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Long-term prognostic value of the serial changes of CT-derived 
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Background: To investigate the serial changes of computed tomography (CT) fractional flow reserve (CT-
FFR) and fat attenuation index (FAI), and explore their relationships with long-term clinical outcomes.
Methods: Consecutive symptomatic patients with an intermediate pretest probability of coronary artery 
disease 1–4 were prospectively enrolled if coronary CT angiography (CCTA) revealed at least 1 lesion with 
30–70% stenosis on major epicardial arteries. Follow-up CCTA was performed at 1 to 1.5-year intervals. 
All patients were further followed up after the second CCTA until September 2019. The Coronary Artery 
Disease - Reporting and Data System (CAD-RADS) grade, high-risk plaque features, lesion-specific CT-
FFR, and FAI were measured for prognosis analysis. 
Results: A total of 263 patients were included in the analysis, and 38 major adverse cardiac events (MACEs) 
occurred. In the MACE group, the lesion-specific CT-FFR decreased significantly at the follow-up CCTA 
[0.80 (0.74–0.90) versus 0.85 (0.76–0.93); P=0.01], whereas the FAI did not notably increase (–70.4±8.9 
versus –71.3±7.1 HU; P=0.436). In the non-MACE group, lesion-specific CT-FFR increased markedly 
[0.91 (0.84–0.95) versus 0.90 (0.82–0.94); P<0.001], while the FAI decreased substantially (–74.0±10.8 versus 
–72.4±11.5 HU; P=0.004). Decreased CT-FFR (adjusted overall hazard ratio =2.455; P=0.023) and increased 
FAI (adjusted hazard ratio =2.956; P=0.002) were the strongest independent predictors of MACEs. Serial 
changes of CT-FFR and FAI provided incremental prognostic value (Concordance statistic =0.716; P=0.003; 
over conventional clinical and imaging parameters (Concordance statistic =0.762; P=0.004).
Conclusions: Decreased CT-FFR and increased FAI at follow-up CCTA were the 2 strongest predictors 
of MACEs. Serial changes of CT-FFR and FAI provided incremental prognostic value over conventional 
clinical and imaging parameters for risk stratification. In addition, decreased CT-FFR provided incremental 
predictive value for MACEs from 15 months after second CCTA, while increased FAI added prognostic 
value from the second CCTA onwards.
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Introduction

Coronary computed tomography angiography (CCTA) 
is a useful imaging modality for noninvasive diagnosis of 
obstructive coronary artery disease (CAD) (1). In addition 
to the evaluation of stenotic extent, CCTA also plays 
an important role in the assessment of high-risk plaque 
features, which predict unfavorable clinical outcomes (2-
4). Moreover, the fat attenuation index (FAI) has been 
recently introduced as a novel imaging biomarker for in vivo 
evaluation of coronary vascular inflammation, and a higher 
FAI is associated with increased risks of a major adverse 
cardiac event (MACE) (5,6). According to one previous 
study, statin treatment is able to reduce the lesion-specific 
FAI for noncalcified and mixed plaques, possibly due to its 
anti-inflammatory effect (7).

In contrast to plaque analysis, machine learning 
(ML)-based computed tomography (CT) fractional flow 
reserve (CT-FFR) is an accurate approach for diagnosing 
hemodynamically significant coronary stenosis (8-11). 
For CAD patients treated with optimal medical treatment 
(OMT), lesion-specific CT-FFR has reportedly also been 
improved at follow-up (12). 

According to previous studies, OMT has a potential 
impact on the dynamic changes of both the FAI and CT-
FFR. However, the relationship between clinical outcome 
and the serial changes of CT-FFR and FAI together as 
prognostic indicators remains unclear. In light of the above 
results, we hypothesized that the dynamic changes of 
both FAI and CT-FFR might reflect the plaque response 
to OMT and may possibly be associated with prognosis. 
Therefore, we aimed to investigate the serial changes of 
ML-based CT-FFR and perivascular FAI after OMT and 
their relationships with midterm clinical outcomes.

We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://dx.doi.
org/10.21037/qims-21-424).

Methods

Patient population

Between April 2009 and September 2016, consecutive 
patients with stable angina or atypical chest pain were 

referred for CCTA to rule out obstructive disease in 3 
tertiary hospitals. The patients were prospectively enrolled 
for follow-up of the serial change of CT plaque features 
if they met the following inclusion criteria: (I) the pretest 
probability of obstructive CAD was intermediate according 
to updated Diamond-Forrester score (defined as pretest 
probability between 15% and 85%), (II) baseline CCTA 
revealed at least 1 lesion with a diameter stenosis (DS) of 
30–70% on major epicardial arteries (diameter ≥2 mm), and 
(III) patients were referred for OMT. All included patients 
were referred for a second CCTA at 1 to 1.5-year intervals 
to monitor the serial imaging changes of atherosclerotic 
plaques and were followed up until September 2019 after 
the second CCTA. The exclusion criteria were as follows: (I) 
image quality of baseline or follow-up CCTA was severely 
impaired (severe artifact, nondiagnostic), (II) patients 
experienced MACEs prior to the follow-up CCTA, (III) 
patients refused to undergo a follow-up CCTA, and (IV) 
patients were lost to follow-up (Figure 1). This study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013), and the research protocol was approved by 
all local hospital ethics committees (approval number: 2009-
023). All patients gave informed consent. In the present 
study, we performed a post hoc analysis of this prospective 
cohort regarding the serial changes of ML-based CT-FFR 
and perivascular FAI.

CT acquisition and reconstruction

Three models of CT scanners, including the 128-slice 
multidetector CT (Definition AS+, Siemens Healthineers, 
Erlagen, Germany), the second-generation dual source 
CT (SOMATOM Flash, Siemens Healthineers), and the 
256-slice CT scanner (Brilliance iCT, Philips Healthcare, 
Amsterdam, The Netherlands), were used for CCTA 
imaging. A beta-blocker (25–50 mg, Betaloc ZOK; 
AstraZeneca, Cambridge, UK) was administered orally  
1 hour prior to the examination in patients with a baseline 
heart rate ≥70 bpm and scanned using the 128-slice 
multidetector CT and 256-slice CT scanner. For patients 
scanned using dual source CT, a beta-blocker was not used. 
Nitroglycerin (Shanghai Shyndec Pharmaceutical Co., Ltd, 
China) was given sublingually in all patients from 3 sites. 
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Prospective electrocardiogram (ECG)-triggered sequential 
acquisition was used in all patients with the triggering 
window covering from the end-systolic to mid-diastolic 
phase (from 35% to 75% of the R-R interval). Details 
regarding the acquisition and reconstruction parameters 
are shown in the online appendix. The same acquisition 
parameters were used for both baseline and follow-up 
CCTA in each individual.

CT-based plaque and FAI analysis

CCTA data with best image quality from all available 
phases were transferred to the core lab, and all lesions with 
≥30% DS on major epicardial arteries (diameter ≥ 2mm) 
were included for further analysis. Conventional qualitative 
and quantitative plaque parameters were evaluated using 
a dedicated plaque analysis software (Coronary Plaque 
Analysis, version 4.3, Siemens Healthineers). The following 
indices were measured and recorded: (I) DS, (II) remodeling 
index and the presence of positive remodeling (13), (III) low-
attenuation plaque (LAP) (13), (IV) spotty calcification (13),  
and (V) napkin-ring sign as defined by a previous study (14). 
Detailed definitions of the above parameters are provided 
in the online appendix. The patient-based stenosis extent 
was evaluated using the Coronary Artery Disease-Reporting 
and Data System (CAD-RADS) (15). Lesions with at least 2 
high-risk plaque features (positive remodeling, LAP, spotty 
calcification, and napkin-ring sign) were deemed high-risk 
plaques, and patients with at least 1 high-risk plaque were 
considered to have vulnerable plaques (15). 

Lesion-based perivascular FAI was measured for all of the 
above plaques. A dedicated FAI analysis software (Coronary 
FAI Analysis, version 1.0.2, Siemens Healthineers) was 
used for quantification. Briefly, perivascular adipose tissue 
was sampled radially outward from the outer vessel wall 
of the plaques and measured as voxels with an attenuation 
between −190 and −30 HU. FAI was defined as the mean 
CT attenuation of adipose tissue, which was within a radial 
distance from the outer vessel wall equal to the diameter of 
the target vessel (5,6). The detailed steps of FAI analysis are 
provided in the online appendix. The difference between 
the follow-up and baseline FAI values was recorded as 
△FAI. A recent study revealed that vessel locations might 
intrinsically impact the measured values of FAI (16).  
Therefore, rather than using the lesion with highest 
baseline FAI value, we measured the FAI of lesions with 
the most significant hemodynamic status (lowest CT-FFR 
value) in the patient-based analysis.

All the above parameters were independently analyzed 
by 2 cardiovascular radiologists (with 12 years and 4 years 
of experience in cardiac imaging), and the mean values of 
measurement were used for further analysis. 

CT-FFR measurement

Lesion-specific CT-FFR values were measured in the core 
lab for all stenoses with DS ≥30%. The current study used 
a ML-based approach for CT-FFR simulation (cFFR, 
version 3.0, Siemens Healthineers). Briefly, this model 
was trained on a large database of synthesized coronary 
anatomies, where the reference values are computed 
using a computational fluid dynamics-based model (17). 
The diagnostic performance of this algorithm has been 
validated by previous studies with reference to invasive 
FFR (8,9). The details regarding how this ML-based model 
was trained and how onsite processing was performed are 
provided in the online appendix. The lesion-specific CT-
FFR values were measured at 1–2 cm distal to the lesion. 
The difference between follow-up and baseline CT-FFR 
values was recorded as △CT-FFR. The lesions with the 
lowest baseline CT-FFR values were used in subsequent 
patient-based analyses. 

Two cardiovascular radiologists (with 12 years and  
4 years of experience of cardiac imaging) independently 
calculated the CT-FFR values of all targeting lesions, and 
the mean values were used for further analysis.

Clinical follow-up and study end points

All enrolled patients were referred for OMT according to 
their baseline clinical characteristics, including hypertension, 
diabetes, and hyperlipidemia. Clinical follow-up was 
conducted after the second CCTA until September 2019 via 
outpatient clinic visits. The radiologists were blinded to the 
clinical outcome. The primary end point of the present study 
was the association between serial changes of CT-FFR, FAI, 
and MACEs. An MACE was defined as all-cause mortality, 
myocardial infarction, revascularization, and rehospitalization 
due to heart failure or aggravated angina symptoms.

Statistical analysis

Overall, <5% of observations were missing, and continuous 
variables were imputed using the corresponding mean value. 
The serial changes in study parameters were calculated as 
absolute differences between baseline and follow-up. The 
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1-sample Kolmogorov-Smirnov test was used to check the 
assumption of normal distribution. Quantitative variables 
with normal distribution are expressed as mean ± standard 
deviation; otherwise, medians and quartiles are used. 
Categorical variables are reported as counts and percentages 
and were compared using Fisher’s exact test or the chi-
square test according to the data cell size. The paired t test 
was used for normally distributed data, and the Wilcoxon 
signed-rank test was used for nonnormally distributed 
data. The average measures for interobserver reliability 
are expressed as an intraclass correlation coefficient (ICC) 
for continuous variables and Cohen’s kappa coefficient for 
categorical variables.

Univariable and multivariable Cox proportional hazards 
models were used to determine the study parameters 
associated with MACEs. The Kaplan-Meier curve was 
used for the proportional hazards (PH) assumption test for 
binary variables and Schoenfeld residuals test for continuous 
variables. Stratified Cox regression was used when the 
variables did not meet the assumptions of the model PH 
assumption. The optimum model candidates were selected 
based on the significant variables in the univariable analysis 
(P<0.05). A clinical and an imaging model was created to 
avoid overfitting. Nested models were used to assess the 
incremental value of change of FAI and change of FFR 
in 3 modeling steps. The first step consisted of fitting a 
multivariable model of traditional risk factors, the second step 

included the change of FAI, and the third step included the 
change of FFR. The change in overall log-likelihood ratio 
was used to assess the increase in predictive power. The time-
dependent receiver operating characteristics curve (ROC) 
and Harrell’s Concordance statistic were used to evaluate the 
discriminatory power of the models. The calibration curve 
was plotted using the model-predicted probability against 
the actual probability of the optimum model to evaluate the 
reliability with 500 bootstrap resamples.

Statistical analysis was performed using standard 
statistical software packages (SPSS software version 23.0, 
IBM Corp., Armonk, NY, USA; and R software version 
3.6.3, R Foundation for Statistical Computing, Vienna, 
Austria), and statistical significance was defined as a 2-tailed 
P value <0.05. 

Results

Patient characteristics and clinical outcomes

Between April 2009 and September 2016, 1,224 patients 
with chest pain and suspected of CAD were screened for 
potential inclusion, and 363 patients met the inclusion 
criteria. After initial enrollment, 100 patients were excluded 
due to various reasons (details shown in Figure 1). CT-
FFR simulation was successfully performed in 95.8% 
(1,172/1,224) of patients at baseline and 97% (290/299) 

Figure 1 Inclusion and exclusion criteria flow chart. CAD, coronary artery disease; CCTA, coronary computed tomography angiography; 
MACE, major adverse cardiac event.

Patients with chest pain and intermediate 
pre-test probability of obstructive CAD were 

referred for baseline CCTA in 3 tertiary hospitals 
(n=1224)

Initially enrolled patients
(n=363)

Follow-up CCTA at 1-year to 1.5-year
(n=299)

Finished follow-up after second CCTA
(n=263)  

Final inclusion
(n=263)  

1. Normal vessels or minimal stenosis (<30%) on baseline CCTA (n=612)
2. Severe stenosis (≧ 70%) on baseline CCTA (n=197)
3. Insufficient image quality of baseline CCTA (n=52)

1. MACE occurred before follow-up CCTA (n=36)
2. Patients refused to undergo follow-up CCTA  (n=28)  

1. Insufficient image quality of follow-up CCTA  (n=9)
2. Lost follow-up  (n=27)
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patients in follow-up. Finally, 263 patients were included 
in the study. The mean cumulated effective dose for 2 
CCTA scans was 6.58±1.63 mSv. The mean analyzing times 
for CT-FFR and FAI were 10.1±3.6 and 13.3±1.9 min,  
respectively. The CT scan parameters of the baseline 
and follow-up examinations were identical. Detailed 
demographic data are shown in Table 1. Good intra- and 
interobserver agreement was found for measurements of all 
parameters (Tables S1,S2).

During follow-up {median, 42 months [interquartile 
range (IQR): 36–54 months]}, MACEs occurred in 38 
patients (14.4%), including 1 case of sudden cardiac 
death, 2 cases of acute myocardial infarction, 20 cases of 
revascularization, and 15 cases of rehospitalization due to 
heart failure or aggravated angina symptoms.

Serial change of imaging parameters between baseline and 
follow-up CCTA

In the MACE group, lesion-specific CT-FFR decreased 

significantly at follow-up CCTA [0.80 (0.74–0.90) versus 
0.85 (0.76–0.93); P=0.01], whereas FAI did not notably 
increase (–70.4±8.9 versus –71.3±7.1 HU; P=0.436; Figure 2).  
In the non-MACE group, lesion-specific CT-FFR increased 
markedly [0.91 (0.84–0.95) versus 0.90 (0.82–0.94); 
P<0.001], while FAI markedly decreased (–74.0±10.8 HU 
versus –72.4±11.5 HU; P=0.004; Figure 3). Moreover, the 
plaque volume of noncalcified components was noted as 
being significantly reduced in the non-MACE group, while 
a significant difference was observed between the 2 groups 
in terms of coronary artery calcium score (CACS), minimal 
lumen area (MLA), and the plaque volume of calcified 
components between baseline and follow-up CCTA (details 
are shown in Table 2).

Prognostic value of baseline and serial changes of various 
parameters

According to the univariable Cox regression analysis, both 
the baseline [hazard ratio (HR): 1.039, 95% confidence 
interval (CI): 1.012–1.067; P=0.004] and serial changes 
of CT-FFR (HR: 1.070, 95% CI: 1.033–1.107; P<0.001) 
were associated with MACEs. The Kaplan-Meier curve 
showed that the predictive value of decreased CT-FFR for 
MACEs was significantly different before (HR: 1.000, 95% 
CI: 0.322–3.100; P=0.999) and after (HR: 5.520, 95% CI: 
1.167–26.14; P=0.031) the 15th month postsecond CCTA 
scan (Figure 4, Table 3). This phenomenon was also most 
prominent in the noncalcified lesion subgroup (Figure 4). 
Similarly, increased FAI, presence of high-risk plaques, 
decreased MLA, and several baseline clinical characteristics 
were also associated with the occurrence of MACEs (Table 
3). In contrast to the above findings, it is worth noting that 
the baseline FAI and CACS were not predictors of MACEs 
(Table 3). According to the ROC analysis, the serial changes 
of CT-FFR and FAI outperformed the baseline CT-FFR 
[area under curve (AUC) for serial changes of CT-FFR 
=0.678 vs. AUC for baseline CT-FFR =0.635; P=0.004] and 
FAI (AUC for serial changes of FAI =0.651 versus AUC for 
baseline FAI =0.522; P=0.047) for identifying patients with 
MACEs. 

Although multivariable models were limited by the sparse 
number of events, the significant associations between 
decreased FFR, increased FAI, and MACEs were still 
observed even after adjustment for baseline hypertension, 
dyslipidemia, angina types, presence of high-risk plaque 
features, serial change of MLA, and noncalcified plaque 
volume (Table 4). Furthermore, decreased CT-FFR (adjusted 

Table 1 Baseline clinical characteristics 

Characteristics N=263

Male, n (%) 186 (70.7)

Age, years 64.8±11.0

Body mass index, kg/m2 24.76±3.58

Risk factors, n (%)

Hypertension 155 (58.9)

Diabetes mellitus 82 (31.2)

Dyslipidemia 109 (41.4)

Smoking 71 (27.0)

Angina, n (%)

CCS class I 133 (50.6)

CCS class II 84 (31.9)

CCS class III 46 (17.5)

CACS 62.0 (5.0-272.1)

Tube voltage, n (%)

100 kVp 36 (13.7)

120 kVp 218 (82.9)

140 kVp 9 (3.4)

CACS, coronary artery calcium score; CCS, Canadian 
Cardiovascular Society.

https://cdn.amegroups.cn/static/public/QIMS-21-424-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-21-424-supplementary.pdf
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Figure 2 Representative case of a 56-year-old male showing decreased CT-FFR and increased FAI at follow-up CCTA. (A) The baseline 
CCTA revealed a mixed plaque with mild stenosis (white arrowhead) at the proximal RCA. The TPV was 85.17 mm3, and the lesion-
specific perivascular FAI was –77.1 HU. CT-FFR of this lesion was 0.99 (white arrow). (B) The follow-up CCTA (15 months later) 
showed significant lesion progression with more severe stenotic extent (white arrowhead). Increased TPV (156.88 mm3) and lesion-specific 
perivascular FAI (–63.1 HU) were observed, and decreased CT-FFR (0.89, white arrow) was also noted. This patient received PCI treatment 
9 months later. CCTA, coronary computed tomography angiography; CT, computed tomography; FAI, fat attenuation index; CT-FFR, 
computed tomography fractional flow reserve; PCI, percutaneous coronary intervention; RCA, right coronary artery; TPV, total plaque 
volume.

CT-FFR=0.89

CT-FFR=0.99

A

B

overall HR =2.455; P=0.023) and increased FAI (adjusted 
HR =2.956, P=0.002) were 2 strong independent predictors 
of MACEs after adjustment for conventional clinical and 
imaging parameters (Table S3).

Discriminatory capacity of serial changes of CT-FFR and 
FAI to predict events

The MACE-discrimination capacity of the traditional 
risk factors (model 1), combination with increased FAI  
(model 2), and combination with increased FAI and 
decreased CT-FFR (model 3), as measured by the 
C-statistic, were 0.673 (95% CI: 0.664–0.682), 0.716 
(95% CI: 0.707–0.725), and 0.762 (95% CI: 0.753–0.771), 
respectively. The clinical variable-based model was 

significantly improved by the addition of increased FAI, and 
further enhanced by adding decreased CT-FFR (P=0.003 
and P=0.004, respectively; Table 5 and Table S4). The 
calibration plot is presented in Figure 5.

Discussion

The major finding of the present study showed that 
decreased CT-FFR and increased FAI at follow-up CCTA 
were the 2 strongest predictors of MACEs (among all 
parameters) in long-term follow-up. In addition, serial 
changes of CT-FFR and FAI provided incremental 
prognostic value over conventional clinical and imaging 
parameters for risk stratification.

CT-FFR has been validated as an accurate approach 

https://cdn.amegroups.cn/static/public/QIMS-21-424-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-21-424-supplementary.pdf
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Figure 3 Representative case of a 72-year-old female showing increased CT-FFR and decreased FAI at follow-up CCTA. (A) The baseline 
CCTA revealed a mixed plaque with mild stenosis (white arrowhead) at the proximal LAD. The TPV was 244.02 mm3 and lesion-specific 
perivascular FAI was –86.6 HU. CT-FFR of this lesion was 0.90 (white arrow). (B) The follow-up CCTA (18 months later) demonstrated 
significant lesion regression (white arrowhead). Decreased TPV (71.1 mm3) and lesion-specific perivascular FAI (–106.1 HU) was observed, 
and increased CT-FFR (0.92, white arrow) was also noted. This patient was doing well until the end of follow-up. CCTA, coronary 
computed tomography angiography; CT, computed tomography; FAI, fat attenuation index; CT-FFR, computed tomography fractional flow 
reserve; LAD, left anterior descending; TPV, total plaque volume.

CT-FFR=0.90

CT-FFR=0.92

–190~–30HU

–190~–30HU

A

B

for noninvasive evaluation of the hemodynamic status 
of coronary stenosis (8,9), and the CT-FFR value is also 
thought to have predictive value for MACEs (18,19). 
However, these previous studies only focused on the 
baseline result of CT-FFR; the value of the dynamic 
changes of CT-FFR after OMT has not been explored. 
Given the fact the lesion-specific CT-FFR might change 
during follow-up (12), it is of clinical interest to investigate 
whether or not this serial change of CT-FFR is related to 
patient prognosis. According to the present findings, CT-
FFR decrease at follow-up CCTA was a strong independent 
predictor of MACE occurrence. △CT-FFR represents 
the serial change of hemodynamically significant coronary 
stenosis after medical treatment. In cases with CT-FFR 

decrease at follow-up, lesion progression (in terms of its 
hemodynamic significance) is considered to be present. 
Under these circumstances, aggravated angina symptoms 
and late revascularization are more likely to occur. 
Therefore, it is expected that CT-FFR decrease has a 
significant value in predicting for MACEs. 

In addition, it is also important to note that the predictive 
value of △CT-FFR was not evident at early follow-up, and 
was predominantly observed after 15 months. This could 
potentially be attributed to gradual lesion progression (in 
terms of its hemodynamic significance). In contrast to acute 
myocardial infarction caused by the rupture of vulnerable 
plaques, late revascularization is usually associated with the 
progression from non-flow-limiting lesions to flow-limiting 
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Table 2 Serial changes of imaging parameters between baseline and follow-up CCTA according to MACE

MACE after follow-up CCTA (n=38)
P value

MACE free after follow-up CCTA (n=225)
P value

Baseline Follow-up Baseline Follow-up

CAD-RADS (%)

CAD-RADS 1 0 (0) 0 (0) – 0 (0) 20 (8.9) <0.001

CAD-RADS 2 14 (36.8) 10 (26.3) 0.324 127 (56.4) 104 (46.2) 0.258

CAD-RADS 3 24 (63.2) 24 (63.2) 1.000 98 (43.6) 77 (34.2) 0.042

CAD-RADS 4A 0 (0) 4 (10.5) 0.058 0 (0) 24 (10.7) <0.001

CACS 74.05 (9.2–258.9) 129.3 (24.6–258.9) <0.001 59.4 (4.9–285.5) 90.6 (10.1–350.0) <0.001

MLA (mm2) 3.33±2.28 2.89±1.97 0.013 4.27±2.20 4.47±2.30 0.015

High-risk plaque features (%)

Napkin-ring sign 5 (13.1) 3 (7.9) 0.356 36 (16.0) 21 (9.3) 0.046

LAP 0 (0) 1 (2.6) 1.000 4 (1.8) 3 (1.3) 1.000

Spotty calcification 11 (28.9) 10 (26.3) 0.798 26 (11.6) 20 (8.9) 0.350

Positive remodeling 5 (13.2) 7 (18.4) 0.529 32 (14.2) 22 (9.8) 0.147

Total plaque volume (mm3) 67.0 (46.9–98.1) 76.5(49.7–104.0) 0.708 63.4 (39.3–112.5) 65.3 (38.1–122.5) 0.240

Noncalcified component volume (mm3) 45.2 (0.0–63.6) 34.0(0.0–71.2) 0.332 39.8 (0.0–72.8) 33.4 (0.0–71.9) 0.007

LAP volume (mm3) 0.54 (0.00–1.69) 0.12 (0.00–1.12) 0.578 0.54 (0.00–1.68) 0.10 (0.00–0.92) 0.198

Calcified component volume (mm3) 11.5 (0.0–43.9) 20.0 (0.0–50.9) 0.011 10.1 (0.0–44.4) 14.4 (0.0–58.4) <0.001

CT-FFR 0.85 (0.76-0.93) 0.80 (0.74–0.90) 0.010 0.90 (0.82–0.94) 0.91 (0.84–0.95) <0.001

FAI (HU) −71.3±7.1 −70.4±8.9 0.436 −72.4±11.5 −74.0±10.8 0.004

CACS, coronary artery calcium score; CAD-RADS, Coronary Artery Disease-Reporting and Data System; CCTA, coronary computed  
tomography angiography; CT-FFR, computed tomography fractional flow reserve; FAI, fat attenuation index; LAP, low attenuation plaque; 
MACE, major adverse cardiac event; MLA, minimal lumen area.

lesions. The latter is a relatively long-standing progress and 
its impact is conceivably more evident over a longer follow-
up period, as reflected by CT-FFR decrease. Furthermore, 
a small number of MACEs might have influenced the 
statistical results and led to nonsignificant findings in terms 
of the predictive value of △CT-FFR at early follow-up. 
Moreover, the predictive value of △CT-FFR was found to 
be mostly prominent in the noncalcified lesion subgroup. 
One recent study has demonstrated that the serial change 
of CT-FFR was more likely to be present in noncalcified 
plaques after statin treatment (12). The results of the 
present study complement this previous finding, as we 
further confirmed the prognostic value of the serial change 
of CT-FFR, especially in the noncalcified lesion subgroup.

Similar to △CT-FFR, lesion-specific FAI was also 
observed to change over time. In the current cohort, FAI 
increase at follow-up was a strong independent predictor 

of MACEs. This finding can be explained by the potential 
progression of perivascular inflammation caused by 
vulnerable plaques, which are prone to rupture and lead 
to acute coronary syndrome. Under these circumstances, 
the paracrine inflammatory signals from the vessel walls 
of vulnerable plaques may prevent lipid accumulation, 
which gives rise to increased perivascular FAI (20). The 
previous CRISP-CT (Cardiovascular RISk Prediction 
using Computed Tomography study) study confirmed 
the prognostic value of baseline FAI as increased FAI is 
associated with unfavorable clinical outcomes (6). However, 
a recent study showed that FAI value could be affected by 
different tube voltage settings (16), which might limit the 
value of an isolated interpretation of baseline FAI. In the 
present study, the baseline and follow-up FAI values were 
calculated using the CCTA data acquired with identical 
parameters. Thus, the △FAI reflected the real alteration of 
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Table 3 Univariable Cox regression analysis for prediction of MACEs 

HR 95% CI P value

Baseline characteristics

Gender 0.973 0.481–1.966 0.939

Age 0.996 0.967–1.026 0.775

Risk factors

Hypertension 2.169 1.040–4.522 0.039

Diabetes mellitus 1.033 0.527–2.026 0.925

Dyslipidemia 2.051 1.075–3.912 0.029

Smoking 0.967 0.467–1.999 0.927

CACS 0.895 0.733–1.094 0.278

CCS angina type 2.294 1.635–3.218 <0.001

Diamond-Forrester score 2.388 1.251–4.560 0.008

CAD-RADS 1.787 0.935–3.415 0.079

CT-FFR 1.039 1.012–1.067 0.004

FAI 0.860 0.613–1.206 0.382

High-risk plaque* 2.175 1.026–4.610 0.037

Serial change

MLA, per 1 mm2 increase 0.633 0.492–0.815 <0.001

Total plaque volume, per 1 mm3 increase 1.000 0.991–1.009 0.999

Noncalcified component volume, per 1 mm3 increase 1.003 0.993–1.014 0.514

Calcified component volume, per 1 mm3 increase 0.989 0.969–1.009 0.278

LAP volume, per 1 mm3 increase 1.007 0.912–1.112 0.891

CT-FFR

Per 0.01 decrease 1.070 1.033–1.107 <0.001

Decreased CT-FFR 2.912 1.413–5.999 0.003

Before 15th month after second CCTA 1.000 0.322–3.100 0.999

15th month to end 5.520 1.167–26.14 0.031

FAI

FAI, per 10 HU increase 1.581 0.987–2.531 0.057

Increased FAI 3.185 1.616–6.279 0.001

*, patients with presence of at least 2 high-risk plaque features. CACS, coronary artery calcium score; CAD-RADS, Coronary Artery 
Disease-Reporting and Data System; CCS, Canadian Cardiovascular Society; CCTA, coronary computed tomography angiography;  
CI, confidence interval; CT-FFR, computed tomography fractional flow reserve; FAI, fat attenuation index; HR, hazard ratio; LAP, low  
attenuation plaque; MACE, major adverse cardiac event; MLA, minimal lumen area.
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Table 4 Multivariable Cox regression analysis for prediction of MACE

Characteristics HR 95% CI P value

Clinical model

Hypertension 2.991 1.138–6.477 0.005

Dyslipidemia 1.460 0.758–2.816 0.258

CCS angina type 1.903 1.350–2.683 0.001

Decreased CT-FFR 3.172 1.524–6.604 0.002

Before 15th month after second CCTA 1.125 0.361–3.508 0.839

15th month to end 5.576 1.178–26.407 0.030

Increased FAI 3.189 1.594–6.381 0.001

Imaging model

Decreased MLA 0.710 0.539–0.935 0.015

Noncalcified plaque 0.993 0.983–1.003 0.148

High-risk plaque* 2.900 1.347–6.242 0.007

Decreased CT-FFR 2.647 1.195–5.863 0.016

Before 15th month after second CCTA 0.924 0.281–3.039 0.897

15th month to end 5.610 1.184–26.583 0.030

Increased FAI 2.819 1.384–5.740 0.004

*, patients with presence of at least 2 high-risk plaque features. CACS, coronary artery calcium score; CAD-RADS, Coronary Artery 
Disease-Reporting and Data System; CCS, Canadian Cardiovascular Society; CCTA, coronary computed tomography angiography;  
CI, confidence interval; CT-FFR, computed tomography fractional flow reserve; FAI, fat attenuation index; HR, hazard ratio; LAP, low  
attenuation plaque; MACE, major adverse cardiac event; MLA, minimal lumen area.

Table 5 Incremental value of serial changes of CT-FFR and FAI over conventional clinical and imaging parameters

C-statistic 95% CI P value

Model 1 0.673 0.585–0.761 –

Model 2 0.716 0.624–0.812 0.019*

Model 3 0.762 0.676–0.848 0.004#

Model 1 was adjusted for age, gender, hypertension (HTN), series change of MLA, and high-risk plaque. Model 2 was adjusted for HTN, 
series change of MLA, high-risk plaque, and FAI change. Model 3 was adjusted for the same variables as model 2 as well as FFR change. 
*, P stands for the comparison of models 1 and 2. #, P stands for the comparison of models 2 and 3. CI, confidence interval; CT-FFR,  
computed tomography fractional flow reserve; FAI, fat attenuation index; MACE, major adverse cardiac event; MLA, minimal lumen area.

pericoronary adipose tissue density with elimination of the 
impact of extrinsic technical factors. Moreover, the △FAI 
was a strong independent predictor of MACEs, while the 
absolute baseline FAI was not. This could also be attributed 
to the varying range of FAI caused by different tube voltage 
settings.

The potential clinical implications of the present study 
are outlined below. First, as shown in the current study, 

△CT-FFR and △FAI outperformed baseline CT-FFR 
and FAI in the prediction of MACEs. Serial changes of 
CT-FFR and FAI offer novel ways to evaluate the risk of 
MACEs in patients with intermediate pretest probability of 
obstructive CAD. Although previous studies have addressed 
the prognostic value of CT-FFR and FAI (6,19), those 
values only represent the baseline status of hemodynamic 
significance and perivascular inflammation. OMT is usually 
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given to patients and may lead to dynamic changes of CT-
FFR and FAI (7,12). Thus, it is thought to be of greater 
clinical importance to associate clinical outcomes with the 
medical treatment response, which can be reflected by 
the serial changes of CT-FFR and FAI. Second, the serial 
changes of CT-FFR and FAI provide incremental values 
over conventional risk factors for prognosis evaluation. 
The model integrating clinical characteristics, conventional 
imaging features, and serial changes of CT-FFR and FAI 
had the highest performance in predicting the composite 
end point. In light of this finding, follow-up CCTA might 
be warranted to monitor the dynamic changes of CT-
FFR and FAI and therefore guide the treatment strategy 
according to the follow-up imaging results.

Despite these promising results, this study has several 
limitations that should be noted. First, the current cohort 
was restricted to symptomatic patients with an intermediate 
pretest probability of obstructive CAD, in whom CCTA 
revealed 30–70% DS on at least 1 major epicardial vessel. 
Low- or intermediate-risk patients without ≥30% DS on 
major epicardial vessels were not included. In addition, 
compared to a previous study, the image quality of patients 
with chronic chest pain was superior to those with acute 
chest pain (21). The success rate of CT-FFR simulation 
is different between patients with chronic and acute chest 
pain. Thus, the present findings cannot be applied to the 
entire population in the clinical practice of cardiology. 
Thirdly, the small sample size and number of MACEs in 
this study also limit the interpretability of the prognostic 
value of △CT-FFR and △FAI in clinical practice. Finally, 
the current research was an observational study and not an 

interventional one. Thus, the optimal treatment strategy in 
patients with decreased CT-FFR and increased FAI remains 
unclear and requires further investigation in future studies.

In conclusion, decreased CT-FFR and increased FAI 
at follow-up CCTA were the 2 strongest predictors of 
MACEs. Serial changes of CT-FFR and FAI may provide 
incremental prognostic value over conventional clinical and 
imaging parameters for risk stratification.
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Supplementary

CT acquisition and reconstruction

Three models of CT scanners, including 128-slice 
multidetector CT (Definition AS+, Siemens Healthineers, 
Germany), second generation dual source CT (SOMATOM 
Flash, Siemens Healthineers, Germany) and 256-slice CT 
scanner (Brilliance iCT, Philips Healthcare, USA), were 
employed for CCTA imaging. Beta-blocker (25 to 50 mg, 
Betaloc ZOK; AstraZeneca, China) was administered orally 
one hour prior to the examination in patients with baseline 
heart rate ≥70 bpm and scanned by 128-slice multidetector 
CT and 256-slice CT scanner. For patients scanned by 
dual source CT, beta-blocker was not used. Nitroglycerin 
was given sublingually in all patients from three sites. 
Prospective ECG-triggered sequential acquisition was used 
in all patients with the triggering window covering from 
end-systolic to mid-diastolic phase (from 35% to 75% of 
R-R interval). Same acquisition parameters were used for 
baseline and follow-up CCTA in each individuals.

For 128-s l ice  mult idetector  CT, the  scanning 
parameters were listed as follow: collimation =64×0.6 mm, 
reconstructed slice thickness =0.6 mm, reconstructed slice 
interval =0.5 mm, rotation time =300 ms and application of 
automated tube voltage and current modulation (CAREKv, 
CAREDose 4D, Siemens Healthineers, Germany). The 
reference tube current was set as 250 mAs and the reference 
tube voltage was set as 100 kVp. All CCTA data was 
reconstructed with a smooth kernel (B26f).

For second generation dual source CT, the scanning 
parameters were: collimation =64×0.6 mm, reconstructed 
slice thickness =0.75 mm, reconstructed slice interval =0.5 
mm, rotation time =280 ms and application of automated 
tube voltage and current modulation (CAREKv, CAREDose 
4D, Siemens Healthineers, Germany). The reference tube 
current was set as 350 mAs and the reference tube voltage 
was set as 100 kVp. All CCTA data was reconstructed with 
a medium soft kernel (I26f) and second generation iterative 
reconstruction technique (SAFIRE, strength level 3, 
Siemens Healthineers, Germany).

For 256-slice CT, the scanning parameters were: 
collimation = 128×0.625 mm, reconstructed slice thickness 
= 0.9 mm, reconstructed slice interval = 0.45mm, rotation 
time = 270 ms, tube voltage = 120 kVp, effective tube 
current = 210 mAs. All CCTA data was reconstructed with 
a smooth kernel (XCB) and hybrid iterative reconstruction 
technique (iDose4, Philips Healthcare, USA).

CT-based plaque and FAI analysis

Conventional  qualitat ive and quantitative plaque 
parameters were evaluated via a dedicated plaque analysis 
software (Coronary Plaque Analysis, version 4.3, Siemens 
Healthineers, Germany). The following indices were 
measured and recorded: (I) Diameter stenosis (DS) 
was calculated as (reference diameter – minimal lumen 
diameter)/reference diameter and was measured manually 
with a digital caliper at the narrowest level of the lesion and 
the proximal reference on the cross-sectional images; (II) 
Remodeling index was defined as a maximal lesion vessel 
diameter divided by proximal reference vessel diameter (at 
the site where no plaque component can be detected), with 
positive remodeling (PR) defined as a remodeling index 
≥ 1.1; (III) Low-attenuation plaque (LAP) was defined as 
any voxel <30 HU within a coronary plaque; (IV) Spotty 
calcification (SC) was defined by an intra-lesion calcific 
plaque <3 mm in length that comprised <90 degrees of 
the lesion circumference; (V) Napkin-ring sign (NRS) was 
characterized by a plaque core with low attenuation areas 
on CT surrounded by a rim-like area of higher attenuation 
as previously reported. Lesions with at least two high-risk 
plaque features (PR, LAP, SC and NRS) were deemed high-
risk plaques (HRPs).

A dedicated FAI analysis software (Coronary FAI 
Analysis, version 1.0.2, Siemens Healthineers, Germany) 
was used for quantification. The length of the lesion-based 
perivascular FAI was defined as the length from the proximal 
to the distal shoulder of the lesion, where no plaque could 
be detected. In brief, perivascular adipose tissue was sampled 
radially outward from the outer vessel wall of the plaques 
and measured as voxels with attenuation between −190 HU 
and −30 HU. FAI was defined as the mean CT attenuation 
of adipose tissue, which was within a radial distance from 
the outer vessel wall equal to the diameter of the target 
vessel. For the on-site processing, after CCTA data were 
successfully loaded, the centerline and luminal contours 
for whole coronary tree were automatically generated. The 
centerline and luminal contour are fundamental and critical 
information for computing FAI value. They were manually 
adjusted when needed. Users then identified all stenotic 
lesions from proximal end to distal end, where no plaque 
was present. After then, the radius from the outer vessel 
wall was input to calculate the mean density of tissue with 
CT attenuation between -190 HU and -30 HU within this 
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volume of interest. Myocardial tissue adjacent to the vessel 
wall and coronary side branch originated from the vessel of 
interest was manually excluded in all cases when necessary.

CT-FFR measurement

As introduced recently, we used a machine-learning 
based algorithm for CT-FFR simulation (cFFR, version 
3.0, Siemens Healthineers). It’s an alternative to physics-
based approach and can be used on-site to calculate CT-
FFR value. It’s trained using a synthetically generated 
database of 12,000 different anatomies of coronary arteries 
with randomly placed stenosis among different branches 
and bifurcations. A computational fluid dynamics (CFD) 
by solving reduced-ordered Navier-Stokes equations is 
applied to calculate the pressure and flow distribution for 
each coronary tree. Quantitative features of anatomy and 

computed CT-FFR value were extracted for each location 
along the coronary tree. Then deep machine learning model 
is trained by using a deep neural network with four hidden 
layers to learn the relationship between the FFR value and 
quantitative anatomic features.

For the on-site processing, after CCTA data were 
successfully loaded, the centerline and luminal contours 
for whole coronary tree were automatically generated. 
The centerline and luminal contour are fundamental and 
critical information for computing CT-FFR value. They 
were manually adjusted when needed. Users then manually 
identified all stenotic lesions to extract their geometrical 
features required for cFFR algorithm. Finally, those data 
were input into the pre-learned model and cFFR was 
computed automatically at all locations in the coronary 
arterial tree, and the resulting values were visualized by 
color-coded 3D coronary maps.

Table S1 Interobserver reproducibility

ICC 95% CI P value

MLA 0.958 0.946-0.967 <0.001

Total plaque volume 0.863 0.826-0.893 <0.001

Non-calcified component volume 0.861 0.823-0.891 <0.001

LAP volume 0.853 0.816-0.883 <0.001

CT-FFR 0.979 0.967-0.986 <0.001

FAI 0.921 0.899-0.983 <0.001

Kappa 95% CI P value

Spotty calcium 0.944 - <0.001

Napkin-ring sign 0.898 - <0.001

Positive remodeling 0.926 - <0.001

Low attenuation plaque 0.947 - <0.001

CI, Confidence interval; CT-FFR, CT derived fractional flow reserve; FAI, fat attenuation index; ICC, Intraclass correlation coefficient; LAP, 
low attenuation plaque; MLA, Minimal lumen diameter
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Table S2 Intra-observer reproducibility

ICC 95% CI P value

MLA 0.919 0.898-0.936 <0.001

Total plaque volume 0.848 0.806-0.881 <0.001

Non-calcified component volume 0.838 0.793-0.873 <0.001

LAP volume 0.815 0.768-0.853 <0.001

CT-FFR 0.959 0.937-0.972 <0.001

FAI 0.911 0.875-0.936 <0.001

Kappa 95% CI P value

Spotty calcium 0.962 - <0.001

Napkin-ring sign 0.815 - <0.001

Positive remodeling 0.961 - <0.001

Low attenuation plaque 0.938 - <0.001

CI, Confidence interval; CT-FFR, CT derived fractional flow reserve; FAI, fat attenuation index; ICC, Intraclass correlation coefficient; LAP, 
low attenuation plaque; MLA, Minimal lumen diameter.

Table S3 Cox Regression analysis result of Model 3

Characteristics HR 95% CI P value

Hypertension 3.145 1.401-7.065 0.006

Decreased MLA 0.677 0.507-0.905 0.008

High-risk plaque* 2.023 0.927-4.440 0.079

Decreased CT-FFR 2.455 1.131-5.328 0.023

Before 15th month after second CCTA 0.835 0.2581-2.704 0.763

15th month to end 5.838 1.232-27.664 0.026

Increased FAI 2.956 1.472-5.934 0.002

* Defined as patients with presence of at least two high-risk plaque features. CCTA, coronary computed tomography angiography; CI, 
confidence interval; CT-FFR, computed tomography fractional flow reserve; FAI, fat attenuation index; HR, hazard ratio; MLA, minimal  
lumen area.
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Table S4 Multivariable Cox regression analysis including Diamond-Forrester score for prediction of MACE

Characteristics HR 95% CI P value

Clinical model

Hypertension 2.595 1.174-5.736 0.018

Dyslipidemia 1.365 0.703-2.651 0.358

Diamond-Forrester score 1.842 0.942-3.601 0.074

Decreased CT-FFR 3.071 1.489-6.376 0.002

Before 15th month after second CCTA 1.091 0.351-3.400 0.879

15th month to end 5.555 1.173-26.309 0.031

Increased FAI 3.129 1.559-6.282 0.001

CCTA, coronary computed tomography angiography; CI, confidence interval; CT-FFR, computed tomography fractional flow reserve; FAI, 
fat attenuation index; HR, hazard ratio; MLA, minimal lumen area.


