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Background: We employed machine learning approaches to (I) determine distinct progression trajectories 
in Parkinson’s disease (PD) (unsupervised clustering task), and (II) predict progression trajectories (supervised 
prediction task), from early (years 0 and 1) data, making use of clinical and imaging features.
Methods: We studied PD-subjects derived from longitudinal datasets (years 0, 1, 2 & 4; Parkinson’s 
Progressive Marker Initiative). We extracted and analyzed 981 features, including motor, non-motor, and 
radiomics features extracted for each region-of-interest (ROIs: left/right caudate and putamen) using our 
standardized standardized environment for radiomics analysis (SERA) radiomics software. Segmentation of 
ROIs on dopamine transposer - single photon emission computed tomography (DAT SPECT) images were 
performed via magnetic resonance images (MRI). After performing cross-sectional clustering on 885 subjects 
(original dataset) to identify disease subtypes, we identified optimal longitudinal trajectories using hybrid 
machine learning systems (HMLS), including principal component analysis (PCA) + K-Means algorithms 
(KMA) followed by Bayesian information criterion (BIC), Calinski-Harabatz criterion (CHC), and elbow 
criterion (EC). Subsequently, prediction of the identified trajectories from early year data was performed 
using multiple HMLSs including 16 Dimension Reduction Algorithms (DRA) and 10 classification 
algorithms. 
Results: We identified 3 distinct progression trajectories. Hotelling’s t squared test (HTST) showed that 
the identified trajectories were distinct. The trajectories included those with (I, II) disease escalation (2 
trajectories, 27% and 38% of patients) and (III) stable disease (1 trajectory, 35% of patients). For trajectory 
prediction from early year data, HMLSs including the stochastic neighbor embedding algorithm (SNEA, as 
a DRA) as well as locally linear embedding algorithm (LLEA, as a DRA), linked with the new probabilistic 
neural network classifier (NPNNC, as a classifier), resulted in accuracies of 78.4% and 79.2% respectively, 
while other HMLSs such as SNEA + Lib_SVM (library for support vector machines) and t_SNE (t-distributed 
stochastic neighbor embedding) + NPNNC resulted in 76.5% and 76.1% respectively. 
Conclusions: This study moves beyond cross-sectional PD subtyping to clustering of longitudinal disease 
trajectories. We conclude that combining medical information with SPECT-based radiomics features, and 
optimal utilization of HMLSs, can identify distinct disease trajectories in PD patients, and enable effective 
prediction of disease trajectories from early year data.
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Introduction

Parkinson’s disease (PD) as a progressive (1-3) and 
heterogeneous disease (4-7) is the second-most common 
neurodegenerative disorder after Alzheimer’s disease 
(8,9). PD is characterized by motor (10,11) and non-
motor symptoms (12-15). Even though there is currently 
no proven permanent therapies for PD, but symptomatic 
treatments with levodopa (16)  and dopaminergic 
agonists (17) are considered in order to temporally 
control symptoms (18,19). A multicenter study (20)  
showed different progression rate in PD for 10 years 
follow-up. Identification of PD progression could enhance 
comprehension of PD mechanisms as well as improve design 
of clinical trials (21). While studies focused on identification 
of PD subtypes (6,22-29), identification of longitudinal 
progression in the course of several years can led to better 
understanding of underlying mechanisms (30-32).

Studies for prediction of individual outcomes in PD 
patients have recently been emerging (33-43). Discovery 
of new biomarkers of PD may enable improved treatment 
planning (24). Although motor dysfunctionalities were 
first proven as primary indicators of disease progression 
at screening (44), non-motor symptoms were shown 
to be significant considerations (45). Our past efforts  
(27-29,42,46) focusing on identifications of PD subtypes 
as well as prediction of motor and subtype outcome in 
PD showed that radiomics features, beyond conventional 
imaging measures, enable improvement in both tasks. 
Moreover, using HMLSs enabled significant improvements 
in both clustering and prediction tasks (38,42,43). 
In some studies, no significant correlations between 
conventional imaging features and clinical features (46) 
and no improvement in prediction when employing their  
mixture (42) were observed. 

A recent study (30) focused on specifying progression 
rate of PD using some relevant features. The authors first 
clustered PD patients by global composite outcome score, 
and then compared the progression of this score among 
different subtypes in 4.5-year follow-up. Another effort (31) 

focused on specifying the heterogeneity of PD (subtypes) 
and then investigated the progression of some motor and 
non-motor features among sub-clusters in 6-year follow-up. 
Patient subtyping can be defined as a clustering problem (47),  
where the subjects within a cluster are similar to each other. 
Another longitudinal study (48) investigated the annual 
progression rate in activity and participation measures 
in 5-year follow-up. A study (49) also focused on clinical 
progression of postural instability gait disorders compared 
to tremor dominant using longitudinal clinical data in 4-year 
follow-up. This study employed the linear mixed-effects 
models to specify differences in progression rate between 
the two groups. Furthermore, a study explored the main 
clinical variables of PD progression in a selected population 
of subjects, identified by a long-term preserved response 
to dopaminergic treatment in 30-year follow up. They 
assessed the clinical and neuropsychological progression 
of 19 patients, treated with subthalamic nucleus deep brain 
stimulation.

Han et al. (50) applied unsupervised medical anomaly 
detection generative adversarial network (deep learning 
technique) on multi-sequence structural MRI to detect 
brain anomalies (Alzheimer disease) at a very early stage. In 
another study, Nakao et al. (51) employed an unsupervised 
anomaly detection method based on the variational 
autoencoder- generative adversarial network (VAE-GAN, 
as a deep learning technique) to detect various lesions using 
a large chest radiograph dataset. Rundo et al. (52) employed 
a fully automatic method for necrosis extraction, after the 
whole gross tumor volume (GTV) segmentation, using the 
Fuzzy C-Means (FCM) algorithm to detect the necrotic 
regions within the planned GTV for neuro-radiosurgery 
therapy. In another study (53), particle swarm optimization 
algorithm was employed to improve FCM algorithm via 
selecting the initial cluster centers optimally.

To the best of our knowledge, there has been very 
limited work focused on longitudinal clustering to stratify 
PD progression trajectories. Since patients in the same 
cross-sectional subtype can have similar properties but 
with different progression rates, clustering longitudinal 
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trajectories constructed using PD subtypes can improve 
interpretation of disease progression instead of following 
specific features among PD subtypes over time (32). Our 
present effort includes derivation of distinct trajectories of 
PD progression during 4-year follow-up (unsupervised task) 
via longitudinal clustering, as well as prediction of these 
trajectories (supervised task) from early year data using 
HMLSs. Our methods and materials are described next, 
followed by results, discussion, and conclusion. 

We present the following article in accordance with the 
MDAR checklist (available at https://dx.doi.org/10.21037/
qims-21-425).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). We extracted 
patient data from the PPMI database (www.ppmi-info.org/
data) including clinical information and DAT SPECT and 
MRI, for years 0 (baseline), 1, 2 and 4. As detailed next, 
image processing pipeline was implemented to perform 
MRI segmentation, then DAT SPECT/MRI fusion, and 
feature extraction from each segmented ROI were done. 

We then employed HMLSs, consisting of DRAs combined 
with clustering/classification algorithms, in order to identify 
the most optimal progression trajectories in PD and to 
predict these trajectories using data in years 0 and 1.

Image segmentation, fusion, and feature extraction

As shown in Figure S1 and elaborated in Appendix 1, we 
employed multiple steps towards extraction of radiomics 
feature from ROIs in dorsal striatum (DS) (left and right 
caudate and putamen). The FreeSurfer package was first 
utilized to directly segment T1 MRI (29), and then register 
DAT SPECT images to MRI. Example images are shown in 
Figure 1. We provided the ROIs to our standardized SERA 
software package (54) to extract radiomics features.

Patient features 

We first select 885 patients (original dataset) who had 981 
features: the features included motor, non-motor features 
and radiomics features extracted for each ROI using our 
standardized SERA software (these are further elaborated 
in Appendix 1 and the features were publicly shared as 

3D segmentation

Segmented MRI Fusion of DaT SPECT and Segmentation
Fusion of MRI, DaT SPECT and MRI 

Segmentation

Right caudate nucleus Left caudate nucleus

Right putamen Left putamen

Figure 1 Example 3D MRI segmentation (top) and SPECT-MRI fusion (bottom) from our image processing pipeline. 

https://dx.doi.org/10.21037/qims-21-425
https://dx.doi.org/10.21037/qims-21-425
http://www.ppmi-info.org/data
http://www.ppmi-info.org/data
https://cdn.amegroups.cn/static/public/QIMS-21-425-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-21-425-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-21-425-supplementary.pdf
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linked in “Data and Code Availability”). Since some 
information of some patients were missing in some years, 
for longitudinal clustering task, we arrived at dataset of 143 
patients (years 0, 1, 2 and 4). For the prediction task based 
on year 0 and/or 1, we created 3 datasets: (I) CSD0 with 
143 subjects: the use of cross-sectional dataset in year 0 as 
input and the related trajectories as outcome; (II) TD01 
with 286 subjects: the use of datasets in year 0 and 1 as 
timeless approach as input and the related trajectories as 
outcome (i.e., effectively doubling the number of our cases; 
hypothesized to improve task due to added statistics); (III) 
CSD01 with 143 subjects: the use of cross-sectional datasets 
in year 0, 1 (putting cross-sectional datasets longitudinally 
next to each other) as input and related trajectories as 
outcome. We constructed the timeless dataset (TD01) by 
appending cross sectional datasets within a single set of 
data. This approach enables us to gather data with larger 
(double) number of patients. 

Machine learning methods

We utilized HMLSs, utilizing 3 groups of algorithms 
including: (I) feature extraction algorithms, (II) clustering 
algorithms, and (III) classification algorithms. These are 
elaborated next.

Feature extraction algorithms (FEAs)
We employed FEAs to reduce high-dimensional data 
into fewer dimensions (i.e., as DRAs), in order to tackle 
overfitting issues in both unsupervised and supervised tasks. 
Unsupervised FEAs use no label for attribute extraction, 
and rely on patterns emerged between input features (55-57). 
In this study, 16 FEAs (only unsupervised) were employed 
(as elaborated in Appendix 1): (I) principle component 
analysis (PCA) (58); (II) Kernel PCA (59); (III) t-SNE 
(60); (IV) factor analysis (FA) (61); (V) Sammon Mapping 
algorithm (SMA) (62,63); (IV) Isomap algorithm (IsoA) (64);  
(VII) LandMark Isomap algorithm (LMIsoA) (65);  
(VIII) laplacian eigenmaps algorithm (LEA) (66,67); 
(IX) LLEA (68); (X) multidimensional scaling algorithm  
(MDSA) (69); (XI) diffusion map algorithm (DMA) (70,71); 
(XII) stochastic proximity embedding algorithm (SPEA) (72);  
(XIII) gaussian process latent variable model (GPLVM) 
(73,74); (XIV) SNEA (75); (XV) symmetric stochastic 
neighbor embedding algorithm (Sym_SNEA) (76); and 
(XVI) autoencoders algorithms (AA) (77). These methods 
were implemented in R 2020 respectively.

Clustering algorithms
For the unsupervised longitudinal clustering tasks, we 
employ clustering algorithm to group multidimensional 
data based on similarity measures (78-80). In our recent 
study involving cross-sectional and timeless data (27,28) (but 
not performing longitudinal clustering, which the present 
work pursues), the KMA (as elaborated in Appendix 1)  
outperformed various clustering algorithms. In the present 
work, we also study KMA as applied to longitudinal 
clustering. KMA was implemented in MATLAB R 2020 b 
platform.

Clustering evaluation methods (CEM): To evaluate 
clustering trajectories, the so-called EC (81), CHC (82) 
and BIC (83) were utilized (Appendix 1), selecting optimal 
number of clusters from a range of cluster numbers 
spanning 2 to 9.

Classification algorithms (CAs)
For the supervised prediction task, we utilize a range of 
optimal CAs selected between various families of learner 
algorithms. These are all listed in Appendix 1). Specifically, 
we selected 9 CAs: (I) decision tree classification (DTC)  
(84-86); (II) Lib_SVM (87-89); (III) K nearest neighborhood 
classifier (KNNC) (90,91); (IV) ensemble leaner classifier 
(ELC) (92,93); (V) linear discriminant analysis classifier 
(LDAC) (94,95); (VI) NPNNC (96,97); (VII) error-
correcting output codes model classifier (ECOCMC) (98,99); 
(VIII) multilayer perceptron_back propagation classifier 
(MLP_BPC) (100,101); (IX) random forest classifier (RFC) 
(102,103); and (X) recurrent neural network classifier 
(RNNC) (20,104). We performed 5-fold cross validation for 
all CAs and automatically adjusted intrinsic hyperparameters 
through automated machine learning hyperparameter tuning 
(as elaborated in Appendix 1) (38). We implemented all CAs 
in MATLAB R 2020b.

 

Analysis procedure

As shown in Figure 2, our work includes two main stages: 
(I) optimal identification of progression trajectories in PD 
(unsupervised task); and (II) usage of HMLSs to improve 
prediction performance (supervised task). For the first stage 
(unsupervised clustering), we first utilized a normalized 
original dataset (every feature was normalized based on 
minimum and maximum values for that feature) in order to 
cluster PD subjects in each year (“original subtypes”). We 
reproduced 3 sub-clusters as elaborated in our prior work (29),  

https://cdn.amegroups.cn/static/public/QIMS-21-425-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-21-425-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-21-425-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-21-425-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-21-425-supplementary.pdf
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namely (I) mild, (II) intermediate, and (III) severe. Our 
prior work (29) showed that these clusters were consistent 
year to year (i.e., while patients of course may move from 
cluster to cluster in different years, the 3 clusters identified 
in each year are consistent with one another. Subsequently, 
a HMLS including PCA and KMA was applied to the 
longitudinal data as clustered in each year to a particular 
subtype. We then generated 4 components, and we used the 
first 2 components for 2-dimension visualization while we 
used all components to identify progression of trajectories. 
To optimize the number of longitudinal trajectories 
(clusters), we applied BIC and CHC to our results (for a 
range of 2–9 longitudinal clusters/trajectories) as generated 
by HMLS. Our optimized number of trajectories were 
further confirmed by EC as applied on clustering results 
provided by PCA + KMA. We also applied a statistical 
test, HTST, described in Appendix 1 (105) to measure 
similarities between sub-clusters. Subsequently, in stage two 
of our efforts (supervised task), prediction of the identified 
trajectories based on early years (data in year 0 and 1) was 
performed using multiple HMLSs, including 16 FEAs 
coupled to 10 CAs, as enlisted previously. 

Data and code availability

All code (included prediction algorithms and feature 
extraction algorithms etc.) and all datasets are publicly 
shared at: https://github.com/MohammadRSalmanpour/
Longitudinal-task

Results 

First stage analysis for optimal identification of trajectories 
in PD

In a previous study of ours (29), involving analysis of 
cross-sectional data (not longitudinal clustering), HMLS 
including PCA + KMA enabled us to find 3 distinct subtypes 
consisting of: (I) mild, (II) intermediate and (III) severe. 
Figure 3 shows these distinct subtypes identified. We utilize 
these subtypes in our longitudinal data, to first cluster data 
from each year, followed by analysis of progression and 
prediction.

In this effort, we studied progression trajectories via 
following PD subtypes during year 0, 1, 2, and 4. In fact, the 
features define the subtypes and these subtypes change over 

Figure 2 Diagram of hybrid systems, including first stage unsupervised clustering and second stage supervised prediction. PCA, principle 
component analysis; KMA, KMeans algorithm; EC, elbow criterion; CHC, Calinski-Harabatz criterion; BIC, Bayesian information 
criterion; FEA, feature extraction algorithms; CA, classification algorithms. 

Original dataset Normalization Subtype identification via 
PCA+KMA

Generate longitudinal data 
via subtypes

Optimal trajectory 
identification PCA+KMA

Clustering evaluation 
methods (EC, CHC, and BIC)

Select optimal HMLS

FEA1

CA1

FEA2

FEA2

FEA16

FEA16

...

...
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time as features change. In fact, we used all imaging and 
non-imaging features as well as biologically defining PD 
subtypes in previous paper (29). Our important discovery 
was, by looking at timeless data as well as cross-sectional 
data, that disease in any year could be clustered to 1 of 3 
distinct clusters; i.e., these clusters were significantly the 
same from year to year; in other words, while a patient can 
surely move between different clusters in different years, 
the 3 specific clusters themselves from year to year are 
very consistent. Thus, subtypes are means of representing 
the collective features, and changes of these subtypes over 
time display changes of these features over time. Next, 
employing 3 CEMs linked with PCA + KMA enabled us to 
find optimal number of trajectories. As shown in Figure 4 
(top), the highest scores provided by CHC and BIC both 
belong to 3 optimal longitudinal trajectories, and results 
(bottom) provided by EC method confirms the finding.

As shown in Table 1, P values calculated by HTST show 
significant difference between sub-clusters. The 3 P values 
were adjusted via Bonferroni correction test. In short, this 
table demonstrates that our sub-clusters are quite distinct.

Figure 3 Spider plot of 3 types of features, motor symptoms (black text), imaging features (purple text) and non-motor symptoms (blue text) 
for 3 identified PD sub-clusters: (I) mild (light brown area), (II) intermediate (green area), and (III) severe (yellow area); and healthy control 
groups (HC, dark brown area).
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values from CHC and BIC methods, and (bottom) as provided 
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and BIC both indicate 3 optimal longitudinal trajectories, as also 
confirmed by EC method. CHC, Calinski-Harabatz criterion; 
BIC, Bayesian information criterion; EC, elbow criterion. 
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After specifying optimal number of trajectories, we 
applied the dataset with PD subtypes to an HMLS 
including PCA + KMA. Figure 5 shows 3 distinct trajectory 
sub-clusters. The Y and X axes denote the first 2 principal 
components obtained by PCA, and each sub-cluster is 
shown using different colors. There are clear separations 
between the sub-clusters. In fact, we employed this plot as 
an independent visualization test in our effort to derive PD 
progression subtypes.

Figure 6 shows three distinct trajectories. Each point 
on the trajectories was calculated via averaging patient 
subtype values in specific year. PD patients in trajectory I 

(age range in year 69.4±9.5, female: 19, male: 31) showed 
slower progression in 4-year follow-up compared to other 
trajectories. In trajectory II (age range in year 67±10, 
female: 10, male: 28), patients show an improvement of the 
disease in the first 2 years and then enhanced progression 
in during years 2–4. Trajectory III (age range in year 
68.2±11.5, female: 19, male: 36) illustrated significantly 
enhanced progression of PD in 4-year follow-up.

Second stage analysis including prediction of trajectories 
using data in year 0 and 1

After generating new dataset using data in year 0 and 1 as 
input and utilizing the identified trajectories as outcome (as 
elaborated in section II, part B), we applied the dataset to 
multiple HMLSs. The HMLSs consisted of FEAs and CAs 
(as elaborated in section II, part D). The performances are 
shown in Figure 7. 

As shown in Figure 7, the hybrid HMLSs resulted 
in different performances for the TD01 dataset. The 
performances were averaged among 5 folds cross-
validations tests and reported. Furthermore, their standard 
deviations were also calculated and reported. The best 
results were observed when SNEA as well as LLEA, 
were followed with NPNNC, resulting in accuracies of 
78.4%±6.9% and 79.2%±3.6% respectively. Some other 
HMLSs such as SNEA linked with Lib_SVM and t_
SNE linked with NPNNC resulted in 76.5%±8.9% and 
76.1%±6.1% respectively. Other HMLSs such as Kernel 
PCA followed by RNNC, t-SNE followed by Lib-SVM, 
and SMA followed by NPNNC also resulted in accuracies 
over 70%. Meanwhile, most HMLSs including PCA + 
RNNC, FA + Lib-SVM, Kernel PCA + ECOCMC, DMA 
+ KNNC, SNEA + RFA, AA + MLP-BP, etc. resulted in 
accuracies over 60%. Meanwhile, no improvement was 
observed when we used CSD0 nor CSD01 as input and the 
related trajectories as outcome. We achieved the maximum 
performance 53.6%±6.3% and 66.4%±7.6% obtained by 
CSD0 and CSD01 respectively (P<0.05; t-test). Moreover, 
we reached a maximum performance around 51%±3.3% 
(P<0.05; t-test) when we used sole classifiers. Employing 
classifiers followed by DRAs (HMLSs) has often proven 
to increase performance (38,43,106). In our previous study 
(42,106), we aimed to predict cross-sectional PD subtypes 
in year 4 by employing 3 kinds of dataset (such as CSD0, 
CSD01 and TD01) linked with different HMLSs. We also 
showed that the usage of TD01 only enabled us to achieve 
high accuracies while the usage of the other datasets such as 

Table 1 P values provided by HTST between different sub-clusters

Subgroup (SG) SG1 SG2 SG3

SG1 1 <0.001 <0.001

SG2 <0.001 1 <0.001

SG3 <0.001 <0.001 1

Figure 5 PD progression subtypes provided via PCA + KMA. Y 
and X axes indicate the first and second dimensions provided by 
PCA.

Figure 6 Identified major progression trajectories, including 
stable disease (trajectory I: 35% of patients), and disease escalation 
(trajectory II: 27% and trajectory III: 38% of patients). 
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CSD0 or CSD01 resulted poorer performances.

Discussion

Identification of PD subtypes can be defined as a clustering 
task so that patients within the same cluster would have 
more similar properties than the patients within other 
clusters (47), but these patients may have different 
progression speeds in the future (21). Longitudinal 
clustering enables us to identify progression of the disease 
in several-year follow-up (32). Clustering longitudinal 
trajectories constructing from the subtypes can improve 
the interpretation of the disease progression instead of 
following some specific features during several years (32) 
because these subtypes depict an outline of all features (29).  
A recent study (20) showed that different patients had 
different progression rates in 10-year follow-up despite 
the employment of various targeted treatment strategies so 
that 9 of 126 patients were diagnosed to confine to bed or 
a wheelchair unless aided, whereas 13 patients showed no 
significant functional restrictions. In short, PD is defined as 
a heterogeneous disease (4,5,7) and longitudinal clustering 
can help provide an easier way for the interpretation of the 
disease progression.

Even though prediction of PD progression was recently 
expressed as an important and challenging problem (107), 

a number of benefits are obtained by accurate prediction 
of the outcome in PD (108), including the improvement of 
the treatment methods, better comprehension of the disease 
progression, and the improvement in clinical interpretation 
for symptomatic therapy. This is particularly relevant as PD 
progression is heterogeneous; such variability encounters 
us with the challenge of predicting progression in PD  
patients (108). Since, large input dimensionality and small 
sample sizes are often common problems in research 
studies, dimensionality reduction algorithms have been used 
to deal with these problems (109). In this work, we aimed to 
identify optimal patterns (trajectories) of PD progression as 
well as predict these trajectories using data in years 0 and 1.  
In the first part, 3 optimal trajectories were identified by 
three CEMs. In the second part, we were able to accurately 
predict the trajectories in 4-year follow-up by HMLS that 
included LLEA and SNEA linked with NPNNC. 

In the first effort, we analyzed the original dataset 
using HMLS including PCA + KMA to identify optimal 
PD subtypes, as described in our previous work (29). 
Subsequently, we utilized longitudinal datasets, where 
patients for each given year were associated with a subtype; 
the resulting longitudinal tracks were then provided to 
HMLSs including EC, CHC and BIC linked with KMA 
+ PCA, for optimal longitudinal clustering. As depicted 
in Figure 4, the analysis of data resulted in 3 optimal 

Figure 7 Performance heat map plot for application of the 16 FEAs linked with 10 CAs to TD01 dataset. The cells display average of 
accuracies (± standard deviation) derived from 5-fold cross validation. X-axis lists the CAs and the Y-axis shows FSAs.

0.80

0.75

0.70

0.65

0.60

0.55

0.50

0.45

PCA

Kernel PCA

t_SNE

FA

SMA

IsoA

LMIsoA

LEA

LLEA

MDSA

DMA

SPEA

GPLVM

SNEA

SymSNEA

AA

DTC Lib-SVM KNNC RFA LDAC NPNNC ECOCMC MLP-BP ELC RNNC

0.54±0.05 0.63±0.04 0.65±0.06 0.66±0.06 0.58±0.03 0.63±0.03 0.65±0.08 0.57±0.23 0.65±0.05 0.66±0.09

0.60±0.10 0.68±0.08 0.65±0.05 0.67±0.06 0.73±0.06 0.73±0.03 0.66±0.08 0.55±0.21 0.66±0.04 0.70±0.02

0.69±0.04 0.70±0.05 0.65±0.06 0.65±0.06 0.61±0.07 0.76±0.06 0.66±0.09 0.65±0.06 0.67±0.08 0.67±0.04

0.52±0.09 0.63±0.02 0.61±0.07 0.65±0.07 0.60±0.07 0.60±0.08 0.66±0.07 0.65±0.08 0.63±0.09 0.61±0.07

0.5±0.07 0.67±0.10 0.64±0.07 0.66±0.06 0.62±0.07 0.71±0.05 0.65±0.05 0.64±0.07 0.65± 0.06 0.60±0.11

0.5±0.05 0.62±0.06 0.65±0.06 0.66±0.08 0.60±0.04 0.66±0.05 0.62±0.10 0.65±0.09 0.67±0.11 0.61±0.06

0.47±0.08 0.58±0.11 0.64±0.09 0.66±0.09 0.58±0.11 0.65±0.04 0.65±0.06 0.64±0.08 0.66±0.05 0.68±0.08

0.51±0.09 0.66±0.04 0.68±0.04 0.66±0.06 0.63±0.05 0.65±0.07 0.66±0.03 0.60±0.06 0.66±0.08 0.62±0.06

0.58±0.09 0.66±0.05 0.65±0.03 0.65±0.08 0.66±0.04 0.78±0.07 0.65±0.04 0.62±0.04 0.67±0.04 0.64±0.10

0.57±0.07 0.62±0.03 0.60±0.03 0.65±0.06 0.59±0.08 0.63±0.07 0.65±0.05 0.58±0.11 0.63±0.10 0.64±0.08

0.49±0.04 0.60±0.07 0.67±0.09 0.66±0.02 0.62±0.04 0.65±0.06 0.65±0.05 0.63±0.11 0.54±0.24 0.61±0.08

0.51±0.08 0.54±0.06 0.59±0.04 0.66±0.03 0.60±0.08 0.61±0.04 0.66±0.05 0.61±0.10 0.66±0.07 0.63±0.07

0.47±0.12 0.59±0.03 0.61±0.09 0.66±0.04 0.61±0.07 0.66±0.06 0.65±0.08 0.64±0.11 0.66±0.04 0.62±0.05

0.57±0.11 0.76±0.09 0.67±0.12 0.65±0.09 0.63±0.07 0.79±0.04 0.66±0.06 0.63±0.06 0.67±0.06 0.64±0.05

0.44±0.07 0.55±0.12 0.58±0.06 0.66±0.09 0.58±0.05 0.66±0.09 0.66±0.06 0.65±0.02 0.65±0.12 0.66±0.05

0.55±0.09 0.66±0.05 0.60±0.05 0.65±0.05 0.60±0.06 0.66±0.09 0.66±0.05 0.62±0.06 0.65±0.08 0.63±0.06



914 Salmanpour et al. Longitudinal clustering and prediction of PD progression

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(2):906-919 | https://dx.doi.org/10.21037/qims-21-425

trajectories. Table 1 showed that there is no similarity 
between the cluster, and they are quite distinct. Figure 5 
shows these 3 distinct clusters; we employed this plot as 
an independent visualization test of our study to specify 
optimal PD trajectories. The plots show clear distinctions 
among the clusters. Figure 6 obviously depicts progression 
of 3 distinct trajectories in 4-year follow-up. Trajectory I 
showed a relatively smooth line during the 4-year follow-
up. Thus, the patients in this trajectory experienced a slower 
progression compared to other patients. Trajectory II first 
showed a decrease during the first 2 years and then showed 
an increase to year 4. The patients in this trajectory first 
experienced an improvement and then a progression to the 
worse level (severe). The patients in trajectory III illustrated 
progression of PD to the worse level (severe) at the 4-year 
follow-up.

A challenge, and dichotomy, in data-driven discoveries 
is that subsequent studies may be needed to ascertain 
biological and clinical plausibility and value of these findings. 
This is also an issue in related fields. For instance, in the 
field of radiomics, there is significant evidence on the value 
of using advanced, and sometimes computationally-intense 
imaging features as biomarkers of disease; however, that is 
only one step, and subsequent or parallel analyses including 
biological plausibility and meaning are needed (110).  
Thus, there is a need for follow-up studies to further 
interpret and study data-driven identification of PD 
progression pathways.

Fereshtehnejad et al. (30) utilized the global composite 
outcome score from clinical data such as some motor and 
non-motor features to identify progression rate in PD. 
They first clustered PD patients using these scores and 
then compared progression of the scores between different 
subtypes in 4.5-year follow-up. Zhang et al. (31) attempted 
to specify the heterogeneity of PD (subtypes) using clinical 
data and conventional imaging features, as well as their 
progression rates using Long-Short Term Memory (a deep 
learning algorithm) applied to longitudinal clinical dataset. 
As proven in our previous paper (29), subtypes identified 
from the dataset without radiomics features are not robust 
to the variations in features and samples, and these subtypes 
may depend on the size of the features and samples. Thus, 
we do not compare the previous studied to this study. 
Meanwhile, unlike this study, to the best of our knowledge, 
previously published studies did not cluster the trajectory of 
the PD progression (30,31,38,39,43,46,111).

In the second part of this study, we employed HMLSs 
including multiple DRAs and CAs to predict these 

trajectories using TD01. As shown in Figure 7, HMLSs 
such as SNEA + NPNNC and LLEA + NPNNC generated 
accuracies of 78.4% and 79.2%, respectively. Meanwhile, 
Some HMLSs such as SNEA + Lib_SVM and t_SNE+ 
NPNNC also had appropriate results, although they were 
less consistent than the best HMLSs. In a recent study of 
ours to improve prediction (46) and diagnosis tasks (111), 
radiomics features extracted from DAT SPECT images, 
going beyond conventional imaging features, were observed 
to obtain significant performances. We later observed 
that utilizing HMLSs, predictive algorithms linked with 
feature subset algorithms enables very good predictions of  
motor (43) and cognitive (38) outcomes. In addition, 
employing deep learning methods enables us to significantly 
improve prediction of motor outcome (39). The usage 
of the other datasets such as CSD0 and CSD01 did not 
improve prediction of the trajectories. Furthermore, in our 
past effort (42), we employed HMLSs including feature 
selection algorithms linked with CAs to predict cross-
sectional PD subtypes in year 4. In that study, we saw 
limited predictive performance when employed CSD0 and 
CSD01 while we reached accuracies over 90% using TD01. 
As a result, constructing datasets as timeless, resulting 
in an increase in the sample size, can enhance prediction 
performance. 

In this study, there is a restricting factory in the size of 
patients for outcome prediction. To tackle the restriction, 
we employed a timeless approach and it led to improved 
prediction performance. In this work, we utilized FEAs for 
dimensionality reduction to avoid over-fitting, although 
employing feature selection algorithms such as GA and least 
absolute shrinkage and selection operator (LASSO) were 
also possible. 

Our study has several strengths. Importantly, we 
combined different categories of databases including motor, 
non-imaging, conventional imaging features, and radiomics 
features to generate a very comprehensive set of features. 
In addition, we focused on added value of radiomic features 
which was provided by standardized manner as well as based 
on guidelines from the image biomarker standardization 
initiative, aiming towards identifying robust progression 
trajectories in PD, and then predicting these trajectories 
using data in years 0 and 1. 

Conclusions

We aimed to identify robust PD progression trajectories 
in 4-year follow-up, incorporating clinical and imaging 
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data. We also aimed to predict these trajectories using 
data in years 0 and 1. Based on three CEMs linked with 
PCA + KMA, we were able to identify three progression 
trajectories in 4-year follow-up. The identified trajectories 
were distinct. Trajectory I showed no enhanced progression 
for the period, while trajectories II and III showed 
enhanced progression. We also investigated a range of 
HMLSs including CAs linked with FEAs in order to predict 
these trajectories from early year data. SNEA + NPNNC 
and LLEA + NPNNC provided highest accuracies among 
all HMLSs. Overall, we conclude that combining clinical 
information with SPECT-based radiomics features, coupled 
with optimal utilization of HMLSs, can identify distinct 
trajectories and predict outcome in PD. In the future, we 
aim to predict non-motor outcome in year 4 by applying 
machine learning methods on datasets including clinical as 
well as radiomics features. Moreover, we aim to identify and 
predict different categories of response to treatment in PD 
patients, utilizing clustering of on/off-drug data as well as 
predicting these categories. Furthermore, we aim to predict 
start-date of taking drug and the administered dose. We 
also aim to predict rate of increase in the dose in subsequent 
years.
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Appendix 1

Patient data

Segmentation of dorsal striatum (DS) on DaT SPECT 
images via T1 weighted MRI

Imaging was performed 4±0.5 h following injection of DAT 
SPECT (123I-ioflupane; 111–185 MBq). Thyroid update 
was blocked via pre-treatment of subjects with saturated 
iodine solution (10 drops in water) or perchlorate (1,000 mg) 
prior to injection. Data acquisition consisted of 128×128 
raw SPECT projection data acquired every 3 degrees, 120 
projections, 20% symmetric photopeak windows centered on 
159 and 122 keV, and a total scan duration of ~30–45 min.  
A HERMES system (Hermes Medical  Solut ions , 
Stockholm, Sweden) was used to perform iterative OSEM 
reconstruction on the input raw SPECT projection data, 
for all studies to ensure consistency. Subsequently, PMOD 
(PMOD Technologies, Zurich, Switzerland) was used for 
attenuation correction. Ellipses where drawn on the images 
and Chang 0 attenuation correction were applied invoking 
a site-specific mu as empirically derived from phantom data 
(as acquired in site initiation for the trial). Following this, 
standard 3D Gaussian post-smoothing (6.0 mm FWHM) 
was applied (43,46).

As shown in Figure S1, pre-processing process is included 
3 parts. We firstly resized pixels of images as 1×1×1. After 
fixing orientation of images, we modified intensity bias of 
images. The original aspect ratio of the MR images was 
maintained. After pre-processing section, we applied these 
images to Free surfer for segmenting region of interests 
(ROI) such as left and right caudate as well as putamen. Co-
registration of SPECT on MRI were performed through 
two steps. In first step, we manually co-reiterated SPECTS 
on their MRI through Mango software. We tried various 
combinations of transform options, cost function options 

and search cost options on each image. We experimentally 
considered best solution for each image. There were various 
options for transform options includes (I) 2D rigid body, (II) 
translation only, (III) rigid body, (IV) global scale, (V) full 
scale, and (VI) full affine. There were also different options 
for cost function options and search cost options included: (I) 
correlation ratio, (II) mutual information, (III) norm mutual 
information, (IV) normalized correlation, and least square. 
Finally, we employed the rigid co-registration algorithm 
accompanied with normalized mutual information on the 
co-registered DAT SPECT images as well as Gaussian 
smoothing kernel with a width of 7 mm for all images. In 
the end, we overlaid the structures segmented in MRI on the 
co-registered SPECT images. After co-registration stage, 
we applied each mentioned ROI to the SERA to extract 
radiomics features. SERA has been extensively standardized 
in reference to the Image Biomarker Standardization 
Initiative (ISBI) (112), and studied in multi-center 
radiomics standardization publications by the IBSI (113)  
and the quantitative imaging network (QIN) (114). There 
is a total of 487 standardized radiomics features in SERA, 
including: 79 first-order features (morphology, statistical, 
histogram and intensity-histogram features), 272 higher-
order 2D features, and 136 3D features. We included all 79 
first-order features and 136 3D features (54,113,115). 

List of features used

We considered the following 981 features (as shared 
publicly): multiple Movement Disorder Society’s Unified 
Parkinson’s Disease Rating Scale (MDS-UPDRS) measures, 
a range of task/exam performances, socioeconomic/family 
histories, genetic features, and SPECT image features. 
Segmentation of regions-of-interest (ROIs; left and right 

Figure S1 Diagram of image processing and radiomics feature extraction based on MRI images.
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both caudate and putamen) on DaT SPECT images were 
performed via MRI images. Radiomic features (RFs) were 
extracted for each ROI using our standardized SERA 
software. For consistency, we only included patients who 
were off medication (e.g.,  Levodopa/dopamine agonist) 
for >6 hours prior to testing/imaging (47). we separately 
collected information for patients based on each year. 
Subsequently, timeless datasets were constructed by 
appending cross sectional datasets within a single set of 
data. This approach aims to gather data with larger number 
of subjects and features. 

Machine learning algorithms 

Feature extraction algorithms

Principal component analysis (PCA)
PCA is a known tool for linear dimensionality reduction 
and feature extraction. Using an orthogonal transformation 
enables us to convert a dataset with correlated variables 
into new dataset with linearly uncorrelated variables called 
principal components. The first principle component 
has the highest variance in compered to other principle 
components. Moreover, number of principal components is 
less than or equal to the number of original variables (58). 

Kernel PCA
Kernel PCA is an extended nonlinear form of the PCA 
using techniques of kernel methods. it is more useful 
to extract the complicated spatial structure of high-
dimensional features in compared to simple PCA. Thus, 
the Kernel PCA is increasingly using in machine learning 
application (59).

t-distributed stochastic neighbor embedding (t-SNE)
t-SNE is a machine learning algorithm which performs 
non-linear dimensionality reduction to embed high-
dimensional data for visualization in a low-dimensional 
space of two or three dimensions. Specifically, it models 
each high dimensional object by a two or three-dimensional 
point in such a way that similar objects are modeled by 
nearby points and dissimilar objects are modeled by distant 
points with high probability (60). 

Factor analysis (FA)
FA, as an analytic technique enables us to reduce a large 
number of correlated variables to a smaller number of 
dimensions. The goal of the FA is to achieve parsimony by 

minimizing explanatory concepts to explain the maximum 
amount of common variance in a correlation matrix (61).

Sammon mapping algorithm (SMA)
SMA is a non-linear algorithm which maps a high 
dimensional dataset to a low dimensional dataset. It also 
preserves the structure of inter-point distances in the high 
dimensional dataset in the lower dimensional space.it works 
based on minimizing error function (called Sommon error 
or Stress error), as shown in equation [1] (62).

 ( )2*

* *
1E

 
ij ij

i jij iji j

d d
d d<<

−
= ∑∑  

[1]

Where dij* is the distance between ith and jth datapoint 
in the original space and dij is the distance between their 
projections.

The stress function was improved using left Bregman 
divergence and right Bregman divergence (63).

Isomap algorithm (IsoA)
IsoA, as a nonlinear dimensionality reduction algorithm, 
is one of low-dimensional embedding methods. It was 
employed for compute a quasi-isometric in order to embed 
low-dimensional points of a set of high-dimensional data 
points (64). 

LandMark Isomap algorithm (LMIsoA)
LMIsoA is a fast IsoA which is faster than the Isomap. It works 
based on landmark MDS (Multi-Dimension Scaling) so that it 
selects a group of points termed as Landmarks and implements 
classical MDS on them. After computing the shortest path 
from each data point to the landmark points, the geodesic 
distance matrix is applied on classical MDS to find the low-
dimensional embedding of the landmark points (65).

Laplacian eigenmaps algorithm (LEA)
LEA, as a non-linear dimensionality reduction, aims to 
build a graph from neighborhood connections of the 
dataset. The discrete approximation of the low-dimensional 
manifold in the high-dimensional space are considered as 
connections between nodes which constructing by each data 
point. Minimizing the cost function based on the graph 
enables us to guarantee that close points are mapped close 
to each other in the low-dimensional space (66,67).

Locally linear embedding algorithm (LLEA)
LLEA, as an unsupervised learning algorithm, computes 
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low dimensional, neighborhood preserving embeddings 
of high dimensional data. It works based on exploiting the 
local symmetries of linear reconstructions in order to find 
nonlinear structure in high dimensional data (68).

Multidimensional scaling algorithm (MDSA)
MDSA, known as Principal Coordinates Analysis, provides 
a visual representation of the pattern of proximities (i.e., 
correlation matrix or distance matrix) among a set of objects. 
It aims to map these dissimilarities as distances between 
points in a low dimensional space so that these distances 
correspond as closely as possible to the dissimilarities (69).

Diffusion map algorithm (DMA)
DMA, as a non-linear technique, reduces high dimensional 
space to low dimensional space by re-organising data 
according to parameters of its underlying geometry. It 
computes a family of embeddings of dataset into Euclidean 
space using coordinates from the eigenvectors and 
eigenvalues of a diffusion operator on the data. These 
distances among datapoints in the embedded spaces 
are equal to diffusion distances between probability 
distributions centered at those points (70,71).

Stochastic proximity embedding algorithm (SPEA)
SPEA, as a novel self-organizing algorithm, produces 
meaningful underlying dimensions from proximity data. 
It reduces high dimensional dataset to low-dimensional 
Euclidean embeddings so that the similarities between a set 
of related observations preserve. This algorithm initially 
selects a random configuration and then adjusting their 
coordinates according to iteratively refining it by repeatedly 
selecting pairs of objects at random (72). 

Gaussian process latent variable model (GPLVM)
GPLVM, as a dimensionality reduction method, is a flexible 
Bayesian non-parametric modeling method that learns a 
low-dimensional representation of high-dimensional data 
by a Gaussian process. In this case, the kernel and learning 
hyperparameters of Gaussian process regression are selected 
to describe the mapping of high dimensional dataset to low 
dimensional dataset (73,74).

Stochastic neighbor embedding algorithm (SNEA)
SNE, as a dimensionality reduction method, is  a 
probabilistic method of embedding objects. It maps a high-
dimensional vectors or pair wise dissimilarities into a lower 
dimensional space so that neighbor identities are preserved. 

Dissimilarities, providing via applying a Gaussian model 
to each object in the high-dimensional space, are used 
to define a probability distribution which has potential 
neighbors of the object (75).

Symmetric stochastic neighbor embedding algorithm 
(Sym_SNEA)
SNEA has slow convergence; a fast SNE algorithm was 
proposed that is approximately 4-6 times faster. This 
algorithm works based on a trust-region method to discover 
a reliable direction as well as efficient step size with the help 
of a quadratic model of the objective function (76).

Autoencoders algorithms (AA)
AA, a three-layered neural network, constructs the 
“building block” of deep learning. It can be converted high-
dimensional data to low-dimensional codes by training 
a multilayer neural network. Gradient descent can be 
employed for updating weight matrix in the AA (77).

K-Means algorithm (KMA) for unsupervised clustering
The KMA, as a type of unsupervised learning method, tries 
to partition the dataset into K distinct non-overlapping 
sub-groups. It works based on minimizing the sum of the 
squared distance between the subjects and the cluster’s 
centroid (arithmetic mean of all the data points that belong 
to that cluster) similar subjects in a cluster (116,117).
We considered 3 first features of the first subject as initial 
centroid values to cluster patients (original sub-cluster), 
while we used 3 first columns of the first patient as initial 
centroids to identify progression trajectories. We also 
discovered that different combination of initial centroids 
resulted in same sub-clusters and merely the order of sub-
clusters was changed. In future work, we plan to explore 
other initialization methods. Moreover, we considered 1,000 
epochs (maximum iteration) for this algorithm. 

Clustering evaluation methods

Calinski-Harabatz criterion 
The Calinski-Harabasz index of a clustering is the ratio 
of the between-cluster variance (which is essentially the 
variance of all the cluster centroids from the dataset’s 
grand centroid) to the total within-cluster variance. The 
within-cluster variance will decrease as k increases; the 
rate of decrease should slow down past the optimal k. The 
between-cluster variance will increase as k, but the rate of 
increase should slow down past the optimal k. So, in theory, 
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the ratio of between-cluster variance to within-cluster 
variance should be maximized at the optimal k. The ratio is 
formally defined as:

 
( ) ( )

( ) 1
Trace B n kC k
Trace W k

−
=

−  [2]

where B is the between-cluster covariance matrix [so high 
values of Trace(B) denote well-separated clusters], W is the 
within-cluster covariance matrix [so low values of Trace(W) 
correspond to compact clusters], n is the number of the data 
points and k is the number of the clusters (82).

Bayesian information criterion (BIC)
In statistics, the BIC is a criterion for model selection 
among a finite set of models; the model with the lowest BIC 
is preferred. It is based, in part, on the likelihood function 
and it is closely related to the Akaike information criterion 
(AIC). Both BIC and AIC attempt to resolve this problem 
by introducing a penalty term for the number of parameters 
in the model; the penalty term is larger in BIC than in AIC. 
The BIC is formally defined as (83):

 ( ) ( )ln 2ln ˆBIC k n L= −  [3]

where
 L̂  = the maximized value of the likelihood function of 

the model 
x = the observed data;
n = the number of data points in x, the number of 

observations, or equivalently, the sample size;
k = the number of parameters estimated by the model. 

Elbow criterion
In cluster analysis, the elbow method is a heuristic used 
in determining the number of clusters in a data set. The 
method consists of plotting the explained variation as a 
function of the number of clusters and picking the elbow of 
the curve as the number of clusters to use (81). 

Classifiers 

Decision tree classification (DTC)
DTC technique is one of the most popular techniques in the 
emerging field of data mining. There are various methods 
for constructing the DTC. Induced decision tree (ID3) is 
the basic algorithm for constructing the DTC (84). There 
are many algorithms based on classification that is sample 
based, neural networks, Bayesian networks, support vector 
machine, and decision tree. The DTC classifies samples by 

sorting them down the tree from the root to some leaf node, 
which provides the classification of samples. Each node 
in the tree specifies a test of some attribute of the sample 
and each branch descending from that node corresponds 
to one of the possible values for this attribute (104).  
In this specific work, the maximum depth was not set so 
the algorithm would continue until all leaves were pure. To 
measure the quality of a split, a “Gini” function was used 
(GINI function describes the impurity of each node; each 
child node was purer than its parent node so that the GINI 
function was minimized). 

Library for support vector machines (Lib_SVM)
LIBSVM is a library for support vector machines (SVM) (87).  
SVM, as a supervised learner, was initially designed for 
binary classification, defined by a separating hyperplane. 
Optimal hyperplane, which categorizes new examples, is 
regulated by labeled training data. In two-dimensional 
space, this hyperplane is a line dividing a plane in two parts 
where in each class lay in either side (88). To extend SVM 
to the multi-class scenario, several classification models 
were proposed such as the one by Crammer and Singer (89). 
It was replaced the misclassification error of an example 
with the piecewise linear bound.

K nearest neighborhood classifier (KNNC)
k-NN, as a supervised and non-parametric algorithm, 
employs for classification and regression tasks. On the 
other words, it works based on instance-based learning, 
where the function is only approximated locally. In both 
cases, the input consists of the k closest training examples 
in the feature space as well as output is a class membership. 
Thereby, objects are classified by a plurality vote of their 
neighbors (90,91).

Ensemble leaner classifier (ELC)
ELC, as a supervised learner, works according to voting 
process of multiple classifiers. All classifiers, combined to 
solve a common problem, participate in prediction process. 
It mostly results in better predictive performance than use 
of a sole classifier (92,93).

Linear discriminant analysis classifier (LDAC)
LDAC, as a generalization of Fisher’s linear discriminant, 
is employs in machine learning area to discover a linear 
combination of features that separates two or more classes 
of objects. Thus, the combination may be used as a linear 
classifier or as a dimensionality reduction before the 



© Quantitative Imaging in Medicine and Surgery. All rights reserved.  https://dx.doi.org/10.21037/qims-21-425

classification (94,95).

New probabilistic neural network classifier (NPNNC)
PNNC, as a supervised feed-forward neural network with a 
complex structure consists of an input layer, a pattern layer, 
a summation layer and an output layer. A single training 
parameter (probability density functions) is considered to 
activate the neurons in the pattern layer (96,97).

Error-correcting output codes model classifier 
(ECOCMC)
ECOCMC, as a general classification framework and a 
supervised algorithm, needs multiple classifiers, similarly 
to the ELC. It works based on two stages: encoding and 
decoding. Encoding phase consists of designing coding 
matrix. The columns and rows of the matrix show binary 
classifiers and codewords for classes respectively. Designing 
of a coding matrix can be made using binary coding and 
ternary coding. In decoding phase, we need to find which 
one of the classes’ codewords is the closest one the test 
example’s codeword (98,99).

Multi-layer perceptron-back propagation (MLP-BP)
A multilayer perceptron is a feed forward artificial neural 
network model that maps sets of input data onto a set of 
appropriate output so it is a modified MLP that uses three 
or more layers of neurons (nodes) with nonlinear activation 
functions, and is more powerful than the perceptron in that 
it can distinguish data that are not linearly separable, or 
separable by a hyper plane (46,100). In this specific work, 
we used a three-layer neural network and the number of 
neurons in each layer was adjusted via automated machine 
learning hyperparameter tuning automatically.

Random forest algorithm (RFA)
Random Forests are a combination of tree predictors such 
that each tree depends on the values of a random vector 
sampled independently and with the same distribution for 
all trees in the forest. The generalization error of a forest 
of tree classifiers depends on the strength of the individual 
trees in the forest and the correlation between them 
(102,20). Depth of structure was adjusted via automated 
machine learning hyperparameter tuning automatically. 
Number of trees and number of splits were set to 1000 and 5, 
respectively.

Recurrent neural network (RNN)
Recurrent neural network is a deep learning algorithm. The 

RNN as fundamentally different neural network from feed-
forward architectures was investigated for modelling of 
nonlinear behavior (41,104). In this work, we used a model 
with many inputs to one output. In this specific work, 
we used a three-layer neural network and the number of 
neurons in each layer was adjusted via automated machine 
learning hyperparameter tuning automatically.

Automated machine learning hyperparameter tuning

In this work, automated machine learning hyperparameter 
tuning was employed to automatically adjust intrinsic 
parameters such as the number of neurons, and the number 
of layers in the classification algorithms. We applied this 
approach to various algorithms such as LOLIMOT, RBF, 
RNN, MLP-BP, RFA to automatically tune the parameters. 
Automated tuning, which was implemented with our in-
house code, executes an error minimization search scheme 
to optimize the hyperparameters starting with the random 
initialization. Employing this approach enables us to pursue 
a systematic trial-and-error search scheme for tuning the 
parameters (38). 

Hoteling’s t squared test

This statistical test is used to evaluate the equality of the 
mean vectors of two populations (with n1 and n2 samples). 
Each of two groups has p features. Assume that population 
1 is distributed as Np(µ1, Σ1) and population 2 is distributed 
as Np(µ2, Σ2), where Np(µ,Σ) is the p-variable multivariate 
normal distribution with mean vector µ and covariance 
matrix Σ. The null hypothesis that µ1 = µ2 can be tested 
using the test statistic:

 ( ) ( )11 2
1 2 pooled 1 2

1 2

n nT2 Y Y 'S Y Y
n n

−= − −
+  [4]

where Y1 and Y2 are the two sample mean vectors, n1 and 
n2 are the two sample sizes, and  1

pooledS−  is the inverse of the 
pooled covariance matrix which is calculated using: 

 ( ) ( )1 1 2 2
Pooled

1 2

n 1 S n 1 S
S

n n 2
− + −

=
+ −  [5]

Here, S1 and S2 are the estimated covariance matrices 
calculated from the two samples. If we make the additional 
assumption that Σ1 = Σ2, T2 follows Hotelling’s T-squared 
distribution when the null hypothesis is true. That is, 
 

1 2

2
, 22 P n nT T + −= . Reject the null hypothesis if  

1 2

2
, 22 P n nT T + −≥ .  

Note that rejecting the null hypothesis concludes that at 
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least one pair of the p sets of group response means are 
unequal (105).
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