measurement of 
cartilage surface location over time following contrast 
injection into bovine stifle joints. A watershed algorithm 
treats intensity of grayscale images as topology and picks up 
“basins”, areas of continuous low attenuation, and “ridges”, 
areas of local maximum attenuation. We consequently 
hypothesize that a watershed algorithm would be useful for 
our study as it picks up local maxima (ridges) in the datasets, 
and these maxima would be on the boundary of the cartilage 
surface. In areas where soft tissues are in contact with each 
other, such as cartilage-meniscus or cartilage-cartilage 
contact areas, there is no pool of highly concentrated 
contrast outside the tissues. Therefore, the surface layer of 
both tissues that contrast has diffused into is an area of local 
maximum attenuation.

Methods

Three immature bovine stifle joints were purchased from 
a local butcher. Joints were first scanned using a Siemens 
Artis Zeego CT scanner without any contrast injected 
into the joint. Following the non-contrast scan, 40 mL of 
50% iohexol contrast medium (350 mg iodine/mL), 50% 
phosphate buffered saline (PBS) was injected into the joint 
capsule. The joints were then manually articulated for 1 
minute before being scanned in the supine position at 3, 8, 
18, and 33 minutes after the end of the contrast injection. 
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Tibias were then extracted from the joints and scanned ex 
situ to capture the cartilage surface, a method shown to 
provide accurate morphology data (32). In this experiment, 
the surface layers of cartilage had contrast agent in them 
from the previous arthrographic scans, which increased 
contrast between the cartilage and the surrounding air 
and increased ease of segmentation. The experimental 
protocol is summarized in Figure 1. All scans were acquired 
in 19 seconds at 81 kVp with 496 projections. Images were 
reconstructed to a 0.2 mm isotropic voxel size using the 
scanner’s reconstruction software.

The image processing procedure, described below, is 
summarized in Figure 2. All CT images were registered 
to the non-contrast in situ scan in Amira 6.3 (v6.3, FEI, 
Hillsboro, OR) using a mutual information algorithm. 
The images were then converted to 8-bit in Fiji (33). A 
2D watershed algorithm (34,35) was applied to the in situ 
contrast scans in Fiji in the sagittal plane. The parameters 
of the watershed algorithm were: 3.0 pixel gaussian blur 
radius, dark objects/bright background, 4-connected, 
0 minimum gray level, and 255 maximum gray level. 

Dam lines were overlaid on to the images. Cartilage was 
segmented manually in Amira from all in situ contrast scans 
by selecting voxels along the dam lines that appeared to be 
on the cartilage surface in the sagittal plane for every slice 
of the images containing cartilage. During segmentation, 
a threshold was applied to the image so that only voxels 
on the watershed line could be selected and added to 
the segmentation. After all slices were segmented, the 
segmentations were dilated by 1 voxel in each direction 
in 3D and imported into MATLAB (r2016a, Mathworks, 
Natick, MA, USA) for postprocessing. The median voxel 
in the axial direction was selected for each scan if there was 
more than 1 voxel in the axial direction at any point on the 
transverse plane in the segmentation, with axial defined 
as along the axis of the reconstructed images closest to 
normal to the diaphysis of the tibia. If the median of the 
axial direction voxels was between two adjacent voxels, the 
most inferior voxel was chosen. This was done to repeatably 
fill any 1–2 voxel wide gaps left in the segmentation where 
there were no watershed lines to follow, and to allow 
information from adjacent slices to inform segmentations of 

Figure 1 Image acquisition procedure. Images were taken first of the bovine stifle joint without contrast injection, then 3, 8, 18, and 33 
minutes after injection. The tibia was then extracted and re-imaged.

Figure 2 Segmentation and image processing procedure. The initial in situ image taken before contrast injection was thresholded to 
segment the tibia. Watershed dam lines were applied to all in situ images taken after contrast injection in the sagittal plane. These images 
were segmented by following the applied watershed dam lines. Segmentations were dilated in 3D to fill any segmentation gaps where there 
were no watershed dam lines to follow. The median voxel in the axial direction was selected from the dilated initial segmentations to form 
the final segmentation. The image taken of the extracted tibia was segmented by thresholding to separate the tibia and soft tissues from the 
surrounding air.
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a given slice in the sagittal plane. The extracted tibia scans 
and the in situ scan without contrast were segmented in 
Amira by thresholding so that voxels including air and soft 
tissue, respectively, were not included in the segmentation. 
These segmentations are referred to as the reference 
segmentation and bone segmentation, respectively, 
throughout the paper. All segmentations were trimmed in 
MATLAB so that they did not extend past the tibial plateau 
surface in the transverse plane.

Binary segmentations of all cartilage and bone surfaces 
were analyzed using a custom Python 3 script. Surface point 
coordinates were extracted from binary segmentations. 
Cartilage thickness was calculated by finding the point 
on the bone surface closest to each cartilage point 
and taking the distance between the two points as the 
cartilage thickness. Differences in the Z (direction in the 
reconstruction closest to being aligned with the shaft of the 
femur) coordinate (∆z) between watershed segmentations 
and the reference segmentation were calculated for each 
point on the transverse (XY) plane. Differences in thickness 
(∆t) between the watershed segmentations and the reference 
segmentation were calculated by subtracting the cartilage 
thickness calculated at the corresponding point on the 
transverse plane of the reference segmentation from the 
thickness calculated at each point on the transverse plane of 
the watershed segmentation. Thickness maps, Z-coordinate 
difference (∆z) maps, and thickness difference (∆t) maps 
were calculated for all datasets. Histograms were calculated 
for ∆z and ∆t with 1-voxel (0.2 mm) wide bins. 

Linear regression was used to analyze the relationship 
between cart i lage  th ickness  based on watershed 
segmentations and actual cartilage thickness. Dice’s 
coefficients were calculated to compare the volume of 
watershed segmentations to the thresholded cartilage 
segmentation in areas where cartilage could be segmented 
using the watershed algorithm. This was done by excluding 
all voxels on the reference segmentation for which there 
was not a point at the same location on the transverse plane 
in the watershed segmentation from the calculation. Dice’s 
coefficient (DSC) was calculated by applying Equation 
1 to points in between and including the segmented 
cartilage surface and segmented bone surface for cartilage 
segmentation points that the reference and watershed 
segmentation had in common in the transverse plane:

 
 2

   
X Y

DSC
X Y

=
+
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where X and Y are voxels between the cartilage surface and 
bone surface for the watershed and reference segmentations, 
respectively, |X⋂Y| represents the number of voxels the 
reference and watershed segmentation have in common, 
and |X| and |Y| represent the number of voxels in the 
watershed and reference segmentations, respectively.

Results

Cartilage thickness (Figure 3) in the area above the tibial 
plateau bone surface, which was the region of interest for 
this analysis, varied from less than 1mm in the thinnest areas 
to 8 mm in the thickest areas. Thickness maps (Figure 4)  
show that the as time went on and the contrast agent 
redistributed and diffused in the joint space, fewer voxels 
could be segmented. This is quantified in Figure 5.

The ability to segment did not appear to depend on the 
cartilage thickness, but rather on the location in the joint 
space and the contrast agent distribution in the joint. This 
is evident from the observation that segmented regions 
shrank over time, but calculated cartilage thickness ranges 
stayed similar. When the contrast agent concentration 
dropped below the level where it was visible when images 
were converted to 8-bit per the watershed algorithm 
requirements, the watershed dam lines no longer reflected 
the cartilage surface location. In areas where this effect was 
obvious, affected voxels were not segmented. In areas where 
contrast concentration was low in the first scan, voxels were 
less likely to be segmented in scans taken at later time points.

Voxels that could be segmented throughout all time 

Figure 3 Representative cartilage thickness map based on a scan 
of the extracted tibia, superior view. Cartilage thickness ranged 
from less than 1 to 8 mm over the area of interest, which was the 
cartilage directly superior to the bone surface of the tibial plateau.
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Figure 4 Representative thickness maps for scans taken 3–33 minutes after iohexol injection, superior view. The entire cartilage surface 
could not be segmented at the 3-minute time point. The area that could be segmented using the watershed algorithm was less over time due 
to diffusion of the contrast agent into the joint tissues and the resulting concentration reduction in the joint space. General trends match the 
reference thickness, however there are identifiable areas with errors.

Figure 5 Relationship between voxels segmented and time after injection. Numbers shown are for the sum of all scans of all 3 tibias. The number 
of voxels that could be segmented was lower at later time points because the contrast agent became more diffuse in the joint space and in the 
cartilage. When this occurred, the cartilage boundaries either blurred or did not have sufficient contrast to differentiate from the joint space.
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points appeared to be close in z-location (Figure 6) and 
calculated thickness (Figure 7) over time, however there 
were variations of up to 0.8 mm in some discrete areas of 
the cartilage. The locations of these areas did not appear 
to be anatomy- or thickness-dependent. Figure 8 shows 
examples of areas where segmentations matched or did 
not match actual thickness measurements. Segmentations 
were best in areas where there was a visible line of contrast 
between two tissues in direct contact, as seen in Figure 8A.  
Large pools of contrast, or areas where there was a 
relatively thick layer of contrast in between two tissues, 
caused overestimation of cartilage thickness because the 
local maximum attenuation was no longer at the cartilage 
surface, as seen in Figure 8B,8D. Transition areas between 

direct tissue contact, in this case cartilage and meniscus, 
and no direct contact also caused errors in thickness 
measurement, as seen in Figure 8C. There were areas 
where the watershed lines picked up a cartilage boundary 
in a relatively low attenuation area that could not be clearly 
segmented using an unguided manual segmentation. This 
is one of the advantages of using such an algorithm for 
guidance. Areas where errors occurred were consistent for 
all time points up to 33 minutes.

Overall, 60.8% of cartilage voxels segmented from the 
arthrograms were within 1 voxel in the axial direction of 
their location on the reference scan. 77.2% of cartilage 
thickness measurements made on the arthrogram scans 
were within 0.2 mm (1 voxel) of the thickness calculated 

Figure 6 Representative z-coordinate difference (∆z) maps for scans taken 3–33 minutes after iohexol injection, superior view. Differences 
between the reference segmentation and watershed segmentation were mostly positive and up to 5 voxels in magnitude. The errors 
happened in discrete areas that are not related to cartilage thickness or anatomy.
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Figure 7 Representative thickness difference (∆t) maps for scans taken 3-33 minutes after iohexol injection, superior view. Because of the 
nearest neighbor method of calculating cartilage thickness, when the segmented voxel changed, the nearest point on the bone could also 
change, so there is not a 1:1 correlation between segmentation changes and thickness changes. Thickness differences were up to 0.7 mm in 
magnitude and, as with segmentation differences, occurred in discrete areas of the cartilage that were not related to anatomy or cartilage 
thickness.

for the corresponding point on the reference scan using 
the nearest neighbor thickness calculation method. The 
histogram in Figure 9 shows a 1 voxel bias in the positive 
axial direction for the watershed segmentation. As a result, 
calculated cartilage thickness (Figure 10) was greater than 
actual cartilage thickness. Quantitative analysis shows that, 
over time, there was a slight decrease in the number of 
voxels segmented that were within 1 voxel of the reference 
segmentation (Figure 11). This resulted in a corresponding 
slight increase in ∆t between the arthrogram segmentations 
and reference segmentations, as shown by slight widening 
of the distribution (Figure 12).

Linear regression analysis (Figure 13, Table 1) showed 
increased inaccuracy at low cartilage thicknesses (Figure 14).  
Correlation coefficients ranged from R2=0.82–0.97 for 
individual scans and decreased from R2=0.93 to R2=0.88 
over the course of the 30 minutes between the first and 
last post injection scans. This is reflective of the widening 
error distribution over time observed in Figure 12. Overall, 
when points from all scan times and all tibias were included 
in the regression analysis, R2=0.83. DSC for segmented 
areas of the arthrograms ranged from 0.91 to 0.95 (Table 2).  
There were no significant differences between DSC of 
dataset segmentations done at different time points.
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Figure 8 Examples of segmentation artifacts introduced by the watershed algorithm. Red voxels represent segmentations done at the 3-minute 
time point. Blue voxels represent the threshold-based segmentation of the extracted tibia. Image (A) is a good representation of when this 
segmentation method works, which is at moderate attenuation with clear contact between soft tissues. Images (B-D) show examples of areas 
where contrast can collect and cause a high attenuation area right outside the cartilage surface. This causes a plateau rather than a local 
maximum near the cartilage surface and leads to overestimation of thickness when the watershed algorithm is used for segmentation.

Figure 9 Histogram for z-coordinate difference (∆z) at each post-
injection time point for all 3 tibias. Overall, there was a 1 voxel bias 
in the superior direction in the segmentations.

Figure 10 Histogram for thickness difference (∆t) at each post-
injection time point for all 3 tibias. The calculated thickness bias 
due to segmentation error was predominantly in the range of 
+0–0.2 mm.
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Discussion

When a contrast solution is injected into a joint, it 
immediately starts diffusing into the soft tissues within the 
joint (36,37). This causes cartilage to appear thinner than 
it actually is when thresholding-based algorithms are used 
for segmentation (38), and the magnitude of this error is 
expected to increase with the time between injection and 
scanning. The watershed algorithm proved to be fairly 

robust to this artifact, and despite visible blurring in the 
images over time, the segmentations using the watershed 
algorithm gave consistent thickness measurements in areas 
that could be segmented. This is important for contrast 
enhanced CT studies that involve analyzing cartilage 
morphology, and ensures that any observed morphology 
changes are due to actual changes in cartilage geometry, 
not the effects of diffusion or physiologic clearance of the 
contrast agent from the joint due to different post-injection 
scan times. This technique would also be ideal for tracking 
cartilage compression due to load bearing. In contrast to 
methods such as active contours and statistical models, a 
watershed segmentation approach does not require any 
assumptions or prior knowledge about the shape of the 
cartilage, and can therefore pick up irregularities such as 
compression patterns.

Though cartilage thickness measurements were 
consistent over time, the number of voxels that could be 
segmented went down as contrast diffused into a larger 
area and as a result became more diluted in the joint space. 
In practice, the limiting factor in comparing cartilage 
morphology across time points would be the last scan, where 
40% fewer voxels could be segmented than at the first time 
point. In this study, due to the use of ex vivo bovine joints, 
the contrast agent diffused into surrounding joint tissues. In 
vivo, there is physiologic clearance in addition to diffusion, 
which may further reduce the contrast agent concentration, 

Figure 11 Z-coordinate difference (∆z) for each voxel on the 
transverse plane, shown for all tibias at each time point as a 
percentage. There was approximately a positive 1 voxel bias in 
the superior direction in segmentations. The percentage of voxels 
within 1 voxel of the reference segmentation went down over time.

Figure 12 Thickness difference (∆t), shown for all scans at each 
time point as a percentage. The percentage of voxels within 1 voxel 
length (0.2 mm) of the reference scan thickness fell slightly over 
time.

Figure 13 Best fit linear regression plots for all scans of all 
tibias. There was good correlation between the reference 
cartilage thickness and thickness calculated using the watershed 
segmentations.
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Table 1 Linear regression slopes (m), offsets in mm (b), and correlation coefficients (R2) for individual scans, each time point for all tibias, and 
overall for all scans. Correlation coefficients and the slope of the best fit lines dropped slightly over time, which could be a reflection of slightly 
reduced segmentation accuracy

Scan
Tibia 1 Tibia 2 Tibia 3 Overall

m b R2 m b R2 m b R2 m b R2

3 min 0.81 0.40 0.89 0.89 0.45 0.97 0.94 0.36 0.90 0.91 0.36 0.93

8 min 0.84 0.37 0.88 0.93 0.36 0.96 0.90 0.40 0.87 0.92 0.34 0.92

18 min 0.81 0.40 0.87 0.88 0.42 0.95 0.85 0.47 0.83 0.88 0.41 0.91

33 min 0.85 0.32 0.92 0.84 0.46 0.93 0.84 0.45 0.82 0.85 0.41 0.88

Overall 0.90 0.37 0.91

Table 2 Dice’s coefficient (DSC) calculated for segmented areas 
of each scan and averages for each time point. Though the DSCs 
are high, a 1 voxel bias could mean a difference of 4% to 30%  
thickness error depending on the area of the cartilage the  
segmentation is applied to. In addition, inclusion of non-cartilage 
voxels could adversely affect biomarkers calculated from computed 
tomography (CT) attenuation

Variable 3 min 8 min 18 min 33 min

Tibia 1 0.95 0.95 0.94 0.95

Tibia 2 0.94 0.94 0.94 0.92

Tibia 3 0.93 0.93 0.92 0.93

Mean 0.94 0.94 0.93 0.93

SD 0.01 0.01 0.01 0.01

Figure 14 Overall linear regression best fit lines for each post-
injection scan time point. Overall, best fit lines at each time point 
were similar. The positive bias in thickness calculation shows up 
on this plot in the form of a positive offset. This is an indication 
that calculated thickness errors are not correlated with cartilage 
thickness.

and as a result the attenuation, image contrast, and number 
of voxels that can be segmented accurately as time elapses 
between injection and imaging. Therefore, though this 
technique could be used to make comparisons over time, 
the time scales it can be used for are somewhat limited.

Knowledge that local peak attenuation coincides with 
the cartilage surface could be leveraged to develop an 
automated cartilage surface detection algorithm. Such an 
algorithm would need to identify the cartilage surface as the 
local maximum in appropriate areas between input tibia and 
femur segmentations, such as areas of cartilage/cartilage 
or cartilage/meniscus contact, potentially adjust to an 
algorithm such as a half maximum (31) in areas where there 

is a contrast pool adjacent to the cartilage surface, and make 
use of machine learning methods for areas of uncertainty. 
Simulation of contrast agent diffusion into the cartilage 
may be helpful in determining the correct adjustments to 
make to locate cartilage boundaries in areas where there is 
contrast agent pooling as well. The segmentation method 
used in this study did not allow users to select voxels that 
were not on an automatically generated watershed line 
representing a local attenuation peak. Now that it has been 
verified that these local peak attenuation points coincide 
with the cartilage surface, an algorithm could be developed 
to detect peak attenuation points between the femur and 
tibia, and therefore the cartilage surface, automatically. This 
potential for automation is the power of the methods used 
in this study, and could enable an efficient image processing 
pipeline for tracking cartilage morphology over time in 
weight bearing scans.

For maximum achievable segmentation accuracy, 
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it would be ideal to modify experiments and clinical 
protocols to prevent pooling of the contrast agent in 
arthrograms used to assess cartilage morphology. Contrast 
agent injection volume and concentration, as well as time 
between injection and imaging, should be carefully chosen 
to balance minimizing errors related to diffusion, contrast 
agent clearance, and contrast agent pooling discussed above 
with being able to see accurate cartilage morphology in 
the largest area possible. In addition, a negatively charged 
ionic contrast agent could be helpful because it would not 
diffuse as much as the neutral one used in this experiment 
due to repulsion between the negative ions in the contrast 
agent and the negatively charged GAG molecules in the 
cartilage. Additional joint articulation could help to more 
evenly distribute contrast throughout the joint so that most 
of the cartilage can be segmented. The bovine legs used in 
this experiment do not articulate easily and have a limited 
range of motion, so spreading contrast through the joint 
if it was not distributed well after the original injection 
was a challenge. This affected contrast agent distribution, 
which in turn affected how many voxels could be segmented 
from the first scan using the watershed algorithm and how 
many fewer voxels could be segmented from later scans. 
For example, if there was very little contrast in an area 
of the joint in the first scan, then the contrast got fainter 
in later scans to the point where the watershed lines no 
longer resembled the cartilage surface. Likewise, if contrast 
collected in high concentration in an area during injection, 
and lack of joint mobility prevents it from redistributing 
during articulation, it would cause overestimation of 
cartilage thickness in some places and inability to segment 
due to the lack of a local maximum near the cartilage 
surface.

Linear regression analysis showed that segmentation 
errors were offset dominated, and as a result, larger where 
cartilage was thinner. R2 values were high and showed 
strong correlation between cartilage thickness measured 
from segmentations and validation scans. For all time 
points, the majority of thickness measurements were within 
1 voxel of the validation scan. At the resolution of these 
datasets, this corresponds to a thickness error of 6–20% for 
cartilage 1–3 mm thick. Expected cartilage thickness of the 
population being scanned and the required accuracy and 
precision of the experiment should be taken into account 
when considering using arthrography to track cartilage 
morphology over time.

DSC of the cartilage segmentations did not differ 
significantly for all time points across scans. This could 

be an indication that the cartilage segmentations are of 
sufficient quality to make comparisons across time. On 
the other hand, histograms showing segmentation error  
(Figures 9,10) indicate that this method does still have 
error in the surface regions. The images in Figure 8 further 
support that, despite high DSC, segmentations can still 
deviate from actual surface geometry significantly. The 
discrepancy between DSC and accurate surface geometry 
increases with the volume of the segmented area. This 
must be considered when making image-based morphology 
measurements that require precise surface geometry. For 
applications such as cartilage strain measurement, the  
1 voxel error in surface measurement could correspond to 
over 20% strain computation error in some areas of the 
cartilage. For diffusion measurements, inclusion of voxels 
that are mostly fluid would likely increase the calculated 
diffusion coefficient of the cartilage. For these applications, 
average surface distance could be a better choice than 
DSC for evaluating overall segmentation accuracy, and 
histograms could be useful to establish how many voxels are 
within a specific required accuracy range.

Segmentation errors happen primarily because of contrast 
agent collecting in areas directly adjacent to the cartilage 
surface. In areas where tissues were in direct contact, 
segmentations were accurate because the local maximum 
corresponded to the small, contrast agent containing fluid 
layer between the tissues, which was also the cartilage 
surface. In areas where there was not direct contact between 
tissues, the cartilage surface was no longer the local 
maximum. Rather, there was a plateau in attenuation outside 
the cartilage surface due to a contrast pool. This caused 
overestimation of cartilage thickness in those areas.

Multiple studies have shown that arthrograms or even 
the diffusion artifact itself have potential to be imaging 
biomarkers for early signs of cartilage degradation (39-42).  
Being able to reliably segment images that include some 
diffusion of contrast into the joint space could enable the 
use of these biomarkers in vivo. If the cartilage surface 
cannot be identified, the amount of contrast agent diffusing 
in the cartilage will not be quantified correctly. This, in 
turn, will lead to inaccurate diffusivity or contrast agent 
partition calculations. Segmentation methods such as the 
one discussed here can help ensure that contrast diffusion 
does not change the apparent surface location in the 
image. If used with a registration algorithm to prevent any 
artifacts related to patient motion, the cartilage surface can 
be reliably identified across scans and metrics that require 
multiple scan time points, such as diffusivity or strain rates 
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under load, can be quantified accurately.
Though MRI has been shown to be more sensitive 

in lesion detection than CT arthrography (43), CT 
arthrography is still used as a primary diagnostic in 
situations where cost, medical device implants, tattoos, 
time constraints, or various other circumstances make it a 
better choice. In addition, delayed protocols can provide 
comparable information to contrast enhanced MRI, which 
has been shown to provide information about cartilage 
integrity (22), and correlates with EPIC-µCT, a common 
method used to assess cartilage in small animal models (24). 
Segmentation methods such as the one described above, 
when automated, have the potential to make analysis of CT 
data more robust, especially given the changing contrast 
agent distribution in the joint over time. This could lead 
to better CT-based biomarkers, and a wider variety of 
diagnostics to assess patients’ cartilage health and detect 
potential diseases early on.

Conclusions

Following watershed dam lines shows promise as a technique 
for precisely identifying the cartilage surface in areas where 
soft tissues are in contact with each other for contrast 
enhanced CT data in the bovine stifle. This technique 
could enable detection of small changes in the cartilage 
surface, and measurements such as compressive strain, over 
multiple scan time points. Pooling of contrast agent does 
cause predictable inaccuracies, and segmentations could 
potentially be done in a way that corrects for it to decrease 
error. This method, because it is based on an automated 
algorithm, has the potential to be automated in the future by 
developing an algorithm which locates the area of interest 
based on femur and tibia segmentations, and picks the 
correct peak attenuation point between the two bones. This 
could be informed by experimentation on contrast agent 
diffusion patterns in cartilage. Experimental parameters such 
as contrast agent concentration, volume of contrast injected, 
and articulation time may be able to be changed to enable 
better segmentation using this method as well.
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