
© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(1):653-674 | https://dx.doi.org/10.21037/qims-21-441

Original Article

One half-scan dual-energy CT imaging using the Dual-domain 
Dual-way Estimated Network (DoDa-Net) model

Yizhong Wang, Ailong Cai, Ningning Liang, Xiaohuan Yu, Xinyi Zhong, Lei Li, Bin Yan

Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China

Contributions: (I) Conception and design: Y Wang, L Li; (II) Administrative support: B Yan; (III) Provision of study materials or patients: N Liang; 

(IV) Collection and assembly of data: X Yu, X Zhong; (V) Data analysis and interpretation: Y Wang, A Cai; (VI) Manuscript writing: All authors; (VII) 

Final approval of manuscript: All authors.

Correspondence to: Lei Li. Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering 

University, Zhengzhou, China. Email: leehotline@163.com.

Background: Compared with single-energy computed tomography (CT), dual-energy CT (DECT) can 
distinguish materials better. However, most DECT reconstruction theories require two full-scan projection 
datasets of different energies, and this requirement is hard to meet, especially for cases where a physical 
blockage disables a full circular rotation. Thus, it is critical to relax the requirements of data acquisition to 
promote the application of DECT.
Methods: A flexible one half-scan DECT scheme is proposed, which acquires two projection datasets on 
two-quarter arcs (one for each energy). The limited-angle problem of the one half-scan DECT scheme can 
be solved by a reconstruction method. Thus, a dual-domain dual-way estimation network called DoDa-
Net is proposed by utilizing the ability of deep learning in non-linear mapping. Specifically, the dual-way 
mapping Generative Adversarial Network (DM-GAN) was first designed to mine the relationship between 
two different energy projection data. Two half-scan projection datasets were obtained, the data of which 
was twice that of the original projection dataset. Furthermore, the data transformation from the projection 
domain to the image domain was realized by the total variation (TV)-based method. In addition, the image 
processing network (Im-Net) was employed to optimize the image domain data.
Results: The proposed method was applied to a digital phantom and real anthropomorphic head phantom 
data to verify its effectiveness. The reconstruction results of the real data are encouraging and prove the 
proposed method’s ability to suppress noise while preserving image details. Also, the experiments conducted 
on simulated data show that the proposed method obtains the closest results to the ground truth among the 
comparison methods. For low- and high-energy reconstruction, the peak signal-to-noise ratio (PSNR) of 
the proposed method is as high as 40.3899 and 40.5573 dB, while the PSNR of other methods is lower than 
36.5200 dB. Compared with FBP, TV, and other GAN-based methods, the proposed method reduces root 
mean square error (RMSE) by, respectively, 0.0124, 0.0037, and 0.0016 for low-energy reconstruction, and 
0.0102, 0.0028, and 0.0015 for high-energy reconstruction.
Conclusions: The developed DoDa-Net model for the proposed one half-scan DECT scheme consists 
of two stages. In stage one, DM-GAN is used to realize the dual map of projection data. In stage two, the 
TV-based method is employed to transform the data from the projection domain to the image domain. 
Furthermore, the reconstructed image is processed by the Im-Net. According to the experimental results of 
qualitative and quantitative evaluation, the proposed method has advantages in detail preservation, indicating 
the potential of the proposed method in one half-scan DECT reconstruction.
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Introduction

Dual-energy computed tomography (DECT) has been 
widely applied in different fields, including industrial non-
destructive testing (1), clinical medical diagnosis (2-4), and 
safety inspections (5,6). Compared with traditional single-
energy CT, DECT can explore the interdependence of 
X-ray attenuation and photon energy and thus has a greater 
ability to identify substances (7).

Three DECT systems for commercial use have been 
developed (8): sequential acquisition, rapid voltage 
switching, and dual-source CT. The sequential acquisition 
system requires the least hardware effort and involves the 
sequential acquisition of two datasets at different tube 
voltages, but the disadvantages are long acquisition time 
and high radiation dose. The rapid voltage switching 
system uses a control device to alternate the tube voltage 
between a high value and a low value and collects two 
transmission datasets for each projection. However, the 
important disadvantage of this method is the limited photon 
output at low voltage, which leads to high noise. Another 
system is dual-source CT with two tubes operating at 
different voltages, which requires nearly twice the hardware 
investment. In this paper, a flexible DECT imaging scheme 
was designed to reduce the total radiation dose's hardware 
cost. As shown in Figure 1, the X-ray tube is adjusted to 
change the tube voltage at a 90° angle and obtain the 
projection dataset of two quarter scans at a high- and low-
energy spectrum. This DECT is referred to as one half-
scan DECT, and it can be performed on traditional CT 
scanning equipment, requiring only one source/detector 
pair. Also, an effective method to relax the data acquisition 
requirements of DECT by using the correlation between 
two different X-ray energies is proposed in this paper.

The DECT system is generally considered an imaging 
system that utilizes two effective X-ray spectrums to obtain 
projection data and performs material decomposition. The 
existing DECT reconstruction methods can be divided 
into three categories: one-step reconstruction (9,10), two-
step reconstruction based on projection domain (11,12), 
and image domain (13,14). For the conventional methods 
of these approaches, high-quality DECT reconstruction 
images all require a full-angle projection dataset (15,16). 

The missing scanning angles in the two different energies 
may disturb the material decomposition, resulting in the 
distortion of the decomposition results. Thus, developing 
methods to obtain high-quality DECT images without a 
full-angle projection dataset has become a research hotspot.

Recently, various methods have been proposed to 
improve DECT images in the case of each energy without 
full-angle scanning, including software-based (17,18) 
and hardware-based methods. As for the software-based 
method, Shen et al. proposed a segmental scanning 
imaging method to realize multi-energy CT imaging on 
traditional CT systems (19). As for the hardware-based 
method, Petrongolo et al. used a grid plate to modulate 
and filter the X-ray energy spectrum and proposed a 
primary modulation dual-energy sparse-view projection 
data reconstruction method (20). The above methods have 
produced beneficial effects for DECT, but the total scan 
angle of the multi-energy imaging still needs to perform 
a full-angle scan of the circumference, which is invalid in 
the imaging scheme without full-angle scanning. To solve 
this problem, Zhang and Xing proposed a joint clustering 
prior sparsity regularization (CPSR) model, which exploits 
the coherence of all the data at different energies to address 
the limited-angle reconstruction problem (21). Zhang et al. 
subsequently proposed a reconstruction method based on 
the image domain with a half-scan plus a second limited-
angle scan (22). Although these methods help to improve 
the quality of DECT images without full-angle scanning, 
the reconstruction results may lose some details.

Recently, deep learning (DL) technology has been 
extensively used in CT imaging due to its non-linear 
feature extraction and modeling capabilities (23-27). In 
the field of material decomposition, researchers have 
tried to apply DL to DECT to solve the problem of noise 
amplification in material decomposition (28,29). Clark 
et al. used the existing U-Net (30) architecture to obtain 
good material decomposition performance (31). In 2019, 
Zhang et al. used DL to solve the ill-posed solution of the 
material decomposition model and developed a model-
based butterfly network to decompose DECT in the image 
domain (32). DL has mainly been used for normal-dose 
DECT in these methods, and low-dose or incomplete-angle 
DECT has not been investigated. In 2020, we conducted 
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a preliminary study of the one half-scan DECT scheme 
and obtained good DECT image quality by using the 
Generative Adversarial Network (GAN) method to process 
projection domain data (33). However, the method ignores 
image domain information and the correlation between low- 
and high-energy projection domain information. Recently, 
Zhang et al. used the redundancy of projection and image 
domain (dual-domain) data to propose a comprehensive 
domain network for the problem of DECT sparse-view 
reconstruction, which improved the image quality of DECT 
imaging (34). This means that the dual-domain DL method 
has the potential to solve the problem of incomplete-angle 
DECT. Inspired by these ideas, the proposed method in 
this paper aims to solve the limitations of our previous work 
(the details of the proposed method are described in section 
Methods). 

The main challenges of the one half-scan DECT 
reconstruction are as follows. First, an unreliable solution 
can be obtained by using standard CT reconstruction 
methods on the projection data collected by the one half-
scan DECT, and there are usually serious artifacts in 
the reconstruction image. Second, the small changes of 
the original projection data can significantly impact the 
reconstruction image quality. To overcome these challenges, 
an efficient method is proposed in this study to solve the 
one half-scan DECT scheme by simultaneously exploring 
the relationship between different energy data and applying 
DL to non-linear mapping. Inspired by CycleGAN (35,36), 

a novel dual-way mapping GAN model called DM-GAN is 
proposed. The cycle-consistent structure design of the DM-
GAN enables the network to learn the mapping relationship 
between low- and high-energy projection datasets.

Moreover, the projection domain loss may also play 
an important role in this task. The projection domain 
loss requires paired training data, which is different from 
common unsupervised methods (such as CycleGAN). Then, 
the trained neural network is exploited to estimate the 
projection data with two different energies. Based on this, 
two half-scan projection datasets with two different energies 
can be obtained, which are twice the size of the original 
projection datasets. Subsequently, the total variation (TV)-
based method (37) is exploited to realize the data translation 
from the projection domain to the image domain. Finally, 
an image processing network (Im-Net) is adopted to 
eliminate the artifacts caused by the small inconsistency 
in the projection generated by DM-GAN. Following the 
two stages, the end-to-end network for mapping from the 
projection domain to the image domain is obtained, which 
has advantages in exploring the mapping relationship 
between different energy projection data by DM-GAN 
and considering the projection error and image error in 
the process of DM-GAN and Im-Net supervision training. 
The evaluation results indicate that the proposed method 
can solve the one half-scan DECT reconstruction problem, 
effectively suppressing the artifacts of the reconstruction 
image and ensuring the accuracy of material decomposition. 
The dual-domain dual-way estimation network is referred 
to as DoDa-Net in this paper. 

We present the following article following the MDAR 
checklist (available at https://dx.doi.org/10.21037/qims-21-441). 

Methods

Reconstruction algorithm and angular sampling strategy

The mathematical model of CT imaging for reconstructing 
images  from project ion data  can be represented 
approximately by the following discrete linear equations:

 s s sp A u=
 

,	 [1]

where   U VN N
sp ∈ ,   U V W HN N N N

sA ×∈ ,  and   W HN N
su ∈  

denote the projection data, the system matrix, and the 
discrete CT image (linear attenuation map) at energy Es, 
respectively. In this paper, Es=El or Es=Eh, and l and h 
represent low-energy and high-energy, respectively. NU and 
NV represent the number of detector pixels and projection 

Figure 1 One half-scan DECT scheme. Low energy scan range (0°, 
90°]; high energy scan range (90°, 180°]. DECT, dual-energy CT.
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views, respectively. NW and NH represent the width and 
height of the discrete CT image, respectively.

Usually, the projection data provided by limited-angle 
scans is not enough to be reconstructed by Eq. [1]. An 
effective method is to combine the compressed sensing 
theory with a sparse prior. With a certain degree of sparsity, 
it is found that Eq. [1] can be accurately solved by the TV-
based method (37):
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where  1
⋅  represents the L1-norm, and Di represents the 

discrete direction gradient operator of direction i. However, 
when the projection data is seriously insufficient, it is 
difficult to obtain an accurate solution through the TV-
based method.

For DECT, there is a correlation between low- and 
high-energy data of the same object. Thus, researchers have 
provided different ideas when facing seriously insufficient 
projection data in DECT. In 2016, Zhang et al. used DL 
to establish the correspondence between the attenuation 
coefficient at the same position of low- and high-energy 
images for limited-angle scan DECT imaging (38). In 2020, 
we used the GAN method to process projection domain 
data and realized limited-angle scan DECT imaging (33). 
These methods only focus on the information of one 
domain (image domain or projection domain) and ignore 
the information of the dual-domain. Based on this idea, we 
propose the DoDa-Net method to achieve one half-scan 
DECT imaging. Let θs be the viewing angle range of the 
tube potential Es. Generally, the sufficient condition for an 
excellent reconstruction is that the angle of each energy 
coverage θs is at least 180° + fan angle, and the requirements 
of the proposed method can be relaxed to  180s

s
θ =∑  .

Dual-domain dual-way estimation network (DoDa-Net) 
reconstruction

The symbols θ1 and θ2 are used to represent the blue and 
orange scan ranges in Figure 1, respectively. As for the 
designed one half-scan DECT reconstruction, we have:

 1 1 1

2 2 2
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=
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	 [3]

To solve Eq. [3], a novel DoDa-Net reconstruction 
method is proposed in this paper, and the overall framework 
of the DoDa-Net method is shown in Figure 2. The overall 

process is divided into two stages, and the details of each 
stage are as follows.

Stage 1: dual-way mapping GAN (DM-GAN)
In stage one, the entire DM-GAN framework consists 
of two generators G and F, which respectively map low-
energy data to high-energy data and high-energy data to 
low-energy data in the projection domain, i.e., realizing 
two mapping relationships: G:El→Eh,F:Eh→El. The input 

of the network is the dual-quarter projection datasets  1
lpθ  

and  2
hpθ  obtained by the one half-scan DECT scheme. 

The architecture of DM-GAN is derived from CycleGAN 

(DM-GAN as a whole is different due to the projection 
domain loss), and the direction of network data flow is dual-
way. Specifically,  1

lpθ  is input to the trained generator G to 
obtain  1ˆ

hpθ , and then the trained generator F converts  1ˆ
hpθ  

to  2ˆ
lpθ . Meanwhile,  2

hpθ  is input to the trained generator F 
to obtain  2ˆ

lpθ , and then the trained generator G converts 
 2ˆ

lpθ  to  2
hpθ . In this way, the dual-energy projection datasets 
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 are obtained through 

generators G and F, which doubles the amount of data 
compared with the original data. 

Furthermore, the purpose of discriminators Dl and Dh is 
to identify samples from the real projection dataset instead 
of the generated projection dataset. The generator and 
the discriminator are trained alternately to improve the 
quality of the network output, which is the fundamental of 
the “game” in the GAN training process. In this study, the 
specific architecture of the generator and discriminator in 
the network model is described as follows.
Generator
As shown in Figure 3, the overall structure of the generator 
is composed of an encoder, decoder, and residual module. In 
the generator, the input projection image is a 512×512 gray 
image. The generator works as follows. First, the encoder 
extracts features from the input projection image. Then, the 
residual module diversifies the feature extraction to avoid the 
problem of network degradation. Subsequently, it converts 
the feature vector extracted from the encoder to the target 
domain. Overall, the residual module plays an important 
role in feature extraction diversification and the conversion 
domain. Finally, the decoder obtains the projection image 
by transposed convolution. The skip-connections connect 
the corresponding encoder and decoder layers to help the 
decoder better recover the details of the projection data. 
Specifically, the encoder consists of three layers.
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Figure 2 The overall framework of the proposed network model. The process of the model includes two stages, where stage one realizes 
dual mapping of projection data, and stage two realizes high-quality restoration of the reconstructed image. F and G are generators; Dl and 
Dh are detectors. 

In the first layer, the padding operation is performed. 
Then, the convolution (Conv) operation is performed with 
a step size of 2 units and a kernel size of 4×4. In the second 
and third layers, the Conv operation is performed first 
with a step size of 2 units and a Conv kernel size of 4×4, 
followed by the execution of the instance norm (IN) and 
leaky rectified linear units (Leaky ReLU). The numbers 
of filters in these three layers are 64, 128, and 256, 
respectively. The residual module is a residual network 
(ResNet) (39,40), which contains 6 ResNet blocks (41). 
Each ResNet block consists of two convolutional layers, 
and each layer contains 256 filters. The decoder consists 
of three layers. The first two are deconvolution (DeConv) 
layers, which perform the DeConv operation with a step 
size of 2 units and a Conv kernel size of 4×4, followed 
by the IN and the rectified linear unit (ReLU). In the 
last layer, the padding operation is performed. Then, the 

DeConv operation is performed with a step size of 2 units 
and a kernel size of 4×4, followed by the Tanh function. 
The numbers of filters in these three layers are 128, 64, 
and 1, respectively.
Discriminator
The generated projection image and the corresponding 
real projection image are respectively input into the 
discriminator, and the output of both is the 64×64 patch. 
The sigmoid function is used to calculate all the elements in 
the two patches, and then the average value is taken as the 
basis to judge the authenticity of the generated projection 
image. Specifically, the structure of the discriminator is a 
fully convolutional network with five layers. The numbers 
of filters in the convolutional layer are 64, 128, 256, 512, 
and 1, respectively. These filters are used to extract features 
of different levels. In the first layer, the Conv is performed 
with a kernel size of 4×4 and a stride of 2 units, followed 
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by the execution of a Leaky ReLU. In the second and third 
layers, the Conv is performed with a kernel size of 4×4 
and a stride of 2 units, followed by the execution of an IN-
Leaky ReLU. In the fourth layer, the Conv is performed 
with a kernel size of 4×4 and a stride of 1 unit, followed by 
the execution of an IN-Leaky ReLU. In the last layer, the 
Conv is performed with a kernel size of 4×4 and a stride of 
1 unit, followed by the execution of a sigmoid function.

Stage 2: image processing network (Im-Net)
In stage two, the projection datasets  whole

lp  and  whole
hp  

obtained in stage one are first used to obtain two 
reconstruction images  whole

lu  and  whole
hu  by using the TV-

based reconstruction algorithm. It is well known that 
minor inconsistency in projection data can cause serious 
distortion of the reconstructed image. Therefore, the 
reconstructed image is further processed to achieve a high-
quality reconstruction. The input of the network is the 
reconstruction image  whole

lu  or  whole
hu . The target of the 

network is the corresponding image reconstructed from the 
full-angle projection data under different energies. Since 
the data distribution of images under different energies 
is inconsistent, two network models are used to train the 

reconstructed images at different energies independently. 
As shown in Figure 4, the modified U-Net is used as the 
Im-Net, which includes an encoder that down-samples 
the image to extract representative features and a decoder 
that up-samples the features to restore the image. The 
architecture of the Im-Net is described in detail as follows.

The input of the Im-Net is a 512×512 gray image. Its 
structure is mainly composed of twelve modules, where the 
encoder and decoder have six modules. In the encoder, each 
module performs two Conv-ReLU operations on the input 
data, and the numbers of filters in the Conv layers of each 
module are 32, 64, 128, 256, 512, and 1,024, respectively. 
Meanwhile, the size of the Conv kernel is 3×3 and the 
step size is 1 unit. Moreover, max-pooling with a step size 
of 2 units is used for down-sampling to extract abstract 
features between every two modules. As for the decoder, it 
has a similar structure to the encoder. In the decoder, the 
numbers of filters in the Conv layers of each module are 
512, 256, 128, 64, 32, and 1, respectively. In the first five 
modules of the decoder, up-sampling is first performed 
on the feature maps to reduce the number of feature maps 
by half. Then, the skip-connection between the feature 
mapping of the coding layer and the decoding layer is 

Figure 3 The architecture of DM-GAN generators. The generators consist of three parts: encoder, decoder, and residual module. The 
residual module is a residual network composed of six residual blocks. Conv, the convolution operation; DeConv, the deconvolution 
operation; IN, the instance norm; ReLU, rectified linear unit; Leaky ReLU, leaky rectified linear unit.
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introduced to obtain the high-resolution details of the 
corresponding module. Moreover, two Conv-ReLUs with 
a Conv kernel size of 3×3 and one unit stride of 1 unit are 
repeatedly applied to the connected data. The last module 
of the encoder uses a 1×1 Conv to map the 32-channel 
feature vector to the high- or low-energy image.

Loss function

In the first stage of the DoDa-Net model, it is desired to 
learn the mapping function between the projection images 
at two different energies El and Eh of a given training 
sample. For the convenience of explanation, the El and Eh 
domains are respectively replaced with X and Y domains. 
Also, the discriminators Dl and Dh correspond to DX and DY, 
respectively. To promote high-quality dual-energy image 
generation, the network structure proposed in this paper 
combines the following loss functions.

Adversarial loss
The generators G and F mainly realize the conversion 
between domain Y and domain X(G:X→Y,F:Y→X). The 
adversarial loss is applied to these two mapping functions (42)  
so that the generated projection data obeys the empirical 
distribution in the X or Y domain. Thus, the adversarial loss 
can be defined as:

 ( ) ( ) ( ) ( ) ( )( )( )
( ) ( ) ( ) ( ) ( )( )( )

, log log 1

, log log 1

data data

data data

GAN Y Y Yy P y x P x

GAN X X Xx P x y P y

G D D y D G x

F D D x D F y

 = + −    
 = + −    

 

 





 

 

	 [4]
where x∊X and y∊Y represent the training samples in the X 

and Y domain, respectively, and Pdata is the projection data 
distribution.

Cycle consistency loss
To prevent the degradation of adversarial learning (43), the 
cycle consistency loss is adopted:

 ( ) ( ) ( )( ) ( ) ( )( )
1 1

,
data datacyc x P x y P yG F F G x x G F y y   = − + −    

   	
[5]

Projection domain loss
The accuracy of the generated projection image is crucial, 
which makes direct constraints on the generator necessary. 
In the process of projection image mapping, the projection 
domain loss is introduced to ensure the fidelity of input 
projection data and the 180° reference projection data. 
Previous research shows that mean absolute error (MAE) 
loss is commonly used in CycleGAN, which is conducive 
to pixel-level image approximation (35,44). Thus, the 
projection domain loss function is constructed based on the 
MAE loss, and it is expressed as:

 ( ) ( ) ( ) ( ) ( )
1 1

,
data dataprj x P x y P yG F G x y F y x   = − + −    

 

   	 [6]

Therefore, to train the proposed model, the total loss 
function is:

( ) ( ) ( )
( ) ( )1 2

, , , , ,

                                  , ,
total X Y GAN Y GAN X

cyc prj

G F D D G D F D

G F G Fλ λ

= +

+ +

   

  	
[7]

where λ1 and λ2 adjust the relative importance of the three 
target losses. Based on this, the optimization problem can 

Figure 4 The architecture of the Im-Net. The blue, pink, and green rectangles represent 3×3 Conv-ReLU, 2×2 Max-pooling, and 2×2 Up-
sampling, respectively. Conv, the convolution operation; ReLU, rectified linear unit.
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be described as:

 ( )
, ,

*, * arg min max , , ,
X Y

total X YG F D D
G F G F D D=  .	 [8]

One half-scan DECT using the DoDa-Net reconstruction 
method

In summary, the proposed reconstruction method for the 
one half-scan DECT scheme includes two stages. In stage 
one, DM-GAN is exploited to realize dual-way mapping 
of the low- and high-energy projection data from different 
scanning angles. In this way, two half-scan projection 
datasets with two different energies are obtained. In stage 
two, the TV-based method is adopted to convert the data 
from the projection domain to the image domain. Then, the 
reconstruction image is processed by the Im-Net to obtain 
a relatively high-quality DECT image.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Ethics Committee of Henan Provincial 
People’s Hospital, and written informed consent was 
obtained.

Evaluation

Experimental data and training details

Digital cranial cavity experiment data
Obtained from the clinical dataset, the dataset used in 
the simulation experiment contained 1,603 cranial cavity 
CT images from 6 patients. The size of the CT image 
was 512×512. The training data for training the network 
consisted of 1,391 CT images obtained from 5 patients. 
A total of 212 CT images were obtained from another 
patient for preparing the test dataset. The specific steps for 
preparing the training dataset are described below.

To train the network, the projection dataset at two 
different energies was needed. Thus, the patient’s basic 
material images, including bone and tissue images 
were obtained with the assistance of the local hospital 
radiologist. Radiologists manually corrected each pair of 
bone and tissue images using the bone removal function of 
Syngo.Via equipped in Siemens SOMATOM Definition 
Flash CT scanner. Taking the decomposed bone and 
tissue images as input, dual-energy projections were 
generated by the discrete projection model (45). The mass 
attenuation coefficient of the basic material was obtained 
from the database of the National Institute of Standards 

and Technology (https://physics.nist.gov/PhysRefData/
XrayMassCoef/tab4.html). Specifically, SpekCalc software 
was adopted to generate 80 and 140 kVp polychromatic 
spectra with an energy sampling interval of 1 keV.

Furthermore, Sidden’s ray tracing algorithm was 
applied to simulate the geometry of the fan beam (46). The 
distances from the source to the object and the source to 
the detector were set to 1,000 and 1,500 mm, respectively. 
The dual-energy projections were uniformly sampled in 
180 views rotated by 180°. The projected samples in each 
view were collected by a linear detector, which consisted of 
512 bins and each pixel was 0.408 mm. Thus, the size of the 
projection data for simulating the projection process was 
512×180. Then, the low- and high-energy 180° projection 
datasets were processed to obtain a low-energy projection 
dataset (0°–90°) and a high-energy projection dataset (90°–
180°) as the DM-GAN input, and a high-energy projection 
dataset (0°–90°) and a low-energy projection dataset (90°–
180°) as the DM-GAN target. The input projection dataset 
was labeled and adjusted to 512×512 for feature extraction 
during DM-GAN training.

Additionally, simulated Poisson noise was added to the 
projection to illustrate the practicability of the proposed 
method:

 ( )( )0, exp
!

k

ip e I p
k

λλ λ−= = −




	 [9]

where  ip


 represents the number of added noise photons 
collected by the detector unit i, and  0p  is the logarithmic 
projection data. k is the index of the projection detector. 
The initial intensity I of the incident photon is set to 1×105.

Furthermore, the TV-based reconstruction algorithm 
was used to reconstruct the 180° projection dataset output 
by the DM-GAN, and then the low- and high-energy 
reconstruction image datasets obtained were used as Im-
Net input. The target of the Im-Net was the corresponding 
image reconstructed from the full-angle projection dataset 
under different energies. The reconstruction image dataset 
was labeled and adjusted to 512×512 for feature extraction 
during Im-Net training.

Anthropomorphic head phantom experiment data
In the actual projection collection process, the data 
collected by the CT scanner is often affected by photon 
scattering and system noise. Although the data generation 
process of CT scanning can be simulated, it is challenging 
to completely reduce the difference of statistical distribution 
between real data and simulated data (47). Thus, obtaining 

https://physics.nist.gov/PhysRefData/XrayMassCoef/tab4.html
https://physics.nist.gov/PhysRefData/XrayMassCoef/tab4.html
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the real data from a practical CT scanner is essential to 
adjust the network parameters for the trained network. 
In this work, a laboratory physical CT scanner was used 
to scan the anthropomorphic head phantom (as shown 
in Figure 5) (48) at tube voltages of 80 and 140 kVp. The 
physical CT scanner was mainly composed of an X-ray 
source (Hawkeye130, Thales) and a flat panel detector 
(Varian 4030E). The distance from the source to the object 
and the detector was 623.09 and 865.05 mm. The detector 
was composed of 512 bins, and the size of each bin was 0.83 
mm. A total of 180 projections were collected within 180° at 
a sampling interval of 1°. The center slice of each projection 
was extracted for two-dimensional DECT reconstruction, 
and the size of the reconstruction image was 512×512. 
The anthropomorphic head phantom data source was 
obtained from a real CT scanner, which is different from 
the simulation data. However, for the process of generating 
the training dataset, the anthropomorphic head phantom 
experiment was the same as the simulation experiment. 
Similarly, the anthropomorphic head phantom training 
dataset generation was the same as that of the simulation 
experiment. As for the anthropomorphic head phantom 
data, 747 and 76 slices of physical phantoms were randomly 
selected as the training dataset and test dataset for real data 
experiments, respectively.

Training details
DM-GAN and Im-Net training respectively used the 
Pytorch toolbox (ver. 0.4.1) and TensorFlow (ver. 1.9.0) 

toolbox running on an AMAX workstation equipped with 
two Intel(R) Xeon(R) E5-2640 v4 @ 2.4 GHz CPUs. Four 
NVIDIA GeForce GTX 1080 Ti GPUs were used for 
training and testing. The parameters were updated by the 
Adam adaptive moment optimizer (49). The exponential 
decay rate β1 and β2 were respectively set to 0.8 and 0.999, 
and the learning rate was set to 0.0002. The total training 
times of DM-GAN and Im-Net were 40 and 15 hours, 
respectively.

Performance evaluation

In this study, the performance of the proposed network in 
the projection domain and image domain was qualitatively 
evaluated. In the projection domain, the GAN-based (50)  
and CycleGAN-based (30) methods were adopted for 
performance comparison. The network architecture of 
the GAN-based method consisted of a generator and a 
discriminator, and the structure of the generator was like 
that of U-Net. In the process of network training, we 
used the 90° projection data as the network input, and the 
corresponding 180° projection data as the network target 
to generate fake 180° projection data. In addition, DM-
GAN and CycleGAN had the same architecture in this 
work, which was composed of two generators and one 
discriminator. The difference between the two was that 
we had improved the generator of DM-GAN. The DM-
GAN consists of three parts: encoder, decoder, and residual 
module, while the structure of the CycleGAN is similar to 

Figure 5 Real anthropomorphic head data experimental phantom: Chengdu Dosimetric Phantom.
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that of U-Net. Then, the projection domain results of DM-
GAN and Cycle-GAN could reflect the performance of the 
improved generator.

Meanwhile, in the image domain, the filtered back 
projection (FBP) (51) and TV-based methods were used 
to reconstruct images from a limited-angle projection 
dataset. Furthermore, the TV-based method was used to 
reconstruct the images obtained by GAN, CycleGAN, 
and the proposed method on the processed projection 
dataset. Then, the reconstruction images were compared. 
To achieve high-quality DECT imaging, the Im-Net 
was adopted to perform artifact suppression processing 
on the reconstruction image obtained by the DM-GAN 
method. Finally, the material decomposition method was 
further exploited to obtain the decomposition results of the 
reconstructed DECT images (52). We set the regularization 
parameter λ to be the same value at the same experimental 
background. In the simulation and real experiments, λ 
was 1.4×10−5 and 2.1×10−5, respectively. In addition, the 
optimization of the decomposition method required 
approximately 200 iterations under a strict relative error 
tolerance of 1.0×10−12.

To quantitatively evaluate the performance of the 
proposed method, the reconstruction images were evaluated 
by three image quality indicators: peak signal-to-noise ratio 
(PSNR), structural similarity (SSIM) (53), and root mean 
square error (RMSE).

Results

Study of parameters

Parameter selection is based on the simulated data with 
Poisson noise. With the total loss function, different RMSE 
losses in the training process of DM-GAN are determined 
jointly by the weight parameters λ1 and λ2, where λ1 and λ2 
control the weight of cycle consistency loss and the weight 
of loss between the generated projection dataset and the 
180° reference projection dataset, respectively. An improper 
parameter selection will affect the performance of the 
network model and lead to the degradation of the network 
output. Thus, the combination of different weight parameter 
values was tested in this study. As shown in Figure 6,  
the effects of λ1 and λ2 were quantitatively determined 
by calculating the average RMSE of the projection data, 
and the RMSE of different parameter combinations are 
represented by different square colors. It can be observed 
from the square colors in Figure 6 that when λ1=0.001 and 
λ2=10, the RMSE of the generated projection dataset is the 
smallest.

Simulated data results

Four representative projection datasets were used to 
investigate the performance of the proposed DM-GAN 
method, and the projection restoration results obtained by 
different methods on these datasets are illustrated in Figure 7.  
The first two rows and the last two rows represent the 
projection datasets of different slices. The first and third 
rows are low-energy projections, and the second and fourth 
rows are high-energy projections. As for the projection data 
in the first and second rows of Figure 7, the reconstructed 
DECT images obtained by different methods for the data 
are shown in Figure 8. Figure 9 shows the profiles of the 
pixel value line of the gray dotted line in Figure 8. Figure 10 
shows the decomposed basis material corresponding to the 
reconstructed DECT images.

Figure 7 shows the results of projection dataset recovery 
with different methods, which further evaluate DM-GAN 
performance. The results indicate that the DM-GAN 
captures more projection information. Compared with the 
180° reference projection dataset, we can intuitively find 
that the projection dataset produced by DM-GAN has high 
accuracy. Figure 8 shows the reconstructed results obtained 
by different methods. From left to right are the ground truth 
and reconstructed results based on FBP, TV, GAN + TV, 
CycleGAN + TV, DM-GAN + TV, and DoDa-Net.

Figure 6 The average RMSE of the projection data for different 
values of λ1 and λ2. RMSE, root mean square error.
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Figure 7 The projection restoration results of simulated data obtained by different methods. (A) The reference; (B) limited-angle projection 
data; (C) estimated projection data by the GAN; (D) estimated projection data by the CycleGAN; (E) estimated projection data by the DM-
GAN; (F) error maps of (A,C); (G) error maps of (A,D); (H) error maps of (A,E). “1” and “2” represent different slices. “l” and “h” represent 
low and high energy, respectively. The display window of (a-e) is [0, 3]. The display window of (f-h) is [–1, 1]. GAN, generative adversarial 
network; DMGAN, dual-way mapping generative adversarial network.

Furthermore, regions of interest (ROIs) of the 
reconstructed images were selected for analysis, as shown 
in the third and sixth rows in Figure 8. It can be observed 
that the quality of the reconstructed DECT images from 
the FBP and TV-based methods is relatively poor, and 
the limited-angle artifacts seriously affect the details 
of the reconstructed image. The quality of the DECT 
images reconstructed by the network-based method was 
improved. This is expected because the FBP and TV-based 
methods only use 90° projection data, while the network-
based method uses the generated 180° projection data. 
Compared with other network-based methods, the DM-
GAN + TV has a better ability to recover image detail. To 
further optimize the reconstructed image, the Im-Net was 
employed to process DM-GAN + TV as shown in Figure 8. 
Reconstruction results similar to the ground truth can be 
obtained based on the proposed method.

Furthermore, it can be seen from the ROIs that the 
results based on FBP and TV suffer from a large number 
of limited-angle artifacts. The GAN + TV and CycleGAN 

+ TV methods can eliminate the artifacts to a certain 
extent and restore the general structure of the image. 
However, the details of the image shown by the arrow are 
still blurred. In the reconstruction of CycleGAN + TV, 
DM-GAN + TV, and DoDa-Net, the sharp edge structure 
shown by the red arrow is blurred. However, compared 
with CycleGAN + TV, the DM-GAN + TV and DoDa-Net 
methods can better restore the image details in the ROI, 
especially the proposed DoDa-Net method. This indicates 
that the proposed method has advantages in maintaining 
microstructure and reducing limited-angle artifacts. The 
partial line profiles are shown in Figure 9, which are drafted 
from the 80th pixel to the 310th pixel along the gray dotted 
line in Figure 8. Among all the comparisons, the line profile 
of the proposed method is closest to the ground truth. Also, 
the area indicated by the arrow in Figure 9 indicates the 
accuracy of the proposed method for detailed repair.

Since material decomposition is very sensitive to image 
artifacts and noise, a small error can yield a large deviation 
in the final decomposition result. To verify the performance 
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of the Im-Net, the reconstructed images of DM-GAN + 
TV and DoDa-Net were further decomposed to generate 
the decomposition results of tissue and bone materials, 
and the results are shown in Figure 10. It can be seen that 
the results of DM-GAN + TV deviate from the ground 
truth. Specifically, the results of tissue decomposition still 
retain bone components. In contrast, the basis material 
decomposed from the reconstructed image by DoDa-Net is 

closer to the ground truth, showing higher image quality.
Table 1 shows the quantitative comparison results of 

reconstructed images. The SSIM of the proposed method 
reaches 0.9013 and 0.9035 at 80 and 140 kVp, respectively, 
while the SSIM of other methods is lower than 0.8900. 
Meanwhile, the RMSEs of the proposed method are 0.0007 
and 0.0005 at 80 and 140 kVp, respectively. Compared 
with the FBP-based method, the proposed method reduces 

Figure 8 Reconstruction results of the first and second projection data obtained by different methods. The first and fourth rows represent 
low- and high-energy reconstructed images. The second and fifth rows represent the error maps between the ground truth and the 
reconstructed image. The third and sixth rows are ROIs of the reconstructed image. The columns from left to right represent the ground 
truth and the results of FBP, TV, GAN + TV, CycleGAN + TV, DM-GAN + TV, and DoDa-Net. The display windows of reconstructed 
images and ROIs are [0, 0.07]. The display window of the error maps is [–0.03, 0.03]. ROIs, regions of interest; FBP, filtered back projection 
reconstruction algorithm; TV, total variation reconstruction algorithm; GAN, generative adversarial network; DMGAN, dual-way mapping 
generative adversarial network; DoDa-Net, dual-domain dual-way estimated network.
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the RMSE by two orders of magnitude. Furthermore, the 
PSNR of the proposed method is better than that of the 
other methods, and this result is consistent with the visual 
analysis of the reconstructed images. In summary, the results 
of qualitative and quantitative experiments demonstrate the 
effectiveness of the proposed DoDa-Net method applied 
to the proposed one half-scan DECT scheme, compared to 

other reconstruction methods applied to this scheme.

Real data results

To verify the reliability of the proposed method in practical 
applications, the method was applied to the real data 
experiment of the anthropomorphic head phantom. Four 
test slices were selected to show the projection recovery 
results exhibited in Figure 11. Figure 12 shows the different 
methods to reconstruct the DECT images of the first 
two rows in Figure 11. Moreover, we took the full-scan 
reconstruction result as ground truth. We also selected 
ROIs to evaluate the performance of different methods to 
reconstruct image details.

The projection datasets estimated by different methods 
and their error maps are shown in Figure 11, wherefrom left 
to right are the reference results, limited-scan projection 
datasets, and the recovery by GAN, CycleGAN, and 
DM-GAN. It can be seen that the results of GAN and 
CycleGAN have larger errors, and the DM-GAN method 
obtains the smallest error. Meanwhile, the error map is 
further verified, and the projection data obtained by the 
DM-GAN method is most similar to the reference. The 
reconstruction results of different methods on the real 
data are illustrated in Figure 12. The first and fourth rows 
present the reconstructed images, and the second and fifth 
rows present the error maps between the reconstructed 
image and the ground truth. It can be observed that in the 
error maps, the reconstruction results of DM-GAN + TV 

Figure 9 The line profiles of different reconstruction methods. (A) Low energy; (B) high energy. FBP, filtered back projection 
reconstruction algorithm; TV, total variation reconstruction algorithm; GAN, generative adversarial network; DMGAN, dual-way mapping 
generative adversarial network; DoDa-Net, dual-domain dual-way estimated network.

Figure 10 Decomposition results based on the reconstruction 
images. The first and second rows represent the decomposed bone 
and tissue material images, respectively. The display window of 
decomposed materials is [0.1, 1]. TV, total variation reconstruction 
algorithm; DMGAN, dual-way mapping generative adversarial 
network; DoDa-Net, dual-domain dual-way estimated network.
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Table 1 Quantitative results of reconstructed images obtained by different methods on the simulated data (80 testing images)

Results Metrics FBP TV GAN + TV CycleGAN + TV DMGAN + TV DoDa-Net

80 kVp Avg. PSNR 19.1082 24.5278 30.8014 33.3288 36.3151 40.3899

Avg. SSIM 0.4508 0.7771 0.7965 0.8248 0.8814 0.9013

Avg. RMSE 0.0131 0.0044 0.0023 0.0017 0.0012 0.0007

140 kVp Avg. PSNR 19.8774 25.9555 29.4841 33.7371 36.5195 40.5573

Avg. SSIM 0.4914 0.7838 0.7916 0.8388 0.8768 0.9035

Avg. RMSE 0.0107 0.0033 0.0020 0.0012 0.0010 0.0005

Quantitative testing of simulated data. PSNR, peak signal-to-noise ratio; SSIM, structural similarity; RMSE, root mean square error. 
FBP, filtered back projection reconstruction algorithm; TV, total variation reconstruction algorithm; GAN, generative adversarial network; 
DMGAN, dual-way mapping generative adversarial network; DoDa-Net, dual-domain dual-way estimated network.

Figure 11 The projection restoration results of real data obtained by different methods. (A) The reference; (B) limited-angle projection 
data; (C) estimated projection data by the GAN; (D) estimated projection data by the CycleGAN; (E) estimated projection data by the DM-
GAN; (F) error maps of (A,C); (G) error maps of (A,D); (H) error maps of (A,E). “1” and “2” represent different slices. “l” and “h” represent 
low and high energy, respectively. The display window of (A-E) is [0, 1]. The display window of (f-h) is [–0.2, 0.2]. GAN, generative 
adversarial network; DMGAN, dual-way mapping generative adversarial network.

and DoDa-Net are closest to the ground truth, especially 
the latter. To better analyze the restoration of image 
details, the enlarged ROIs are shown in the third and sixth 
rows of Figure 12. The FBP and TV-based methods fail 
to reconstruct the detailed structure of the image from 
the limited-angle projection data. The GAN + TV and 

CycleGAN + TV methods can eliminate the limited-angle 
artifacts to a certain extent, but they still fail to handle the 
fine areas. Compared with the previous methods, DM-GAN 
+ TV and DoDa-Net can suppress the limited-angle artifacts 
more effectively and obtain better reconstruction results. In 
particular, the proposed DoDa-Net method can accurately 
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Figure 12 Reconstruction results of the first and second projection data with different methods. The first and fourth rows represent low- 
and high-energy reconstructed images. The second and fifth rows represent the error maps between the ground truth and the reconstructed 
image. The third and sixth rows are ROIs of the reconstructed image. Left to right columns represent the ground truth and the results of 
FBP, TV, GAN + TV, CycleGAN + TV, DM-GAN + TV, and DoDa-Net. The display windows of reconstructed images and ROIs are [0, 
0.07]. The display window of error maps is [–0.03, 0.03]. ROIs, regions of interest. FBP, filtered back projection reconstruction algorithm; 
TV, total variation reconstruction algorithm; GAN, generative adversarial network; DMGAN, dual-way mapping generative adversarial 
network; DoDa-Net, dual-domain dual-way estimated network.

restore the edge and detail area, as shown by the arrow 
in Figure 12. The partial line profiles of the gray dotted 
line from the 60th pixel to the 335th pixel in Figure 12  
are shown in Figure 13. The profile provided by the 
proposed method is the closest to the ground truth. Also, 
in the region with a complex structure (area indicated by 

arrow), the proposed method obtains more accurate pixel 
values than other methods.

To veri fy  the effect iveness  of  the Im-Net,  the 
decomposition results of the reconstructed images in Figure 
12 are illustrated in Figure 14. The decomposition result 
obtained by DM-GAN + TV fails to preserve the internal 

Ground truth                      FBP                             TV                        GAN + TV                  CycleGAN + TV         DMGAN + TV                 DoDa-Net
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structure and edge information and erroneously decomposes 
the bone and tissue material images. However, the DoDa-
Net method obtains better results and maintains a clearer 
image edge and internal structure. The region of different 
substrates can be determined through the decomposition 
results of DoDa-Net.

The quantitative comparison results of the reconstructed 

images are listed in Table 2. Among the methods, DoDa-
Net performs best in terms of SSIM, indicating that the 
results obtained by the proposed method are most similar 
to the ground truth in structure. Also, the PSNR of the 
proposed method is higher than 41 dB, while those of the 
other methods are lower than 36 dB. Furthermore, the 
RMSE indicates that the proposed method has superior 
noise suppression ability. The real data experimental results 
further verify the effectiveness of the proposed method for 
the one half-scan DECT scheme, which is consistent with 
the evaluation results of the simulation data.

Ablation study

In order to study the influence of the projection domain 
processing network and the image domain processing 
network in the proposed DoDa-Net model, we gradually 
modif ied the basel ine model and compared their 
differences. Thirty samples were randomly selected from 
the test dataset of simulation data to assess the performance 
of different models. We verified the reconstruction results 
from both PSNR and RMSE to quantitatively evaluate the 
effects of the main modifications in the proposed DoDa-
Net model. The overall quantitative comparison is shown 
in Table 3. The 1st to 4th represent different models, and 
their configurations are shown in the second to third rows. 
The 2nd and 3rd show the performance of image domain 
and projection domain processing networks separately. 
The improved effect is more obvious in the model of the 

Figure 14 Decomposition results of the reconstruction images. 
The first and second rows represent the decomposed bone and 
tissue material images, respectively. The display window of 
decomposed materials is [0.1, 1]. TV, total variation reconstruction 
algorithm; DMGAN, dual-way mapping generative adversarial 
network; DoDa-Net, dual-domain dual-way estimated network.

Figure 13 The line profiles of different reconstruction methods. (A) Low energy; (B) high energy. FBP, filtered back projection 
reconstruction algorithm; TV, total variation reconstruction algorithm; GAN, generative adversarial network; DMGAN, dual-way mapping 
generative adversarial network; DoDa-Net, dual-domain dual-way estimated network.
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Table 3 Effects of each major modification in the proposed DoDa-Net model

Results 1st 2nd 3rd 4th

Projection domain processing? × × √ √

Image domain processing? × √ × √

Avg. PSNR (80 kVp) 24.5131 25.2111 36.3011 40.3871

Avg. RMSE 0.0047 0.0036 0.0014 0.0008

Avg. PSNR (140 kVp) 25.9566 26.3302 36.5177 40.5561

Avg. RMSE 0.0035 0.0030 0.0010 0.0005

Ablation test. PSNR, peak signal-to-noise ratio; RMSE, root mean square error.

Table 2 Quantitative results of reconstructed images obtained by different methods on the real data (25 testing images)

Results Metrics FBP TV GAN + TV CycleGAN + TV DMGAN + TV DoDa-Net

80 kVp Avg. PSNR 20.9740 24.8941 32.8195 34.3788 34.6581 41.1025

Avg. SSIM 0.4792 0.7112 0.8079 0.8564 0.8704 0.8983

Avg. RMSE 0.0094 0.0044 0.0022 0.0015 0.0015 0.0008

140 kVp Avg. PSNR 22.1091 24.9711 33.1150 34.3013 35.8911 41.2132

Avg. SSIM 0.5102 0.7288 0.8102 0.8479 0.8742 0.8991

Avg. RMSE 0.0076 0.0038 0.0020 0.0017 0.0010 0.0005

Quantitative testing of real data. PSNR, peak signal-to-noise ratio; SSIM, structural similarity; RMSE, root mean square error; FBP, filtered 
back projection reconstruction algorithm; TV, total variation reconstruction algorithm; GAN, generative adversarial network; DMGAN,  
dual-way mapping generative adversarial network; DoDa-Net, dual-domain dual-way estimated network.

projection domain processing network. From the 2nd to 
4th in Table 3, we can observe that the projection domain 
processing network and the image domain processing 
network help suppress noise and maintain structure.

Discussion and conclusion

The DECT reconstruction theory usually requires two 
full-scan projection datasets with different X-ray energies. 
However, this requirement cannot be met, especially when 
a full circular rotation is disabled by a physical blockage. 
Thus, the study of the limited-angle scan DECT scheme is 
conducive to broadening its application scenarios. To this 
end, this study designed a novel flexible DECT imaging 
scheme (i.e., one half-scan DECT scheme) to reduce the 
radiation dose and simplify the imaging scheme. Currently, 
the relationship between different energy data is not well 
studied for the limited-angle scan DECT problem. Also, the 
utilization of dual-domain information is not sufficient. In 
the process of studying this problem, it was found that the 
application of a joint dual-domain method to DECT image 

reconstruction is a feasible way to improve the effective 
information of DECT images. Thus, the DoDa-Net 
method was proposed to solve the problem. First, inspired 
by the CycleGAN for image conversion, the DM-GAN 
is designed to explore the relationship between different 
energy projection data to obtain two half-scan projection 
datasets. The TV-based method was exploited to realize the 
conversion of data from the projection domain to the image 
domain. However, the half-scan projection data obtained 
through DM-GAN is limited because the angle coverage 
requirement of 180° + fan angle is a theoretical derivation 
and is theoretically guaranteed. Therefore, the Im-Net 
was further employed to eliminate image artifacts caused 
by minor inconsistencies in the DM-GAN restoration 
projection. 

The experimental results show that the proposed method 
is better than other comparison methods. Moreover, the 
experimental results also show the main contributions of 
different technologies in DoDa-Net. Among them, the 
main contribution of DM-GAN lies in the restoration of 
projection data. The comparison between the results of 
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DM-GAN and CycleGAN in the projection domain results 
mainly shows the ability of the improved CycleGAN to 
recover projection data. The main contribution of the Im-
Net lies in image restoration. The comparison of DM-GAN 
+ TV and DoDa-Net in the image reconstruction results 
and the material decomposition results shows the ability of 
the Im-Net to perform image processing. The experimental 
results show that the proposed method is better than other 
comparison methods.

As for the proposed DoDa-Net model ,  proper 
hyperparameters can improve the output quality of 
the network to a certain extent. Especially in the DM-
GAN, the different weights of the total loss function 
significantly impact network training. In Section “Study of 
parameters”, a large number of experiments were conducted 
on combinations of different weights. By adjusting the 
weights to make the different losses relatively balanced, 
the generated projection dataset can have higher accuracy. 
Also, the two-stage network structure contained in DoDa-
Net was studied. In stage one, the generator of the DM-
GAN consists of three parts: encoder, residual module, and 
decoder. The Conv layer between the encoder and decoder 
in U-Net is replaced by a residual module, which utilizes 
the ResNet to realize the accurate mapping between the 
features of the source domain and the target domain.

Meanwhile, the two generators in the DM-GAN realize 
dual-way mapping (G realizes the mapping from low- to 
high-energy, F is the opposite), which can continuously 
optimize the network parameters and improve the quality 
of network training. In stage two, the main purpose of the 
Im-Net is to eliminate the artifacts of the estimated image, 
and the U-Net structure is used to suppress the artifacts 
of the input image. Since U-Net has skip-connections, it 
can extract the multi-scale features of the input image and 
ensure high-quality image restoration. The experimental 
results indicate that the DM-GAN can restore the 
projection dataset with high accuracy, and the Im-Net 
can suppress the image artifacts to obtain high-quality 
reconstructed images. In addition, the proposed method was 
tested with fewer-angle data, using low- and high-energy 
projection data of less than 90° to obtain the corresponding 
projection data of the sum of the two by DM-GAN. The 
projection data obtained in this way has serious artifacts 
in the image reconstructed by the TV-based method. 
Although the work of this manuscript also uses the Im-Net 
to eliminate the difference between the reconstructed image 
of 180° projection data and the ground truth, the effect of 
using Im-Net to process the reconstructed image of less 

than 180° projection data is not good. Figure 15 shows the 
results of 120°, 140°, 160°, and 180° high-energy projection 
data reconstruction using the DM-GAN + TV and DoDa-
Net methods. We need to retrain the Im-Net model to 
obtain better results. It may also be necessary to adjust the 
Im-Net structure.

In the process of network training, it is observed that 
the test results are not satisfactory when simulated datasets 
are used for training and testing with real data in the 
experiment. This result may be caused by the rule difference 
between the simulated and real projection data distribution. 
Thus, it is necessary to use the projection dataset collected 
by the real CT system to conduct additional training 
for improving network performance. Besides, there are 
differences in the data distribution among different real 
CT imaging systems. Therefore, multiple models can be 
trained for different real CT imaging systems for practical 
applications.

Furthermore, different objects can be scanned to expand 
the dataset and make it suitable for a specific real CT system. 
With the increase of projection datasets, the robustness of 
the trained network model can be enhanced. The proposed 
method requires training with paired data, i.e., well-
matching projections measured for two energies. For moving 
objects such as humans, paired ground truth data acquisition 
is difficult, so one may need to scan static phantoms. It is 
unclear whether the learned method can generalize between 
different scanned objects (acquired on the same scanner), 
such as from phantom scans to human scans.

Although the proposed method has achieved convincing 
reconstruction results, some limitations still exist. First, the 
proposed DoDa-Net method needs a long training time 
due to the concatenation of two networks in this model. 
Also, for DM-GAN + TV reconstructed images of different 
projection data, the Im-Net model needs to be retrained. In 
the future, we hope to study a more efficient architecture 
to solve this problem. The Im-Net model can be adaptively 
trained to obtain good results for different limited-angle 
projection data. Second, there is no data transfer between 
the two networks in DoDa-Net. To solve this problem, 
future work will explore the data transposition module 
to realize a bidirectional transmission of information 
between the projection domain and the image domain. 
The improved network model can further enhance the 
reconstruction details. Third, the work of this paper adopts 
a supervised training strategy. As an outlook, adapting the 
network to other data with unsupervised training strategies 
can be considered.
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In conclusion, this study designed a one-half-scan DECT 
scheme and proposed an effective method to obtain high-
quality DECT images by utilizing dual-way learning of the 
projection data and optimizing the image domain data. The 
proposed method effectively broadens the application of the 
DECT imaging system and has great potential in reducing 
the X-ray radiation dose and hardware cost.
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