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Background: Childhood trauma can alter brain-development trajectories and lead to a greater risk of 
psychopathology developing in adulthood. For this reason, understanding experience-dependent brain 
abnormalities associated with different trauma subtypes is crucial for identifying developmental processes 
disrupted by unfavorable early environments and for proposing early intervention measures to reduce 
trauma’s negative effects.
Methods: This study used multimodal magnetic resonance imaging (MRI) to explore the neural correlates 
of distinct subtypes of childhood trauma. We recruited a large community sample of young adults (mean 
age, 24.1, SD 1.9 years) who completed a Childhood Trauma Questionnaire, were given behavioral scores, 
and underwent multimodal MRI. To quantify brain changes, we used functional connectivity density (FCD) 
mapping based on whole brain analysis, regions of interest (ROI) analysis, and morphological measurements. 
Experience-dependent brain abnormalities were identified by multivariable linear regression. 
Results: We found that diverse brain regions in the FCD mapping were significantly related to 4 trauma 
subtypes and belonged to different cognitive components used for various behaviors. Experience-related 
influences on functional circuits and brain morphology were observed in extensive regions, including the 
sensorimotor, cingulum, accumbens, insula, and frontal-parietal areas, as well as in regions within the default 
mode network.
Conclusions: Identifying specific regions or systems may be a valid strategy for understanding the 
pathogenesis and development process of psychiatric disorders in people with different traumatic experiences 
and may facilitate better-targeted intervention strategies for maltreated children.

Keywords: Abuse; neglect; functional connectivity; cognition; emotion regulation

Submitted Apr 23, 2021. Accepted for publication Aug 31, 2021.

doi: 10.21037/qims-21-435

View this article at: https://dx.doi.org/10.21037/qims-21-435

1185

^ ORCID: 0000-0003-4706-2068.

https://crossmark.crossref.org/dialog/?doi=10.21037/qims-21-435


1173Quantitative Imaging in Medicine and Surgery, Vol 12, No 2 February 2022

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(2):1172-1185 | https://dx.doi.org/10.21037/qims-21-435

Introduction

Childhood trauma, such as emotional abuse or neglect, 
physical abuse or neglect, and sexual abuse are prevalent 
in today’s world (1). These early trauma experiences can 
have long-term effects on mental health later in adulthood. 
Thus far, the neurobiological mechanisms responsible for 
these long-term effects remain unclear. For this reason, 
neuroimaging is an ideal, noninvasive way of exploring 
brain responses to environmental effects in vivo. Many 
neuroimaging studies have indicated that altered brain-
development trajectories relate to childhood trauma 
experiences and may lead to a greater risk for adults to 
develop mental disorders (2-5). This is due to childhood 
trauma producing a series of hormonal physiological 
changes during sensitive or critical periods, leading to 
excessive overstimulation to neurons and resulting in 
altered brain structure and function (6). Several vital regions 
that modulate reward processing, emotional stimulation, 
cognitive regulation, and executive function are altered in 
trauma-exposed individuals, particularly in the prefrontal 
cortex, cingulate gyrus, amygdala, insula, and hippocampus 
(5,7-12). Specific network architectures or pathways that 
dominate conscious perception, emotion regulation, threat 
detection, defense response, and reward anticipation are also 
affected, including the default mode network (13), emotion 
circuitry (14), limbic network (11,15), salience network (16), 
fiber pathway (17-21), and global white matter network (22).  

However, distinct dimensions of abuse and neglect 
experiences may have different neurobiological effects 
(23,24). In recent years, a growing number of studies have 
been carried out to systematically examine the effects of 5 
types of childhood adversity on brain modulations (20,25-27).  
An abundance of evidence suggests that different forms of 
trauma have distinct influences on brain architectures and 
circuits, as well as on neural development (28-30). Abusive 
and neglectful forms of childhood trauma differ in their 
associations with atypical neural functioning (31). For 
example, threatening contexts increase defense responses 
and dysregulation of reward processing in regions like 
the thalamus and striatum, while deprivation disrupts 
aspects of cognitive and executive function modulated 
by executive networks (29,32-34). Furthermore, the risk 
for psychopathology increases in a graded manner as the 
number of adverse childhood experiences increases (35). 
On this account, understanding experience-dependent 
brain abnormalities associated with each trauma subtype is 
of crucial importance to identifying those developmental 

processes disrupted by unfavorable early environments 
and to proposing early interventions the negative effects of 
trauma. 

Moreover, based on a strong link between childhood 
trauma and the increased risk of psychopathology, many 
previous studies have explored the associations between 
early trauma, brain changes, and the onset or severity 
of psychiatric disorders in patients, such as depressive 
disorders (5), posttraumatic stress disorder (7), anxiety (10),  
and borderline personality disorder (36). The most 
prominent limitation of these studies is that the impact of 
childhood trauma, psychiatric condition, or their interaction 
on the brain remains uncertain. The existence and nature 
of biological alterations due to childhood trauma (beyond 
its impact on different psychiatric disorders) are even less 
clear. In contrast, research based on a community sample 
or healthy groups may have certain advantages in exploring 
the nature of biological alterations of childhood trauma and 
the potential trauma-related neural mechanisms that lead to 
psychiatric disorders (20,37-40).

For this study, we used integrated multimodal of resting-
state functional MRI (fMRI) and structural MRI (sMRI) 
to study the experience-dependent associations between 
distinct subtypes of childhood trauma, brain function, 
and architecture in a large community sample of young 
adults. All participants completed a Childhood Trauma 
Questionnaire (CTQ), were given behavioral scores, 
and underwent a multimodal MRI scan. The resting-
state functional connectivity strength is one of the most 
widely used tools to study biological characteristics of 
brain changes (41). Defined as the statistical dependence of 
neurophysiological activity between 2 independent brain 
regions, the level of correlation between different brain areas 
describes the strength of underlying interregional functional 
pathways (42). Functional connectivity density (FCD) 
mapping is a data-driven method that quantifies the number 
of local and global functional connections for each voxel in 
the brain (43). The unique effects that CTQ subtypes have 
on FCD can help identify different cognitive components 
used for diverse behaviors and thereby yield finer-grained 
insights into the organization of brain function (44). Another 
important feature of brain development is the behavioral 
changes and related pathologies that occur in modifications 
of brain morphology (45). The various features extracted 
from functional and morphological analyses can provide 
objective evidence for the link between childhood trauma 
subtypes and brain-behavior alterations. We hypothesize 
that each different subtype of childhood trauma exerts 
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dissimilarly profound influences on brain structure and 
function. Thus, identifying specific regions or systems may 
be a valid strategy to understanding the pathogenesis and 
development process of psychiatric disorders in victims with 
different traumatic experiences. The following article is 
presented in accordance with the Materials Design Analysis 
Reporting (MDAR) checklist (available at https://dx.doi.
org/10.21037/qims-21-435). 

Methods

Participants

A total of 216 right-handed, healthy, young adults (aged 
20 to 30 years) were recruited for this study. All subjects 
completed a structured clinical interview as our previous 
study (46) to ensure that they had no history of psychiatric or 
neurological illness, psychiatric treatment, or drug or alcohol 
abuse, and no contraindications for MRI examination. It was 
approved by the Ethical Committee of Tongji Hospital of 
Tongji Medical College of Huazhong University of Science 
and Technology (no. TJ-C20151204). All participants gave 
written informed consent. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). All methods were carried out in accordance with 
approved institutional guidelines and regulations.

Questionnaires

Every adult in our study was assessed for experiences of 
childhood maltreatment through the Chinese version 
of the short-form CTQ (47,48). To further characterize 
the participants, the California Verbal Learning Test-
Second Edition (CVLT-II), Tridimensional Personality 
Questionnaire (TPQ), Beck Depression Inventory (BDI), 
and Spielberger’s State-Trait Anxiety Inventory (STAI) were 
also completed. 

MRI scans and data preprocessing procedure

All scans were performed on a 3.0-Tesla MR system 
(Discovery MR750, GE Healthcare, Chicago, IL, USA). 
Tight but comfortable foam padding was used to minimize 
head motion, and earplugs were used to reduce scanner 
noise. Resting-state fMRI data were obtained using single-
shot echo-planar imaging (SS-EPI), and sagittal 3D T1-
weighted images were acquired using a brain volume 
(BRAVO) sequence. The detailed MRI scan parameters and 

data preprocessing procedure were the same as those used 
in our previous study (46).

FCD calculation

Compared with hypothesis-driven resting-state functional 
connectivity analysis, voxel-wise FCD mapping does not 
need to assess relationships between brain regions or 
select seed points. This data-driven graph theory approach 
quantifies global and local spontaneous neuronal activity and 
connectivity of voxels over the whole brain, which leads to 
faster calculation speeds, more accurate results, and provides 
complementary information for more targeted analysis (49).  
Generally, a higher FCD value indicates that there are 
more functional connections between related areas and 
other areas (50). It is also regarded as a functional property 
in hub recognition. We calculated the FCD of each voxel 
using the in-house script of the Linux platform according 
to the method described by Tomasi and Volkow (43).  
The detailed FCD calculation procedure was the same as 
that in our previous study (51).

Regions of interest definition and functional connectivity 
analysis

After preprocessing, fMRI data were smoothed using a full-
width Gaussian kernel of 8×8×8 mm3 at half-maximum. 
All 91 cortical regions from the FMRIB Software Library 
(FSL) Harvard-Oxford Atlas maximum likelihood cortical 
atlas (HarvardOxford-cort-maxprob-thr25-1mm.nii) and 
15 subcortical regions from the FSL Harvard-Oxford Atlas 
maximum likelihood subcortical atlas (HarvardOxford-sub-
maxprob-thr25-1mm.nii) were defined as regions of interest 
(ROIs). We calculated the functional connectivity strength 
between each pair in the 106 ROIs and obtained a 106×106 
matrix for each subject. The functional connectivity 
strength was computed using Pearson correlation coefficient 
to separately determine the average time series between the 
2 ROIs. The correlation coefficient was then transformed 
to approximate a Gaussian distribution using Fisher’s r-to-z 
transformation.

Atlases of 7 commonly used cortical networks, including 
the default mode network, sensorimotor network, visual 
network, salience network, dorsal attention network, 
frontoparietal network, and language network, were defined 
from CONN’s independent component analyses of the 
Human Connectome Project data set (52). We computed 
the functional connectivity between each pair of the 7 
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network masks in the same way as above. Finally, for each 
participant, we obtained a 7×7 matrix, with each element 
representing the mean connectivity strength between the 
corresponding 2 networks.

Morphological measurements

The cortical parcellation was created in FreeSurfer (version 
6.0.0) software’s standard anatomical template (fsaverage) 
space using the Desikan–Killiany–Tourville (DKT) atlas, 
with 31 cortical regions per hemisphere (53) subsequently 
transformed to each individual participant’s surface. For 
each region, we estimated grey matter volume, surface area, 
and cortical thickness.

Statistical analysis

We assessed the unique effects of the different CTQ 
subtypes on FCD mapping using a multivariable linear 
regression model (SPM8 software). Education level, age, and 
sex were applied in our statistical model as covariates (54).  
Cluster-level family-wise error (FWE) correction (Padj<0.05) 
was used to correct multiple comparisons. Surviving 
clusters were saved as masks. Unique effects of different 
CTQ subtypes on surviving clusters were adopted for 
the subsequent identification of the different cognitive 
components which are used for diverse behaviors. For each 
specific cognitive component obtained from Yeo et al. (44), 
we projected each significant cluster onto the cognitive 
map to determine whether the cluster was located in the 
cognitive component. 

Data obtained from the connectivity strength analysis 
then underwent a Kolmogorov-Smirnov test for data 
distribution. A linear regression model was used to assess 
the relationships between the functional connectivity 
of ROIs/cortical networks and all CTQ subtypes, while 
gender, education level, and age were adopted for the 
multivariable regression analyses. Because 5 hypotheses 
were tested simultaneously and a null hypothesis could have 
been wrongly rejected by chance, we used the Benjamini-
Hochberg procedure to control the false discovery rate 
(FDR) in the multiple-CTQ subtype models and applied a 
significant threshold of 2-sided Padj value <0.05. All analyses 
were performed using R (version 3.6.2, The R Foundation 
for Statistical Computing). 

Data obtained from the sMRI also underwent a 
Kolmogorov-Smirnov test for data distribution. We used 
multivariable linear regression analysis to evaluate the 

associations between the anatomical features of 62 cortical 
regions and the different CTQ subtypes, with adjustments for 
gender, education level, age, and total intracranial volume (54). 
All analyses were performed using R (version 3.6.2). Similarly, 
FDR correction (Padj<0.05) was used for multiple comparisons. 

To test a single risk, we used partial correlation analysis 
to study correlations between behavioral scores and each 
CTQ subtype using SPSS (version 19.0, IBM Corporation, 
Armonk, NY, USA), while the other 4 subscales, gender, 
education level, and age, were controlled for in the models. 

Results

Demographic and behavioral characteristics

Demographic and behavioral characteristics of the sample 
(n=216) can be seen in Table 1. Correlation analyses showed 
that the emotional abuse score was positively correlated 
with the state anxiety score (P=0.006, r=0.189), trait anxiety 
score (P=0.008, r=0.184), and BDI score (P=0.026, r=0.154), 
while the emotional neglect score was positively correlated 
with the harm avoidance score (P=0.009, r=0.180). There 
were no significant correlations between the CTQ subtypes 
and verbal memory (P>0.05).

Unique effects of different CTQ subtypes on FCD mapping 
and related cognitive components

Significant associations of emotional abuse (Figure 1A), 
physical abuse (Figure 1B), sexual abuse (Figure 1C), and 
physical neglect (Figure 1D) with different regions were 
found in FCD mapping. Related cognitive components 
of these regions are also shown in Figure 1. The detailed 
statistical information is shown in Table 2. No significant 
effect of emotional neglect on FCD mapping was observed. 

Experience-dependent associations between distinct 
subtypes of childhood trauma and functional connectivity 

A linear regression model using functional connectivity 
between ROIs as dependent variables and all CTQ subtypes 
as independent variables, defined the final model. The 
distribution of the 106 ROIs is displayed in Figure 2A. 
Significant associations of 4 CTQ subtypes with functional 
connectivity between ROIs are provided in Figure 2B. 
More detailed statistical information for the significant 
associations of CTQ subtypes with functional connectivity 
between ROIs is shown in Table 3.
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Similarly, a linear regression model was performed to 
explore the associations of functional connectivity between 
7 classical networks with CTQ subtypes. There were no 
significant results after multiple comparisons correction 
(Padj<0.05).

Experience-dependent associations between distinct 
subtypes of childhood trauma and brain morphology

A linear regression model using morphological features 
of 62 cortical regions as dependent variables and all 
CTQ subtypes as independent variables defined the final 
model. After FDR correction (Padj<0.05) of the multiple 
comparisons, the significant associations of 5 CTQ 

subtypes with cortical regions were obtained. These data 
are demonstrated with different colors in Figure 3. More 
detailed statistical information is shown in Table 4.

Discussion 

We investigated diverse effects of different subtypes of 
childhood trauma on FCD mapping, related cognitive 
components, functional circuits, and cortical morphology. 
We found that diverse brain regions in the FCD mapping 
were significantly related to 4 trauma subtypes and 
belonged to different cognitive components used for various 
behaviors. Experience-related influences on functional 
circuits and brain morphology were observed in extensive 
regions, including the sensorimotor, cingulum, accumbens, 
insula, and frontal-parietal areas, as well as regions within 
the default mode network. Moreover, we found that the 
emotional abuse score had a significant positive correlation 
with anxiety and depression scores, while the emotional 
neglect score had a significant positive correlation with 
the harm avoidance score. This study identifies unique 
effects of subtypes on specific regions or systems and may 
be a valid strategy to understanding the pathogenesis and 
development process of psychiatric disorders related to 
specific subtypes of childhood trauma.

Associations of emotional abuse with changes of regions 
involved in sensorimotor processing and emotion 
regulation 

Emotional abuse refers to the rejection of a child’s positive 
emotions by guardians. Emotionally abused children are 
frequently exposed to verbal assaults, threats, terrorization, 
or close confinement. We observed that emotional abuse 
was associated with increased FCD in the postcentral 
gyrus, which belongs to cognitive components involved in 
perception, vision, and action. Additionally, the emotional 
abuse scores correlated with morphological alterations of 
the orbitofrontal cortex. In humans, a larger morphology 
of the medial orbitofrontal cortex is positively associated 
with fear extinction and resiliency (55). Meanwhile, the 
reduction of pars orbitalis may release select inhibitory 
control mechanisms and allow for enhanced processing of 
depressive thoughts or emotions associated with traumatic 
memories (56). The functional and morphological 
alterations support potentially abnormal sensorimotor 
function and emotion regulation in individuals with a 
history of emotional abuse.

Table 1 Demographic and behavioral characteristics of the sample 
group

Demographics Mean (SD) Range

Age (years) 24.1 (1.9) 20–30

Gender (female/male) 158/58 –

Education level (years) 17.7 (1.5) 13–22

CTQ sum score 30.4 (5.2) 25–49

Emotional abuse 6.2 (1.5) 5–11

Physical abuse 5.5 (1.3) 5–14

Sexual abuse 5.2 (0.6) 5–9

Emotional neglect 7.7 (2.7) 5–17

Physical neglect 5.9 (1.4) 5–11

BDI score 4.7 (4.9) 0–22

STAI score 69.1 (14.8) 42–119

Novelty seeking 13.9 (4.4) 4–29

Harm avoidance 15.2 (5.6) 2–30

Reward dependence 19.1 (3.4) 10–27

Verbal memory

Learning 59.4 (8.6) 23–79

Recall 13.4 (2.2) 5–16

Recognition 15.5 (0.9) 11–16

List A-1 7.6 (2.0) 3–15

List B 7.3 (2.3) 3–14

False-positive errors 1.1 (1.9) 0–10

BDI, Beck Depression Inventory; CTQ, Childhood Trauma  
Questionnaire; SD, standard deviation; STAI, State-Trait Anxiety 
Inventory.
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Figure 1 Unique effects of different CTQ subtypes on FCD mapping and related cognitive components. Emotional abuse (A), physical 
abuse (B), sexual abuse (C), and physical neglect (D) each showed significant associations with different regions in FCD mapping, all of 
which belong to special cognitive components. CTQ, Childhood Trauma Questionnaire; FCD, functional connectivity density.
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Table 2 Significant associations of CTQ subtypes with regions in FCD mapping that belong to specific cognitive components

CTQ subtypes Significant regions in FCD mapping Peak MNI coordinates (x, y, z) T value Related cognitive component

Emotional abuse Left postcentral gyrus −39, −15, 39 4.96 1, 2, 6

Physical abuse Left prefrontal cortex −36, 33, 0 4.92 3, 5, 8, 9, 11, 12

Sexual abuse Left temporal lobe −42, −51, −6 5.33 4, 5, 10, 11

Right temporal lobe 48, −54, −15 5.40 4, 5, 10, 11

Right parahippocampus 33, −39, −9 5.83 4, 5, 10, 11

Physical neglect Left superior parietal lobule −24, −72, 60 4.95 4, 5, 6, 9

Right superior parietal lobule 33, −63, 45 5.04 4, 5, 6, 9

CTQ, Childhood Trauma Questionnaire; FCD, functional connectivity density; MNI, Montreal Neurological Institute; Cognitive components 
are defined by Yeo et al. (44). 
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Figure 2 Correlations between CTQ subtypes and ROIs connectivity strength. Distribution of 106 ROIs is observed in part A. Significant 
associations of 4 CTQ subtypes with functional connectivity between ROIs are provided in part B. CTQ, Childhood Trauma Questionnaire; 
ROI, regions of interest; PostCG r, right postcentral gyrus; PC, posterior cingulate gyrus; SPL r, right superior parietal lobule; PT l, 
left planum temporale; PreCG l, left precentral gyrus; SMA l, left supplementary motor cortex; SCC l, left supracalcarine cortex; SCC r, 
right supracalcarine cortex; ICC l, left intracalcarine cortex; ICC r, right intracalcarine cortex; pITG r, right posterior division of inferior 
temporal gyrus; pPaHC l, left posterior division of parahippocampal gyrus.

Table 3 Significant associations of CTQ subtypes with functional connectivity between ROIs

CTQ subtypes ROI–ROI connectivity Beta (95% CI) Padjusted value

Physical abuse PostCG r-PC −0.047 (−0.070, −0.024) <0.001

SPL r-PC −0.048 (−0.073, −0.023) 0.002

PT l-PreCG l 0.042 (0.017, 0.066) 0.007

Sexual abuse SCC l-SMA l −0.088 (−0.135, −0.041) 0.002

ICC l-SMA l −0.077 (−0.123, −0.031) 0.009

ICC r-SMA l −0.075 (−0.126, −0.024) 0.021

SCC r-SMA l −0.076 (−0.126, −0.025) 0.029

Physical neglect pITG r-Accumbens r −0.033 (−0.054, −0.013) 0.005

Emotional neglect pPaHC l-PC 0.019 (0.006, 0.031) 0.030

CTQ, Childhood Trauma Questionnaire; ROI, regions of interest; CI, confidence interval; PostCG r, right postcentral gyrus; PC, posterior 
cingulate gyrus; SPL r, right superior parietal lobule; PT l, left planum temporale; PreCG l, left precentral gyrus; SMA l, left supplementary 
motor cortex; SCC l, left supracalcarine cortex; SCC r, right supracalcarine cortex; ICC l, left intracalcarine cortex; ICC r, right intracalcarine  
cortex; pITG r, right posterior division of inferior temporal gyrus; pPaHC l, left posterior division of parahippocampal gyrus.
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Table 4 Significant associations of CTQ subtypes with cortical morphology

CTQ subtypes Cortical regions (indices) Beta (95% CI) Padjusted value

Emotional abuse Right medial orbitofrontal cortex (SurfArea) 25.094 (8.049, 42.139) 0.011

Right medial orbitofrontal cortex (GrayVol) 74.369 (23.093, 125.644) 0.013

Right pars orbitalis cortex (ThickAvg) −0.024 (−0.041, −0.006) 0.032

Physical abuse Left rostral anterior cingulate cortex (GrayVol) 75.375 (16.092, 134.659) 0.029

Right entorhinal cortex (SurfArea) −11.295 (−20.261, −2.328) 0.041

Sexual abuse Left postcentral gyrus (GrayVol) −395.693 (−661.527, −129.860) 0.011

Left inferior parietal lobule (ThickAvg) −0.031 (−0.054, −0.008) 0.033

Physical neglect Right transverse temporal gyrus (ThickAvg) −0.039 (−0.062, −0.016) 0.003

Right superior parietal lobule (GrayVol) −180.082 (−315.417, −44.748) 0.027

Right insula cortex (GrayVol) −90.885 (−162.771, −19.000) 0.040

Right insula cortex (SurfArea) −27.380 (−49.142, −5.617) 0.041

Emotional neglect Right cuneus cortex (SurfArea) −20.207 (−35.847, −4.568) 0.034

CTQ, Childhood Trauma Questionnaire; CI, confidence interval; SurfArea, surface area; GrayVol, gray matter volume; ThickAvg, average 
cortical thickness.

Figure 3 Significant cortical regions related to different CTQ subtypes. Different colored areas of the brain surface represent diverse 
cortical regions, whose morphological indices are significantly related to the corresponding CTQ subtypes. CTQ, Childhood Trauma 
Questionnaire; EA, emotional abuse (red); PA, physical abuse (purple); SA, sexual abuse (yellow); PN, physical neglect (blue); EN, emotional 
neglect (green). 
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Associations of physical abuse with numerous brain 
abnormalities

Physical abuse mainly refers to the physical injury of 
children caused by inadequate care. Physical abuse was 
positively correlated with FCD changes in the prefrontal 

cortex, which belongs to cognitive components mainly 
involved in auditory processing, language cognition, 
attention control, affect regulation, face recognition, 
and reward dependence. First, we found the connectivity 
between the precentral gyrus and planum temporale to be 
positively correlated with physical abuse. The precentral 
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gyrus is a part of the sensorimotor network, while the 
planum temporale is thought to be involved in auditory 
processing, phonological processing, and language (57). 
Increased connections of the sensorimotor areas reflect 
the increased sensitivity of sensory discrimination and 
avoidance strategies to noxious stimuli, known as a part 
of ego defense mechanisms. Second, we found reduced 
connectivity in the circuit of the postcentral gyrus, posterior 
cingulate gyrus, and superior parietal lobule to also be 
related to physical abuse. The disconnection between 
these regions in the sensorimotor system and default mode 
network was reported to contribute to the symptoms of 
affective disorders in previous studies (58-60).

We also found physical abuse was positively correlated 
with grey matter volume in the rostral anterior cingulate 
cortex and was negatively correlated with the surface area of 
the entorhinal cortex. The changes in the anterior cingulate 
cortex are related functions in cognitive attention response 
and pain modulation (61). The entorhinal cortex is thought 
to contribute to memory retrieval (62). Changes in these 
regions reveal the reorganization of cognitive reaction, 
nociceptive processing, and memory coding in response to 
somatic abusive experiences.

Numerous brain alterations involved in advanced 
cognitive functions, perception, emotional processing, 
memory coding, and ego defense mechanisms were found 
to be associated with physical abuse. This may help us to 
understand the unique psychopathological consequences 
related to the experience of physical abuse.

Associations of sexual abuse with disturbances in regions of 
attention control and sensorimotor processing

Sexual abuse primarily refers to any sexual exploitation 
or sexually related assault made directly or indirectly 
against a child. Our findings showed there to be a positive 
relationship between sexual abuse and the FCD in the 
bilateral temporal lobe, which belongs to cognitive 
components mainly involved in visual tracking, language 
cognition, and face recognition. Additionally, the sexual 
abuse subscale was found to be negatively correlated to 
the functional connectivity between the supplementary 
motor cortex and calcarine cortex. As an important key 
of the motor system, the supplementary motor cortex 
rapidly evaluates successful and erroneous actions, and 
plays a leading role in the error-monitoring system (63). 
The calcarine cortex is the focus of the visual cortex and 
is involved in visual processing (64). The association of 

sexual abuse with sensorimotor areas in our study supports 
previous neuroimaging evidence that suggests sexual abuse 
is associated with abnormalities in sensory processing of 
maltreatment-specific stimuli.

Sexual abuse was negatively related to the average 
thickness of the inferior parietal cortex and the grey matter 
volume of the postcentral gyrus. The structural impairment 
of the inferior parietal cortex that mediates attention 
may decrease the ability to switch behavior according to 
environmental demands (65). The postcentral gyrus is 
devoted to sensory functions and has been significantly 
associated with abuse severity (66). The morphological 
alterations provide the association of sexual abuse with 
disturbances in attention control and somatic sensation.

Associations of physical neglect with brain abnormalities 
related to widespread functions

Physical neglect is defined as the failure of the guardian to 
provide basic needs for a child to grow up. Increased FCD 
in the bilateral superior parietal lobule, which belongs to the 
cognitive components involved in perception, vision, motion, 
language, execution, and attention, was related to physical 
neglect. We also found that the physical neglect score was 
associated with decreased functional connectivity between 
the accumbens and inferior temporal gyrus. As a functionally 
central structure, the nucleus accumbens appears to have a 
modulating effect on the amygdala–basal ganglia–prefrontal 
cortex circuit and also plays a key role in reward-motivated 
behavior, depression-related behavior, and substance 
dependence (67-69). As a part of the visual system, inferior 
temporal gyrus activation has also been linked to reward 
processing (70). Reduced functional connectivity between 
these regions shows the association of physical neglect 
with the disruption of reward. Furthermore, we found that 
physical neglect is negatively related to the morphology 
indices of the transverse temporal cortex, superior parietal 
lobule, and insula. These regions play important roles in 
sensory, affective, and attention reactions, as well as in 
cognitive processing (71). Therefore, we found that a failure 
to meet the physical needs of children could affect brain 
areas mainly involved in attention, reward, and sensorimotor 
processing, as well as affective and social cognitive abilities.

Associations of emotional neglect with altered functions of 
the default mode network and visual-spatial processing

Emotional neglect is the failure of guardians to respond to 
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the fundamental emotional needs of a child. We observed 
that the emotional neglect score was associated with an 
increased connectivity strength in the parahippocampus 
and posterior cingulate gyrus. The parahippocampus is an 
advanced center of memory, cognition, and emotion (72),  
and participates in the default mode network. The posterior 
cingulate gyrus is a hub of the default mode network and 
is preferentially vulnerable to disruption in cognitive-
related diseases (73). For individuals who have experienced 
emotional neglect, increased connectivity between the 
parahippocampus and posterior cingulate gyrus may be 
responsible for the atypical functions of the default mode 
network, including autobiographical memory retrieval, 
mentalizing, introspective processing, and others (74). 
Furthermore, we observed that the emotional neglect 
score was associated with a decreased surface area of the 
cuneus, which participates in visual-spatial processing (75). 
Our findings not only support the influences of emotional 
neglect on memory in the previous study (76) but also 
further support the associations of emotional neglect with 
altered functions of the default mode network and visual-
spatial processing.

Strengths and weaknesses of the study

Our results revealed that different subtypes of childhood 
trauma have diverse effects on brain function and 
architecture, and there are several interesting elements 
among our f indings.  First ,  as  an important early 
environmental factor, different forms of early traumatic 
experiences exert varying degrees and different expressions 
of conditioned response to physical and psychological 
stimuli. To some extent, our results are a record of what the 
diverse experiences in early life have differently wrought 
on the brain. Regardless of the increase or decrease in 
functional connectivity and morphological indexes, typical 
functions of the brain’s regions could be affected to a certain 
extent. Next, physical abuse and neglect are the subtypes 
that most affect numerous brain areas related to widespread 
functions. This suggests that physical trauma has a more 
comprehensive influence on the brain compared with other 
forms of trauma. Additionally, there were some overlaps 
in the different regions and related functions affected by 
different subtypes. This supports the idea that the degree 
of brain abnormality increases as the types of adverse 
childhood experiences increase. In summary, our study 
provides objective MRI evidence that different forms of 
early traumatic experiences may differentially and indirectly 

influence the development of psychopathology by altering 
the brain. From this, we found that imaging biomarkers may 
be used to evaluate the brain and develop better-targeted 
intervention strategies for mediating the negative outcomes 
experienced by people with different traumatic experiences.

There were several limitations in the current study. 
First, the study is limited by a retrospective self-report 
questionnaire of childhood trauma. Although the 
accuracy may be biased by the subjective experience of 
the participant, the CTQ has been demonstrated to be a 
repeatable and valid measure of childhood maltreatment. 
Second, despite the relatively large community-based 
sample size, the variation in the levels of childhood 
maltreatment is limited. Thus, limited significant effects of 
CTQ subtypes on behavioral scores and network analysis 
were found. In addition, due to the cross-sectional design 
of this study, a causal relationship between childhood 
trauma and brain changes could not be established. For this 
reason, future longitudinal studies are necessary. Finally, 
we did not assess the age of subjects at which the trauma 
occurred or their mental resilience. It will be important 
for future research to examine if the duration of childhood 
trauma impacts the risk for psychopathology in adulthood. 
Furthermore, resilience following childhood maltreatment 
should be measured to assess protective factors against adult 
psychopathology. 

Conclusions

This study used a large community sample to examine the 
experience-dependent associations between distinct subtypes 
of childhood trauma and brain function and architecture. 
We found that different forms of early traumatic experiences 
could exert dissimilarly profound influences on the brain 
due to the varying degrees and different expressions of 
conditioned responses to physical and psychological stimuli. 
For this reason, identifying specific regions or systems may 
be a valid strategy to understanding the pathogenesis and 
development process of psychiatric disorders in people 
with different traumatic experiences. In addition, imaging 
phenotypes may be useful biomarkers for providing an early 
assessment of potentially differential risks in adulthood and 
may guide targeted intervention strategies for avoiding or 
decreasing the risk of developing psychopathology.
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