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Dual-source dual-energy computed tomography-derived 
quantitative parameters combined with machine learning for the 
differential diagnosis of benign and malignant thyroid nodules
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Background: This study aimed to investigate the ability of quantitative parameter-derived dual-source 
dual-energy computed tomography (DS-DECT) combined with machine learning to distinguish between 
benign and malignant thyroid nodules.
Methods: Patients with thyroid nodules and pathological surgical results who underwent preoperative 
DS-DECT were selected. Quantitative parameter-derived DS-DECT was applied to classify benign and 
malignant nodules. Then, machine learning and binary logistic regression analysis models were constructed 
using the DS-DECT quantitative parameters to distinguish between benign and malignant nodules. The 
receiver operating characteristic curve was used to assess the diagnostic performance. The DeLong test was 
used to compare the diagnostic efficacy.
Results: One hundred and thirty patients with 139 confirmed thyroid nodules were involved in the 
study. The malignant group had a significantly higher iodine concentrationnodule (arterial phase) (P=0.001), 
normalized iodine concentration (arterial phase) (P=0.002), iodine concentration difference (P<0.001), 
spectral curve slope (nonenhancement) (P=0.007), spectral curve slope (arterial phase) (P=0.001), effective 
atomic number (nonenhancement) (P<0.001), and effective atomic number (arterial phase) (P=0.039) than 
the benign group. The binary logistic regression analysis model had an AUC (area under the curve) of 0.76, a 
sensitivity of 0.821, and a specificity of 0.667. The machine learning model had an AUC of 0.86, a sensitivity 
of 0.822, specificity of 0.791 in the training cohort, an AUC of 0.84, a sensitivity of 0.727, and specificity of 
0.750 in the testing cohort.
Conclusions: Multiple quantitative parameters of DS-DECT combined with machine learning could 
differentiate between benign and malignant thyroid nodules.
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Introduction

With the increasing use of medical imaging for screening, 
diagnosis, and treatment response evaluation in recent 
decades, as many as 67% of thyroid incidentalomas are 
detected in the general population (1,2). The malignancy 
rate of thyroid nodules is 10–15% (3). Differentiating 
malignant thyroid nodules from benign ones is important in 
planning further therapeutic approaches and the extent of 
surgical intervention.

Ultrasonography is the primary imaging test used to 
detect thyroid nodules, but it has some limitations in 
showing the relationship of the tumor to the surrounding 
structures and in identifying lymph node metastasis (4,5). 
Fine-needle aspiration is an invasive examination, and 
one-third of the results are inconclusive (3). With the 
rapid development of magnetic resonance imaging, some 
functional sequences have achieved better diagnostic 
performance, but this method has the disadvantages of being 
high cost and time-consuming (6). Computed tomography 
(CT) can be used to identify nodules, establish preoperative 
localization, provide information for the diagnosis, and 
assess the therapeutic effect. However, conventional CT 
is limited in differentiating between benign and malignant 
thyroid nodules due to beam hardening artifacts and poor 
contrast with the surrounding thyroid tissue (7).

The recent technical advance of dual-source dual-
energy CT (DS-DECT) has improved the situation, as 
this method uses two different X-ray sources, allowing for 
the simultaneous use of two different energies to achieve 
potential tissue differentiation. The advanced quantitative 
technique can separate several types of substances, such as 
water, iodine, calcium, uric acid, and fat (8-11). Quantitative 
iodine parameters have been considered a promising tool 
for distinguishing malignant from benign tumors (12-15). 
Spectral curves and the effective atomic number (Zeff) have 
helped identify benign and malignant tumors, histological 
type, and differentiation degree (16-19). Quantitative dual-
energy CT (DECT) analysis has distinguished invasive 
adenocarcinoma from noninvasive or minimally invasive 
adenocarcinoma among pulmonary ground-glass opacity 
nodules (13). In addition, the DS-DECT quantitative 
technique has been used to discriminate the expression 
status of immunohistochemical biomarkers of invasive breast 
cancer (20). Previous studies have demonstrated the potential 
value of quantitative parameters of DECT in the differential 
diagnosis of benign and malignant thyroid nodules (21-24). 
However, few studies have used iodine concentration (IC), 

energy curve, and Zeff as the quantitative parameters.
With the rapid evolution of machine learning, clustering 

algorithms can assign data points to discrete groups to 
maximize within-group similarities and between-group 
differences. A previous study reported that machine 
learning of DECT had a better diagnostic performance 
than qualitative evaluation of CT image features for 
preoperatively diagnosing cervical lymph node metastases in 
papillary thyroid cancer patients (25). We hypothesize that 
the different properties of benign and malignant thyroid 
nodules can be reflected by the quantitative parameters 
derived from DS-DECT. The present study obtained 
quantitative parameters in the nonenhanced and arterial 
phases and constructed a model to classify benign and 
malignant thyroid nodules.

We present the following article in accordance with the 
STARD reporting checklist  (available at https://dx.doi.
org/10.21037/qims-21-501).

Methods

Patient collection and thyroid nodule selection

This was a retrospective study of DS-DECT scans 
(SOMATOM Drive, Siemens Healthineers, Forchheim, 
Germany) of the neck region. Data collection was planned 
after pathological surgical results were obtained. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). The study was approved by 
the Ethics Committee of the Chongqing University Cancer 
Hospital, and the requirement for informed consent was 
waived. Patients who underwent CT scanning of thyroid 
nodules in our hospital between November 2019 and 
November 2020 were eligible for inclusion. Patients formed 
a consecutive series. The inclusion criteria were as follows: 
(I) pathological surgical results were available within a week 
of the CT examination; (II) the nodules were solid or mixed 
cystic; (III) only the largest nodule was selected when there 
were more than two nodules in one lobule. The exclusion 
criteria were as follows: (I) the presence of obvious artifacts; 
(II) patients had received a needle biopsy or therapy before 
the CT examination; (III) the nodule diameter was <10 mm;  
(IV) the pathological results were indeterminate. The 
screening flow chart is shown in Figure 1.

Sample size

There are no generally accepted approaches to estimate the 

https://dx.doi.org/10.21037/qims-21-501
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sample size required for derivation and validation studies of 
prediction models. However, we ensured that the study met 
the suggested requirements of having at least ten events per 
candidate variable to derive a model and at least 100 events 
for the validation study.

Examination method

A dual-energy protocol was used with tube A (Sn 140 KVp,  
104 mAs) and tube B (Sn 100 KVp, 134 mAs) with a 
reformatted slice thickness of 1.5 mm, a collimation 
thickness of 32×0.6 mm, a matrix of 512×512, and a helical 
pitch of 0.7. The reconstruction kernel of the monoenergetic 
image was Q30f, and the iterative reconstruction algorithm 
used was Advanced Modeled Iterative Reconstruction 
(ADMIRE). The range extended from the petrous temporal 
bone to the thoracic entrance. The nonenhanced scan was 
acquired first. Patients were injected with a nonionic contrast 
material via an antecubital vein at a rate of 2–2.5 mL/s  
(1.5 mL/kg ioversol, 320 mg/mL iodine, HENGRUI 
Medicine, Jiangsu, China). After the injection, 20 mL of 
saline was transfused. The arterial phase scans were started 
using a bolus-tracking technique with a threshold of 100 Hu 
in the aorta arch and an additional delay of 7 s. The dose 
length product was 444.29±156.27 mGy. The CT dose index 
was 19.18±5.82 mGy.

Thyroid nodule analysis

All dual-energy scanning data were processed in viewer 
software on a syngo.via workstation (syngo.via VB20A, Dual 
Energy, Siemens Healthineers). The slice that best showed 
the boundary and parenchyma of the nodule was selected. 
The largest possible (round) region of interest (ROI) of 
the nodule was placed within the enhanced parenchyma of 
the nodule (Figures 2,3). The measurements were taken by 
two independent observers [observer 1 (L.L.J) and observer 
2 (J.C) with two and six years of experience in thyroid 
imaging, respectively]. The observers were only aware of 
the location and diameter of the lesions and were blind to 
the pathological surgical results. The measurement was 
repeated one month later by observer 1.

A quantitative analysis of IC and normalized iodine 
concentration (NIC) was carried out with virtual non-
enhanced module. To minimize variation caused by the 
patient’s hormone and/or circulation status, the NIC was 
computed according to the IC of the thyroid parenchyma 
(NIC-P) and carotid artery (NIC-A). The ROI of the 
carotid artery was placed on the ipsilateral carotid artery. An 
ROI of the thyroid parenchyma was placed on the normal 
thyroid parenchyma, as close as possible to the ipsilateral 
thyroid parenchyma if there was epibiotic normal thyroid 
parenchyma. To reflect the blood flow of the nodules, the 

Figure 1 Flowchart showing the screening strategy for patients in this study.

Patients with thyroid nodule underwent CT examination from 
November 2019 to November 2020 (patients =281)

Patients had surgical pathological results within a week after CT 
(patients =157, nodules =177)

The nodules finally were included 
(patients =130, nodules =139)

Malignant thyroid nodules 
(patients =64, nodules =67)

Benign thyroid nodules 
(patients =66, nodules =72)

Excluded patients (patients =124)
• Without/inconclusive pathological information (patients =119)
• Patients had needle biopsy or therapy before CT (patients =5)

Excluded nodules (patients =27, nodules =38)
• Obvious artifacts (patients =2, nodules =2)
• Nodule diameter <10 mm (patients =15, nodules =15)
• Nodules were pure cyst (patients =10, nodules =21)
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iodine concentration difference (ICD) was computed. The 
same ROI was applied for IC and NIC measurements in 
the nonenhanced and arterial phase images. The NIC-P  
(Eq. [1]), NIC-A (Eq. [2]), and ICD (Eq. [3]) were 
calculated by the following formulas:

 nodule thyroid parenchymaN IC ICIC P− = ∕  [1]

 nodule carotid arteryIC INIC A C− = ∕  [2]

( ) ( ) nodule noduleIC arterial phase IC nonenhancementICD −=  
[3]

A quantitative analysis of the slope of the spectral 
Hounsfield unit  curve (λHu)  was carried out with 
monoenergetic+ in the nonenhanced and arterial phases. 
Selecting the module as “monoenergetic plus ROI”, the 
largest possible (round) ROI was placed on the thyroid 
nodule on the monoenergetic images (70 KeV) (26). Lastly, 
the dual-energy spectral curve was obtained from 40 to 
190 keV monochromatic energy images and plotted on 
the graph as different CT density values for various energy 

levels. The slope of the spectral Hounsfield unit curve  
(Eq. [4]) was calculated by the following formula (15): 

40 100
u 100 40

keV keV
H

Hu Hu−
λ =

−
 [4]

Quantitative analysis of Zeff was carried out with Rho/
Z. Rho/Z was measured in the nonenhanced and arterial 
phases. The same ROI was applied for the Zeff measurement. 
Every measurement was acquired on the same slice.

Histopathologic examination

A c c o r d i n g  t o  t h e  e s t a b l i s h e d  c o n v e n t i o n ,  t h e 
histopathologic examination was used as the reference 
standard. Tissue samples of each nodule were obtained 
from the operation. Surgically resected nodules were 
subjected to an intra-operative frozen section analysis 
for preliminary risk assessment. The final diagnosis was 
based on the postoperative paraffin section pathological 
examination. In the event of suspicious malignant samples 
or atypical samples, immunohistochemical staining was 

Figure 2 Images of a 23-year-old male with papillary carcinoma: (A) the arterial polyenergetic image is selected as the reference to draw 
the region of interest; (B) ICnodule (nonenhancement) is 0.3 mg/mL; (C) Zeff (nonenhancement) is 7.71; (D) λHu (nonenhancement) of the 
energy curve is 0.46; (E) ICnodule (arterial phase) is 5.3 mg/mL, and NIC-P (arterial phase) is 92.4%; (F) ICnodule (arterial phase) is 5.3 mg/mL,  
and NIC-A (arterial phase) is 41.4%; (G) Zeff (arterial phase) is 9.65; (H) λHu (arterial phase) of the energy curve is 5.72. IC, iodine 
concentration; Zeff, effective atomic number; λHu, spectral curve slope.
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Figure 3 Images of a 41-year-old male with follicular adenoma: (A) the arterial polyenergetic image is selected as the reference to draw 
the region of interest; (B) ICnodule (nonenhancement) is 0.5 mg/mL; (C) Zeff (nonenhancement) is 7.58; (D) λHu (nonenhancement) of the 
energy curve is 0.28; (E) ICnodule (arterial phase) is 4.3 mg/mL, and NIC-P (arterial phase) is 97.0%; (F) ICnodule (arterial phase) is 4.3 mg/mL,  
and NIC-A (arterial phase) is 57.7%; (G) Zeff (arterial phase) is 9.39; (H) λHu (arterial phase) of the energy curve is 4.95. IC, iodine 
concentration; Zeff, effective atomic number; λHu, spectral curve slope.
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applied to differentiate benign from malignant nodules. 
An experienced pathologist determined all diagnoses. 
According to the pathological results, the nodules were 
assigned to either the benign or malignant groups.

Statistical analysis

Statistical analyses were performed using SPSS (version 
25.0), and the results were considered statistically significant 
at P<0.05. All variables of the quantitative parameters 
derived from multiple phase DS-DECT were exploratory. 
The interclass correlation coefficient (ICC) was used to 
test the interobserver reliability. Multiple quantitative 
parameters derived from DS-DECT were compared 
between the benign group and the malignant group. 
Tests for normality were performed using the Shapiro-
Wilk test. Normally distributed continuous variables were 
compared using Student’s t-test, which included NIC-P 
(arterial phase), λHu (nonenhancement), and Zeff (arterial 
phase). Other variables were compared using the Mann-
Whitney U test, which included ICnodule (nonenhancement), 

ICnodule (arterial phase), NIC-A (arterial phase), ICD, λHu 
(arterial phase), and Zeff (nonenhancement). If the P values 
for the variables were <0.05, the quantitative parameters 
derived from the multiple phase DS-DECT were entered 
into a binary logistic regression analysis to calculate the 
odds ratios (OR) and 95% confidence intervals (CI). All 
statistically significant variables were entered into a further 
multiple logistic regression analysis to build a prediction 
model of malignant nodules.

Machine learning was performed using Python (version 
3.7) and R (version 4.0.1). Python was used to establish the 
feature selection and to construct a prediction model. R was 
used to compare the diagnostic efficacy. The patients were 
randomly assigned to the training group and testing group 
at a ratio of 2:1. The training group was used for feature 
selection and to create the prediction model. We used the 
least absolute shrinkage and selection operator (LASSO) 
algorithm to select key features. The LASSO algorithm was 
used to eliminate features with the greatest redundancy. A 
naive LASSO penalty was used to optimize the classifier. 
A linear discriminant analysis (LDA) based on the key 
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features was used to construct the models. Before the model 
construction, data normalization was performed to avoid 
bigger ranges dominating those in smaller ranges. We used 
5-fold cross-validation results to evaluate the performance 
of a specific machine learning classifier, where “accuracy” 
was chosen as the optimization metric to select the classifier. 
The key features included Zeff (nonenhancement), λHu 
(arterial phase), ICD, NIC-P (arterial phase), and ICnodule 
(arterial phase). The DeLong test was used to compare the 
diagnostic efficacy.

Results

Clinical data

A total of 281 patients were identified for this study: 64 
males and 217 females, with an age range of 16–86 years. Of 
these, 117 patients did not show pathological results, and the 
clinician diagnosed their nodules as benign. The pathological 
results of the two patients were inconclusive. One case had 
follicular adenoma with atypical hyperplasia, and another 
case had nodular goiters with focal cancerous lesions. Five 
patients with papillary carcinoma had received a needle 
biopsy or therapy before the CT examination. The images 
from two patients had obvious artifacts. Fifteen patients had 
micropapillary carcinoma, and ten patients had follicular 
adenoma with cystic degeneration. Ultimately, 130 patients 
were included in this study, of which 102 were females, 
and 28 were males, with an age range of 18–84 years.  
The malignant group comprised 52 females and 12 males 
aged 18–84 years old. The benign group comprised 50 

females and 16 males aged 26–73 years old. Among the 
139 nodules from 130 patients, 67 nodules were malignant 
(64 papillary carcinomas, two follicular carcinomas, and 
one medullary carcinoma), and 72 nodules were benign 
(46 follicular adenomas, 20 nodular goiters, two subacute 
thyroiditis, two Hashimoto’s thyroiditis, one granulomatous 
thyroiditis, and one oxyphilic cell adenoma). There were no 
adverse events in this study. 

Comparison of the DS-DECT quantitative parameters 
between the malignant and benign groups

The results are summarized in Table 1. The malignant 
group had a significantly higher ICnodule (arterial phase) 
(P=0.001), NIC-P (arterial phase) (P=0.002), ICD (P<0.001), 
λHu (nonenhancement) (P=0.007), λHu (arterial phase) 
(P=0.001), Zeff (nonenhancement) (P<0.001) and Zeff (arterial 
phase) (P=0.039) than the benign group (Table 1). The 
interobserver reproducibility for measuring thyroid nodules 
with the DS-DECT parameters is summarized in Table 2.

Binary logistic regression analysis of DS-DECT 
quantitative parameters for the prediction of malignant 
nodules

In the univariate binary logistic regression analysis, 
ICnodule (arterial phase) (P=0.004), NIC-P (arterial phase) 
(P=0.003), ICD (P=0.001), λHu (arterial phase) (P=0.001), 
Zeff (nonenhancement) (P<0.001), and Zeff (arterial phase) 
(P=0.042) reached statistical significance (Table 3). All the 

Table 1 Quantification parameters of DS-DECT between the benign and malignant groups

Parameters Malignant group (n=67) Benign group (n=72) P

ICnodule (nonenhancement) (mg/mL) 0.48±0.30 0.53±0.58 0.261

ICnodule (arterial phase) (mg/mL) 3.21±1.46 2.43±1.56 0.001

NIC-P (arterial phase) (%) 68.93±29.19 51.84±31.22 0.002

NIC-A (arterial phase) (%) 33.63±15.65 30.52±20.44 0.062

ICD (mg/mL) 1.80±1.46 0.99±1.09 <0.001

λHu (nonenhancement) 2.19±1.93 1.61±1.96 0.007

λHu (arterial phase) 3.28±1.58 2.32±1.72 0.001

Zeff (nonenhancement) 7.80±0.22 7.62±0.26 <0.001

Zeff (arterial phase) 8.86±0.62 8.61±0.72 0.039

DS-DECT, dual-source dual-energy computed tomography; IC, iodine concentration; NIC-P, ICnodule/ICthyroid parenchyma; NIC-A, ICnodule/ICcarotid artery;  
ICD, ICnodule_arterial phase − ICnodule_nonenhancement; λHu, slope of the spectral Hounsfield unit curve; Zeff, effective atomic number.
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statistically significant variables were entered into a further 
multiple logistic regression analysis to build the prediction 
model for malignant nodules. The prediction model had an 
AUC of 0.76, sensitivity of 0.821, and specificity of 0.667 
(Table 4). The ROCs of the prediction are shown in Figure 4.

Machine learning result of DS-DECT quantitative 
parameters for the prediction of malignant nodules

There were 45 malignant nodules and 48 benign nodules in 

the training cohort. There were 22 malignant nodules and 
24 benign nodules in the testing cohort. The 5-fold cross-
validation curves of the model training procedure are shown 
in Figure 5. In the training cohort, the prediction model had 
an AUC of 0.86, sensitivity of 0.822, specificity of 0.791, 
and accuracy of 0.806 (Table 5). In the testing cohort, the 
prediction model had an AUC of 0.84, a sensitivity of 0.727, 
a specificity of 0.750, and an accuracy of 0.739 (Table 5). 
The ROCs of the training and testing groups are shown 
in Figure 6. The DeLong test showed that the AUC of the 

Table 2 The interobserver and intraobserver reproducibility for measuring thyroid nodules with DS-DECT parameters

Parameters Interobserver (95% CI) Intraobserver (95% CI)

ICnodule (nonenhancement) 0.857 (0.805–0.895) 0.925 (0.897–0.946)

ICnodule (arterial phase) 0.951 (0.932–0.965) 0.986 (0.980–0.990)

NIC-P (arterial phase) 0.962 (0.947–0.973) 0.973 (0.963–0.981)

NIC-A (arterial phase) 0.889 (0.849–0.920) 0.937 (0.913–0.955)

λHu (nonenhancement) 0.979 (0.971–0.985) 0.995 (0.993–0.996)

λHu (arterial phase) 0.893 (0.853–0.922) 0.971 (0.959–0.979)

Zeff (nonenhancement) 0.626 (0.513–0.717) 0.838 (0.781–0.882)

Zeff (arterial phase) 0.832 (0.772–0.877) 0.950 (0.931–0.964)

DS-DECT, dual-source dual-energy computed tomography; CI, confidence interval; ROI, region of interest; IC, iodine concentration; NIC-P, 
ICnodule/ICthyroid parenchyma; NIC-A, ICnodule/ICcarotid artery; λHu, slope of the spectral Hounsfield unit curve; Zeff, effective atomic number.

Table 3 The univariate binary logistic regression analysis with DS-DECT parameters for prediction of malignant nodules

Parameters 95% CI OR β P

ICnodule (arterial phase) 1.112–1.778 8.115 1.406 0.004

NIC-P (arterial phase) 1.006–1.030 8.067 1.018 0.003

ICD 1.228–2.215 11.067 1.649 0.001

λHu (nonenhancement) 0.977–1.391 2.895 1.166 0.089

λHu (arterial phase) 1.144–1.761 10.099 1.419 0.001

Zeff (nonenhancement) 4.318–13.808 13.067 24.418 <0.001

Zeff (arterial phase) 1.019–2.827 4.135 1.697 0.042

DS-DECT, dual-source dual-energy computed tomography; OR, odds ratio; β, partial regression coefficient; CI, confidence interval; IC, 
iodine concentration; NIC-P, ICnodule/ICthyroid parenchyma; ICD, ICnodule_arterial phase − ICnodule_nonenhancement; λHu, slope of the spectral Hounsfield unit curve; 
Zeff, effective atomic number.

Table 4 The predictive performance of the binary logistic regression analysis model

Sample Sensitivity (95% CI) Specificity (95% CI) Likelihood ratio

Total sample (n=139) 0.821 (0.708–0.904) 0.667 (0.546–0.773) 2.463

CI, confidence interval.
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machine learning was statistically higher than the logistic 
regression analysis (Table 6). 

Discussion

In recent years, an increasing number of studies have 
reported that DS-DECT can be used to diagnose malignant 
and benign tumors (22,27-29). The present study showed 
that quantitative parameters derived from DS-DECT could 
differentiate benign from malignant thyroid nodules.

The thyroid is the only human organ rich in iodine, 
so measuring the iodine concentration can reflect thyroid 

Figure 4 The receiver operating characteristic curve of the binary 
logistic regression analysis model shows that the area under the 
curve is 0.76. 

Figure 5 The 5-fold cross-validation curves of the model training 
procedure.

Figure 6 The receiver operating characteristic curve of the 
machine learning model shows that the area under the curve in 
the training group is 0.86, and the area under the curve in the test 
group is 0.84.

Table 5 The predictive performance of the machine learning model

Cohort Sensitivity Specificity Accuracy Positive predictive value Negative predictive value

Training cohort (n=93) 0.822 0.791 0.806 0.787 0.826

Testing cohort (n=46) 0.727 0.750 0.739 0.727 0.750

Table 6 The result of the DeLong test between machine learning and logistic regression analysis models
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function to some extent. A previous study verified that 
123I uptake at 3 hours was negatively correlated with 
IC evaluated by DECT (30). In this study, the ICnodule 
(nonenhancement) showed no statistical significance 
between the malignant and benign groups, which 
contrasts to a previous study (31). In theory, the ICnodule 
(nonenhancement) should be lower in the malignant 
group than in the benign group because thyroid follicular 
cells have an iodine uptake function that barely exists in 
malignant lesions but is present in benign lesions, such as 
adenoma, nodular goiter, and subacute thyroiditis (32-34).  
However, the Siemens Healthineers’ dual-energy model 
was designed for liver imaging and cannot identify 
microcalcification. Therefore, microcalcification of papillary 
carcinoma could affect the measurement of IC. Our study 
used the IC nodule (arterial phase), NIC-P (arterial phase), 
and NIC-A (arterial phase), which are mainly influenced by 
contrast material. Our results suggested that the IC nodule 
(arterial phase) and NIC-P (arterial phase) were significantly 
higher in the malignant group than in the benign group. A 
previous study reported that the AUC of NIC was better 
than IC (21), which was partly similar to this study.

Our results suggested that λHu was higher in the 
malignant group than in the benign group. The dual-energy 
spectral curve was obtained from various monochromatic 
energy images and plotted on the graph as different CT 
density values concerning various energy levels. The 
spectral curve may be used to differentiate fibrous, fat, 
calcium, and iodine because each of these has different 
attenuations at different energy levels. A previous study 
reported that λHu in papillary carcinoma was described as 
negative, which could be explained by the presence of lipid 
materials in the cells (23). However, no numerical values or 
statistical results were shown in this previous study. In fact, 
the λHu in some patients with follicular adenoma, nodular 
goiters, subacute thyroiditis, and granulomatous thyroiditis 
was also negative in our study. Therefore, we infer that 
lipid materials not only exist in papillary carcinoma but also 
exist in other non-cancerous lesions. Previous studies have 
suggested that thyroid-stimulating hormones can induce 
thyroid lipid metabolism disorder (35,36).

Zeff reflected the atomic number of the compound 
material; the denser the compound, the higher the effective 
atomic number (37,38). In lung cancer, gastric cancer, 
and rectal cancer studies, Zeff has proved helpful in the 
preoperative identification of benign and malignant tumors 
(39-41). Our study found that Zeff (nonenhancement) 
and Zeff (arterial phase) was significantly higher in the 

malignant group than in the benign group. In addition, 
Zeff (nonenhancement) was the most important indicator 
for predicting malignant thyroid nodules. Malignant 
nodules are characterized by a higher cell density than 
benign nodules (42); therefore, malignant nodules may 
have a higher Zeff than benign nodules. In addition, 
microcalcification may result in a higher Zeff in the 
malignant group than in the benign group. In the arterial 
phase, a higher Zeff may also be related to higher perfusion 
in the malignant group than in the benign group (43).

In this study, machine learning showed a better diagnostic 
performance than binary logistic regression analysis because 
the LDA variable was calculated for each case through 
singular value decomposition, minimizing the intraclass 
variance and maximizing the interclass variance (44).  
In addition, as a commonly used data process method, LDA 
has a simple principle and a short calculation time. The 
results of our study indicated that “Lasso LDA” improved 
both the AUC and specificity in the prediction model of 
malignant thyroid nodules, compared to the binary logistic 
regression analysis. This is because “Lasso LDA” adopts 
a naive Lasso penalty in LDA without taking the matrix 
structure into account, and the logistic regression was 
regularized (45). 

This study does have some limitations. First, the ROI 
included a slice rather than the entire nodule. Whether the 
parameters acquired from the entire nodule are better than 
those obtained from a slice is an issue that needs further 
study. Second, we adopted the monoenergetic images 
(70 keV) with the clearest boundaries to obtain a highly 
accurate ROI when necessary. The different monoenergetic 
image qualities for showing lesions at each keV level should 
be explored. Third, selection bias is inevitable because 
this is a retrospective study. For instance, this result did 
not apply to nodule diameters <10 mm, because the 
repeatability was poor owing to the volume effect. Lastly, 
the results are limited to the screening criteria and the DS-
DECT scanning protocol.

In conclusion, this study suggests that multiple 
quantitative parameters of DS-DECT may serve as imaging 
markers to differentiate between benign and malignant 
nodules in the thyroid. The machine learning model 
constructed with these parameters exhibited excellent 
performance for the differential diagnosis.
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