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Background: The Alzheimer’s disease (AD) population increases worldwide, placing a heavy burden on the 
economy and society. Presently, there is no cure for AD. Developing a convenient method of screening for 
AD and mild cognitive impairment (MCI) could enable early intervention, thus slowing down the progress 
of the disease and enabling better overall disease management.
Methods: In the current study, resting-state electroencephalography (EEG) data were acquired from 
113 normal cognition (NC) subjects, 116 amnestic MCI patients, and 72 probable AD patients. After 
preprocessing by an automatic algorithm, features including spectral power, complexity, and functional 
connectivity were extracted, and machine-learning classifiers were built to differentiate among the 3 groups. 
The classification performance was evaluated from multiple perspectives, including accuracy, specificity, 
sensitivity, area under the curve (AUC) with 95% confidence intervals, and compared to the empirical chance 
level by permutation tests.
Results: The analysis of variance results (P<0.05 with false discovery rate correction) confirmed the 
tendency to slow brain activity, reduced complexity, and connectivity with AD progress. By combining the 
features, the ability of the machine-learning classifiers, especially the ensemble trees, to differentiate among 
the 3 groups, was significantly better than that of the empirical chance level of the permutation test. The 
AUC of the classifier with the best performance was 80.08% for AD vs. NC, 70.82% for AD vs. MCI, and 
63.95% for MCI vs. NC.
Conclusions: The current study presented a fully automatic procedure that could significantly distinguish 
NC, MCI, and AD subjects via resting-state EEG signals. The study was based on a large data set with 
evidence-based medical diagnosis and provided further evidence that resting-state EEG data could assist in 
the discrimination of AD patients.
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Introduction

Alzheimer’s disease (AD) is the leading cause of dementia 
in the elderly population, and its incidence is high among 
people over 65 years (1,2). Additionally, the prevalence rate 
of young-onset dementia (for which the overall prevalence 
is highest for AD) is not insignificant (3). If no mature 
treatment measures are used, the number of AD patients 
will be 75 million in 2030 and 131 million in 2050 (4). 
Presently, there is no cure for AD; however, if patients 
could be diagnosed at an early stage, proper interventions 
could slow down the progress of the disease. Thus, 
quite a few studies have tried to diagnose mild cognitive 
impairment (MCI), especially amnestic MCI, which has 
a higher conversion rate to AD (5-7). However, most 
diagnostic approaches are time consuming and expensive  
(8-10) and fail to satisfy the needs of timely diagnosis for 
most potential AD patients. Early identification and diagnosis 
is a significant challenge in low-resource environments in 
particular. Thus, there is a great demand for ‘language-free, 
culturally fair’ low-cost screening tools for AD.

Electroencephalography (EEG) has been the subject of 
growing interest as an investigational tool for biomarker 
development in AD (11-14). In practice, event-related tasks, 
such as memory-related tasks (15,16), decision-making  
tasks (17), and sensory-perceptual tasks (18), are widely used 
to examine the effects of AD on specific brain functions. 
Event-related tasks provide both behavioral and neural data 
but require multiple repetitions to achieve a stable response 
and have experiment times that are usually beyond patients’ 
tolerance (19). Additionally, some event-related tasks are 
beyond the cognitive capability of elderly subjects, especially 
those with low education levels. Even the performance of a 
simple memory task might cause discomfort and anxiety to 
patients (19).

Conversely, the instructions of resting-state tasks are easy 
to understand and follow regardless of the education levels 
of subjects (20). Resting-state protocols do not require 
external stimuli, and thus they are simple and comfortable 
for the elderly population and patients. Many resting-state 
EEG studies have found statistically significant differences 
among AD, MCI, and healthy controls (21-23).

To assist in applying resting-state EEG signals in AD 
diagnosis, researchers have explored numerous resting-state 
EEG properties. The tendency of brain activity to slow 
down among AD patients has been commonly observed 
(15,24). Previous studies showed that the power of low-
frequency rhythms (e.g., delta and theta) are increased, 

and the power of high-frequency rhythms (e.g., alpha, 
beta, and gamma) are decreased in AD patients compared 
to healthy controls (21,25,26). This shift is proportional 
to the progression of  AD (20).  Another common 
representation in AD patients is the reduced complexity 
of EEG signals (24). The potential pathophysiological 
basis for the decreased EEG complexity in AD is not yet 
clear. The decrease is likely caused by fewer active neurons 
and the reduction of non-linear connections between 
them, which leads to simpler dynamics (24,26,27). Other 
mechanisms, such as the deficiency of neurotransmitters, 
are also under discussion. It is well accepted that AD 
leads to changes in neural synchronization (22,28); 
however, the specific patterns of these changes are still 
under debate. Some studies have reported that AD 
patients’ EEG signal synchronization tends to be reduced, 
while others have shown that it increases (13,22,28-30).  
Apart from these 3 widely used features, many other 
resting-state EEG features have been used to detect AD, 
such as microstate (31,32), epileptiform activity (33), and 
visibility graphs (34).

With the development of machine learning, classification 
methods, such as support vector machine (SVM) (35) 
and random forest (RF) (36), are used to train models to 
distinguish AD subjects from healthy controls based on 
resting-state EEG (37). The sensitivity and specificity of 
such classifiers can be as high as 90% (24,37,38). However, 
due to the difficulty of acquiring data with evidence-
based medical diagnoses, most studies in this area have no 
more than 50 subjects (7,13,21,24,38-40). This number is 
acceptable for statistical analyses; however, the machine 
learning-based classification results are not reliable for 
generalization with so few samples. In addition, some 
classification studies have failed to provide necessary 
details, such as how to choose the training, development, 
and testing data, which makes the results less persuasive 
(21,39,40). Additionally, when simply putting features 
extracted together without feature selection or feature fusion 
optimization methods, the extremely high-dimensional 
features compared with the sample number could lead 
to over-fitting models (41). With the advancements of 
graphics processing units in computing, deep-learning 
approaches, such as convolutional neural networks (42,43), 
recurrent neural networks (44), and discriminative deep 
probabilistic models (45), have been applied to detect AD 
and have achieved remarkable accuracy. However, the high 
requirement of computing resources and the explainability 
problem of deep-learning models prevent their clinical 
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application. Apart from the theoretical issues, another 
practical problem facing the clinical application of resting-
state EEG in AD screening is the high labor cost and 
experience dependence in data preprocessing (20). Thus, 
the full automation of the discrimination of AD is required.

In the current study, based on a resting-state EEG data 
set comprising 113 normal cognition (NC) subjects, 116 
MCI subjects, and 72 AD subjects with evidence-based 
medical diagnoses, we aimed to explore the development 
of a fully automated process, including data preprocessing, 
fea ture  ex t rac t ion ,  and  machine  learn ing-based 
classification, to differentiate among the 3 groups.

We present the following article in accordance with the 
MDAR checklist (available at https://dx.doi.org/10.21037/
qims-21-430).

Methods

Subjects and neuropsychological measures

Data collection was carried out at the Department of 
Neurology and the Department of Memory Clinic of 
Tongji Hospital. The study was conducted as per the 
Declaration of Helsinki (as revised in 2013) and approved 
by the Ethics Committee of Tongji Hospital (No. K-2017-
003-XZ-190130). All subjects provided written informed 
consent after being given a complete description of the 
study. In total, the EEG data of 301 subjects (comprising 
135 males and 166 females) were acquired in this 
study. Subjects were recruited from the Department of 
Neurology and the Memory Clinic of Tongji Hospital. 
Professional clinical neurologists diagnosed all the subjects 
via neuroimaging tests, including computed tomography 
and magnetic resonance image, and a comprehensive 
neuropsychological battery that included the Mini-Mental 
State Examination (MMSE) (46), Montreal Cognitive 

Assessment-Basic (MoCA-B) (47), Rey-Osterrieth Complex 
Figure Test (ROCF) (48), Trail Making Test (TMT) (49), 
Hopkins Verbal Learning Test (HVLT) (50), Wechsler 
Memory Scale (WMS) (51), Verbal Fluency Test (VFT) (52),  
and Boston Naming Test (BNT) (53). Examinations 
including biochemical blood assessments of folic acid, 
vitamin B12, thyroid function (free triiodothyronine, free 
tetraiodothyronine, and thyroid-stimulating hormone), 
treponema pallidum, and human immunodeficiency virus 
(HIV) antibodies were conducted to exclude memory 
loss caused by other reasons. Their demographic and 
clinical information were also recorded. Further details of 
subjects’ demographic information and neuropsychological 
performance are provided in Table 1. 

The subjects were separated into the following 3 groups 
according to their clinical diagnosis: (I) the NC group (113 
subjects); (II) the MCI group (116 subjects); and (III) the 
AD (72 subjects) group. AD was diagnosed based on the 
clinical diagnostic criteria for probable AD of the National 
Institute on Aging and Alzheimer’s Association (54).  
As there was a lack of in-vivo evidence, such as amyloid 
positron emission tomography, amyloid/tau cerebrospinal 
fluid markers, and the presence of autosomal dominant 
mutations, the subjects in the AD group in the current study 
could only be referred as probable AD (55). To focus on 
the etiology of AD, only the amnestic MCI subjects were 
included in the current study, containing both single-domain 
and multiple-domain amnestic MCI. According to the general 
criteria for MCI as defined previously (56,57), subjects were 
diagnosed with amnestic MCI by neurologists if they met the 
following specific criteria: (I) the subject and their caregiver 
complained of memory decline; (II) the subject met the criteria 
for MMSE (based on the education level, illiterate ≤17, 
primary school ≤20, or middle school and above ≤24 scores) 
or MoCA-B (based on the education level, primary school and 
below ≤19, middle school and high school ≤22, or college ≤24 

Table 1 Subjects’ demographic characteristics and performance information

Demographics/Performance NC (n=113) MCI (n=116) AD (n=72) Statistics

Age, years 67.79 (9.88) 68.17 (10.82) 73.37 (8.78) F(2) = 12.02, P<0.001

Gender, male/female 61/52 45/71 29/43 Chi2 = 4.77, P=0.09

Education, years 10.14 (3.51) 9.37 (4.55) 9.12 (4.86) F(2) = 27.16, P<0.001

MoCA 23.24 (3.25) 17.13 (4.32) 10.90 (5.39) F(2) = 181.19, P<0.001

MMSE 27.71 (1.81) 24.41 (3.40) 17.72 (6.94) F(2) = 126.53, P<0.001

Values are presented as mean (SD) unless otherwise indicated. NC, normal cognition; MCI, mild cognitive impairment; AD, Alzheimer’s 
disease; MoCA, Montreal Cognitive Assessment; MMSE, Mini-Mental State Examination.

https://dx.doi.org/10.21037/qims-21-430
https://dx.doi.org/10.21037/qims-21-430


1066 Ding et al. Fully automated discrimination of AD

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(2):1063-1078 | https://dx.doi.org/10.21037/qims-21-430

scores); (III) the subject had a Clinical Dementia Rating Scale  
(CDR) (58) score of 0.5; (IV) the subject was impaired in the 
single cognitive domain of memory, or multiple cognitive 
domains, including the domain of memory, according to the 
neuropsychological battery tests; (V) the subject had normal 
daily life function according to the Instrumental Activities 
of Daily Living (IADL-14) (59) scale. The control group 
included the subjects who had completed the cognitive tests 
but were diagnosed as cognitively healthy, which was referred 
to as NC.

Subjects were excluded from the study if they met any 
of the following exclusion criteria: (I) were aged below  
40 years; (II) had a definite history of stroke; (III) had a 
definite history of other diseases of the central nervous 
system, such as infection, demyelinating diseases, and 
Parkinson’s disease; (IV) had a definite history of mental 
illness, such as schizophrenia, major depressive disorder; (V) 
had a serious physical disease; (VI) had an alcohol or drug 
addiction; (VII) had clinically significant abnormalities in 
relation to folic acid, vitamin B12, thyroid function, or had 
positive syphilis or HIV antibodies; (VIII) were unable to 
complete the neuropsychological tests; (IX) had a Hachinski 
Ischemic Scale score ≥4; and/or (X) had a Hamilton Rating 
Scale for Depression (HAMD) score ≥14.

Experiment procedures

All the subjects claimed to have had a sufficient amount of 
sleep the day before the test. During the resting-state EEG 
recording, the subjects were sitting in a comfortable upright 
position and were asked to stay as calm as possible, while 
keeping their eyes closed for about 5 minutes. According 
to the 10–20 international system, Electrodes were placed 
with the reference electrode on the bilateral mastoids. 
Conductivity was ensured by keeping the impedance of 
all channels below 10 k Ohm for all the subjects. The 
EEG signals were acquired at a sampling rate of 1,000 Hz,  
via a 62-channel [60-channel EEG and 2-channel 
electrooculogram (EOG)] EEG amplifier (SynAmps2, 
Neuroscan, USA), armed with Curry 8 data acquisition 
software. The parameters of the SynAmps2 and Curry 8 
were the default settings. In total, 301 subjects’ eye-closed 
resting-state EEG signals were acquired. The length of the 
resting-state data was 300±22.1 seconds.

Automated data preprocessing

An automated data preprocessing procedure was developed 

to remove artifacts, which was done in Matlab with the 
Fieldtrip (60) and EEGLAB (61) toolbox. First, the 
raw EEG recordings were filtered to a frequency band 
between 0.1 and 95 Hz by combining low- and high-
pass filters with 95 and 0.1 Hz cut-offs, respectively. The 
signals were then detrended and downsampled to 500 Hz.  
The first and last 2 s of the signals were removed to avoid 
unstable responses. Second, the data of all channels were 
discarded at the time point when the amplitude of more 
than 5 channels were larger than 250 μV. In this case, the 
remaining signals were naturally segmented into several 
trials because parts of the continuous signals were removed. 
For each trial, bad channels were identified by a series of 
statistical indicators, including standard deviation, Hurst 
exponent, and correlation coefficients. The threshold of 
each indicator was determined by the median and standard 
deviation values across all channels. If the indicators 
were beyond the threshold, the corresponding channel 
was marked as a bad channel. Before conducting the 
independent component analysis (ICA), all the bad channels 
were put aside to extract artificial components, including 
EOG, electromyography, and electrocardiogram, from the 
data. After calculating the ICA components, the ADJUST 
toolbox (62) in EEGLAB was used to identify and remove 
artificial components. Finally, the marked bad channels 
were put back and replaced by the interpolation results 
of the neighboring channels. The Reference Electrode 
Standardization Technique was then applied to re-reference 
all the signals (63). The signals were then segmented into 
epochs of 15 s without overlap.

Feature extraction
The features of the EEG signals include spectral features, 
complexity, and functional connectivity. This paper used 
the Band Power Ratio and Continuous Wavelet Transform 
features as the spectral features. Complexity was used to 
measure the variability within the EEG signal of each 
channel, while functional connectivity was used to measure 
the consistency of EEG signals across channels.

Band power ratio
Power spectrum density was used to present the relative 
power of the following 6 bands: delta (1–4 Hz), theta  
(4–8 Hz), alpha (8–12 Hz), low beta (beta1, 12–18.5 Hz), 
middle beta (beta2, 18.5–21 Hz), and high beta (beta3, 
21–30 Hz). To reduce the individual influence of each band, 
the band power ratio was also calculated, and the following 
6 indices were used to evaluate the change of the power of 
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different bands (64):
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CWT features
The continuous wavelet transform (CWT) features used 
in this study were defined as the average magnitude of 
all CWT coefficients, and were obtained using a selected 
mother wavelet bump, in that particular frequency band 
over the entire signal length, which was written as (38):
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where fsi is the starting frequency of the ith band, fei is the 
ending frequency, ts is the starting time, te is the ending 
time, and Yj,k are the wavelet transform coefficients based 
on the selected mother wavelet. The frequency bands were 
the same as those used to calculate band power ratios. The 
beta1, beta2, and beta3 bands were merged as a beta band.

Complexity
4 indices were adopted to measure the complexity of 
the EEG signals: Permutation Entropy (P-En), Sample 
Entropy (S-En), Wavelet Entropy (W-En), and Lempel-
Ziv (LZ) complexity. P-En is a dynamic mutation-detection 
measurement that easily and accurately measures the 
mutation and amplifies the small change of signals; S-En is 
used to measure the probability of generating new patterns 
in signals, and the low value of S-En indicates the high 
self-similarity of signals; W-En measures the disorder 
degree of signal energy distribution in different subspaces. 
Multiscale entropy, which is generated by extending entropy 
calculation to multiple time scales (65), was also calculated.

Lempel–Ziv (LZ) complexity is another measure used to 
quantify the complexity of signals, and is usually relevant 
to the frequency of the same trend in the signal. The EEG 
signals were converted to binary 0 and 1 before the LZ-
complexity calculation. If the value of the current point was 
larger than the mean value of the total signal, the current 
point was converted to 1, and otherwise to 0. This step 
was repeated twice to measure the finer change variation 
tendency of the signals (66).

Functional connectivity
This paper adopted 2 functional connectivity indices, 
the correlation coefficient and cross-power spectral 
density correlation coefficient, to measure amplitude 
synchronization and spectral synchronization, respectively 
The correlation coefficient of the 2 signals’ x1 and x2 was 
calculated as:
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where Cov(x1,x2) indicates the covariance of signals x1 and x2, 
Var(x1) indicates the variance of x1, and Var(x2) indicates the 
variance of x2.

The cross-power spectral density correlation coefficient 
was calculated as:
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where cpsd(x1,x2) indicates the cross-power spectral density 
between signals x1 and x2, psd(x1) indicates the power 
spectral density of x1, and psd(x2) indicates the power 
spectral density of x2.

Both the complexity and functional connectivity features 
were calculated based on the signals of 1–30 Hz. All the 
features were first extracted epoch-wisely and then averaged 
across epochs within subjects.

Statistical analysis

The analysis of variance (ANOVA) was used to estimate the 
degree of difference among the NC, MCI, and AD groups 
for different features. First, the 3 categories of NC, MCI, 
and AD were analyzed together to identify the regions 
of the brain with an ANOVA P<0.05. Second, a Tukey-
Kramer multiple comparisons (67) was made between every 
2 categories, and the electrodes with a P<0.05 were also 
found.
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Classification

The performance of 9 commonly used classifiers, 
including a linear discriminant analysis (LDA), logistic 
regression model, naive Bayes classifier, nearest neighbor 
classifier, SVMs, and ensemble trees [e.g., RF, gradient 
boosting decision tree (GBDT), XGBoost, and random 
undersampling (RUS) boosting] were compared on the 
classification tasks, including AD vs. NC, AD vs. MCI, 
and MCI vs. NC. The parameters of the models were 
chosen according to the suggested or default settings in the 
Classification Learner of MATLAB.

LDA, also known as the Fisher discriminant, assumes 
that different classes generate data based on Gaussian 
distributions. The amount of regularization to apply when 
estimating the covariance matrix of the predictors was set to 
0. The logistic regression models the probability of output 
in terms of input, and can be used to make a classifier, by 
choosing a cutoff value. It is a common way to make a 
binary classifier (68). The naive Bayes classifier estimates 
the parameters of a probability distribution (the kernel 
smoothing density estimate in our case) using the training 
data. For any unseen test data, the naive Bayes classifier 
computes the posterior probability of that sample belonging 
to each class, and then classifies the test data according 
to the largest posterior probability. The nearest neighbor 
classification model categorizes query points based on their 
distance to points in a training data set. In the present study, 
Euclidean metrics were used to determine the distance with 
no weighting. The number of nearest neighbors was set to 
10. The SVM with a linear kernel was also recruited, where 
the scale factor was selected using a heuristic procedure.

Ensemble approaches train many weak classifiers 
(e.g., trees) and combine their predictions to enhance 
the performance of a single weak learner. RF and 2 other 
ensemble tree approaches [GBDT (69) and XGBoost (70)] 
were conducted. RF builds many trees independently from 
different bootstrap samples of the training data, while 
allowing to use of different subsets of variables at the nodes 
of any tree in the ensemble and then votes their predictions 
to get a final prediction (36). Additionally, RUS boosting, 
which is an especially effective approach to classifying 
imbalanced data, was recruited due to the mild imbalance 
among groups in the current study. The learning rate was 
set to 0.1. The number of ensemble learning cycles of the 
ensemble trees was set to 30. The maximal number of 
decision splits was set to the number of sample sizes in the 
training sample.

The samples were divided into a testing set and a 
training set by 5-fold cross-validation (1 fold for testing, 
and 4 other folds for training). The classification models 
were trained on the training set. The recognition accuracy, 
specificity, sensitivity, and area under the curve (AUC) 
with 95% confidence intervals were used to evaluate the 
overall performance of the models using the testing set. 
The sample sizes were similar among the groups; however, 
a permutation test was conducted for each classification 
to determine the empirical chance level accuracy, which 
is the 95 percentile of empirical performance distribution 
established by randomly permuting the labels 1,000 times. 
Permutation tests help identify the over-fit of models and 
predict that the given model is significantly better than the 
one built under the same conditions but on random data.

Some features are uninformative, irrelevant or redundant 
for classification, so reducing the number of features 
could speed up computation and improve classification 
performance (71). This paper applied principal component 
analysis (PCA) to the feature matrix to extract the latent 
components representing 95% of all variability (72).

The data processing flowchart shows how the raw 
resting EEG data was processed and how the features were 
extracted and used for classification (see Figure 1).

Results

NC could be statistically distinguished from AD but barely 
from MCI

To include enough information, the spectral, complexity, 
and functional connectivity features were considered in 
the current study. The spectral features included 6 kinds 
of band power ratio and CWT features in 4 frequency 
bands for each channel, resulting in 600 features. The 
complexity included 3 kinds of entropy and LZ complexity. 
For entropy, the multiscale entropy of a scale from 1 to 20 
was obtained for every channel, so each entropy indices 
had 1,200 features. Combining the LZ-complexity value of 
each channel, there were 3,660 complexity features in total. 
2 connectivity matrices were calculated as the correlation 
coefficient and cross-power spectral density correlation 
coefficient. As the functional connectivity matrices were 
symmetric, only the upper triangular matrices were used to 
avoid redundant information, resulting in 3,540 features. 
The number of features is shown in Table 2.

An ANOVA was conducted to identify the statistically 
differential features among AD MCI and NC subjects 
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Figure 1 The data processing flowchart. ICA, independent component analysis; REST, reference electrode standardization technique; 
CWT, continuous wavelet transform; LZ, Lempel-Ziv; PCA, principal component analysis.

Table 2 Extracted features

Feature category Features Dimension

Spectral Band power ratio 6 types * 60 channels = 360 

CWT 4 frequency bands * 60 channels = 240 

Complexity Multi-scale permutation entropy 20 scales * 60 channels = 1,200

Multi-scale sample entropy 20 scales * 60 channels = 1,200

Multi-scale wavelet entropy 20 scales * 60 channels = 1,200

LZ complexity 60 channels

Functional Connectivity Correlation coefficient  2
60 channlesC  = 1,770

Cross-power spectral density  2
60 channlesC  = 1,770

CWT, continuous wavelet transform; LZ, Lempel-Ziv.

Preprocessing Feature Extraction Classification and Validation
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Magnitude of CWT coefficients

Multi-scale permutation entropy
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Multi-scale wavelet entropy
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Cross power spectral density correlation
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Detrend and Downsampled to 500 Hz

Remove the first and last 2s’ data

Discard time points when more than 
5 channels >250 uV

Identify bad channels by statistical indicators

ICA and label bad components by ADJUST

Interpolate bad channels

REST re-reference

Segment into epochs 

for the spectral, complexity, and functional connectivity 
features. For the spectral features, at least 1 channel of all 
the band power ratio features demonstrated significant 
differences among the 3 groups (P<0.05 with FDR 
correction), except for r6. Among the 6 kinds of ratios, r1 
and r3 showed the best distinguishable performance in the 
corrected ANOVA P value, followed by r4 (see Figure 2A).  
The most distinguishable channels were located in the 
bilateral temporal lobes and temporoparietal junction areas. 
However, even for r1 and r3, according to the results of the 

post-hoc analysis, NC and MCI were not distinguishable 
for all the channels, while both NC vs. AD and MCI vs. 
AD were distinguishable (see Figure 2B). The mean value 
of r1 of AD was greater than that of MCI, while the mean 
values of MCI were greater than those of NC but there was 
overlap (see Figure 2C,2D).

With the complexity features, the LZ complexity 
of the middle posterior regions indicated significantly 
different complexity among the 3 groups (P<0.05 with 
FDR correction), while the bilateral temporal regions 
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of the 3 types of entropy revealed differences among the 
groups. Both LZ complexity and entropy decreased, as did 
the increase of cognitive impairment (AD < MCI < NC). 
According to the post-hoc results, middle posterior LZ 
complexity distinguished between NC and AD, and MCI 
and AD, but not MCI and NC (see Figure 3A). Similarly, 
the bilateral temporal S-EN and P-EN could distinguish 
between NC and AD, and MCI and AD, but not MCI and 
NC (see Figure 3B,3C). Conversely, the right temporal 
W-En distinguished between NC and AD, and NC and 
MCI, but not MCI and AD (see Figure 3D).

The group-level connectivity networks of the correlation 
coefficient (see Figure 4A) and cross-power spectral 
density correlation coefficient (see Figure 4B) in NC, 

MCI, and AD are shown in Figure 4 (only the nonadjacent 
connections with the top 10% largest connectivity strength 
were plotted). The connection number (the left plots in  
Figure 4C,4D) and the connection strength (the right plots 
in Figure 4C,4D) in the individual levels were compared 
among the groups. There were more connections in NC 
than MCI and AD, and these connections were stronger, 
but the differences were not statistically significant.

The machine-learning models distinguished among the 3 
groups

When separating AD from NC, among all the classifiers, 
the RF had the best performance in terms of the AUC 

Figure 2 The statistical difference of the band power ratios among the NC, MCI, and AD groups. (A) The topographic plots of the ANOVA 
results of the 6 ratios in terms of −log(P), where the P values have been FDR corrected. (B) The topographic plots of the multi-comparison 
results of r1 for the comparisons of NC vs. MCI, NC vs. AD, and MCI vs. AD, respectively. The color bar represents the values of −log(P), 
which means it is statistically significant when the value is larger than 1.3, as indicated by a red dashed line. (C) The topographic plots of the 
average values of r1 in the NC, MCI, and AD groups. (D) The value range of r1 of the 3 groups. Each row corresponds to a channel. The 
green lines represent the mean value with the 95% confidence level range of the NC group, while the yellow lines represent MCI and the 
red lines represent AD. The blue lines represent the overlap between NC and MCI, and the purple lines represent the overlap between MCI 
and AD. NC, normal cognition; MCI, mild cognitive impairment; AD, Alzheimer’s disease.
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(80.08%), and RUS Boosting was the best in terms of 
accuracy (72.43%). The specificity of the RF was as high 
as 85.84%, but the sensitivity was only 50%. Conversely, 
the GBDT had a relatively balanced performance (with 
an AUC of 79.52%, an accuracy of 71.59%, a specificity 
of 73.21%, and a sensitivity of 70.12%). Table 3 shows the 
classification performance of all the classifiers. Regardless of 
the classifier algorithm, all the classifiers had a significantly 
higher level of accuracy at distinguishing AD from NC 
(P<0.001, permutation test) than the empirical chance level 
accuracy.

People with amnestic MCI are more likely to have an 
AD etiology, and have a higher conversion rate to AD. The 
machine-learning classifiers were also able to separate AD 
from amnestic MCI. Among all the classifiers, the RUS 
boosting achieved the best performance (with an AUC of 
70.82%, an accuracy of 69.11%, a specificity of 69.75%, 
and a sensitivity of 62.42%). Most classifiers, except for the 
logistic regression classifier (P=0.16, permutation test) had a 
significantly higher level of accuracy (P<0.001, permutation 
test) than the empirical chance level accuracy. More details 
of the classification performance are set out in Table 4.

Figure 3 The statistical difference of the complexity features among the NC, MCI, and AD groups. The complexity features included LZ 
complexity (A), the sample entropy (B), permutation entropy (C), and wavelet entropy (D) on a scale of 10. The first column of each sub-
figure is the topographic plot of ANOVA results in terms of −log(P), which means it is statistically significant when the value is larger than 1.3 
(this is also indicated by a red dashed line in the color bar). The 2nd to 4th subplots are the multi-comparison results of NC vs. MCI, NC vs. 
AD, and MCI vs. AD, respectively. The 3 subplots on the right are the topographic plots of the average values of certain features in the NC, 
MCI, and AD groups. NC, normal cognition; MCI, mild cognitive impairment; AD, Alzheimer’s disease; LZ, Lempel-Ziv; S-En, Sample 
Entropy; P-En, Permutation Entropy; W-En, Wavelet Entropy.
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Table 3 The classification results of AD vs. NC

Classifier Accuracy (%) Empirical chance level accuracy (%) Specificity (%) Sensitivity (%) AUC (95% CI) (%)

LDA 70.27 52.97 87.61 43.06 76.16 (68.34–82.54)

Logistic regression 66.49 51.89 78.76 47.22 67.47 (58.84–75.05)

Naive bayes 69.73 48.11 87.61 41.67 73.88 (65.91–80.54)

SVM 70.81 56.22 91.15 38.89 76.06 (68.05–82.57)

Nearest neighbor 64.32 54.05 97.35 12.50 73.97 (65.91–80.69)

Random forest 71.89 51.89 85.84 50.00 80.08 (72.64–85.89)

XGBoost 68.75 51.56 74.89 65.96 75.86 (74.02–76.96)

GBDT 71.59 49.76 73.21 70.12 79.52 (78.92–81.25)

RUS boosting 72.43 45.41 76.99 65.28 77.51 (69.72–83.76)

Empirical chance level accuracy is the 95 percentile of empirical performance distribution established by randomly permuting the labels 
1,000 times, representing that the original classification is significant with P<0.05. CI, confidence interval; LDA, linear discriminant analysis;  
SVM, support vector machine; GBDT, gradient boosting decision tree; RUS, random under sampling.

Figure 4 The connectivity network and statistical comparisons of the functional connectivity features. (A) the connectivity network of 
correlation coefficients in the NC, MCI, and AD groups. (B) the connectivity network of cross-power spectral density correlation coefficient 
in the NC, MCI, and AD groups. Only the nonadjacent connections with the top 10% largest connectivity strength were plotted. The 
color indicates the connectivity strength. (C) The comparison of the connection numbers among the 3 groups (left), and the comparison 
of the connection (right) of the correlation coefficient. (D) The comparison of the connection numbers among the 3 groups (left), and the 
comparison of the connection (right) of cross -power spectral density correlation coefficient. The blue bar represents the average value, and 
the red vertical line represents the standard error mean. NC, normal cognition; MCI, mild cognitive impairment; AD, Alzheimer’s disease.

With differentiating MCI from NC cases, only the 
SVM, nearest neighbor, and ensemble trees (RF, XGBoost, 
GBDT, and RUS boosting) had a significantly higher 
level of accuracy (P<0.05, permutation test) than the 
empirical chance level accuracy. Among them, the nearest 
neighbor achieved the highest AUC of 63.95%, but had a 

relatively low sensitivity. The RUS boosting had a balanced 
performance in terms of AUC of 60.21%, an accuracy of 
59.91%, a specificity of 62.83%, and a sensitivity of 57.14%. 
More details of the classification performance are listed in 
Table 5.
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NC

0.12

0.1

0.08

0.06

0.5

0.45

0.4

0.2

0.15

0.1

0.05

0.08

0.07

0.06

0.05

C
on

ne
ct

io
n 

nu
m

be
r

C
on

ne
ct

io
n 

st
re

ng
th

C
on

ne
ct

io
n 

nu
m

be
r

C
on

ne
ct

io
n 

st
re

ng
th

NC      MCI       ADNC      MCI       ADNC       MCI        ADNC        MCI        AD

NCMCI MCI
coef coef

1

0.9

0.8

0.7

0.15

0.14

0.13

0.12

0.11

0.1

AD ADA

C

B

D



1073Quantitative Imaging in Medicine and Surgery, Vol 12, No 2 February 2022

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(2):1063-1078 | https://dx.doi.org/10.21037/qims-21-430

Table 4 The classification results of AD vs. MCI

Classifier Accuracy (%) Empirical chance level Accuracy (%) Specificity (%) Sensitivity (%) AUC (95% CI) (%)

LDA 64.92 54.26 87.39 27.78 67.30 (58.78–74.81)

Logistic regression 60.73 63.72 78.99 30.56 56.14 (47.23–64.67)

Naive bayes 68.06 49.47 80.67 47.22 69.05 (60.65–76.35)

SVM 64.92 57.45 89.92 23.61 67.09 (58.68–74.53)

Nearest neighbor 64.40 55.32 93.28 16.67 63.46 (54.93–71.22)

Random forest 67.02 52.66 84.03 38.89 69.05 (60.58–76.42)

XGBoost 61.38 52.42 62.67 60.16 66.01 (64.22–67.69)

GBDT 61.43 51.62 63.30 60.29 67.85 (66.19–69.11)

RUS boosting 69.11 56.54 69.75 62.42 70.82 (62.69–77.81)

Empirical chance level accuracy is the 95 percentile of empirical performance distribution established by randomly permuting the labels 
1,000 times, representing that the original classification is significant with P<0.05. CI, confidence interval; LDA, linear discriminant analysis;  
SVM, support vector machine; GBDT, gradient boosting decision tree; RUS, random under sampling.

was also examined to ensure that the classification 
performance was not due to the potential influence of age, 
gender, or education level. For example, in differentiating 
AD from NC, the accuracy of the RF classifier using 
demographic information was 71.35%, and the accuracy 
using both demographic information and resting-state 
EEG features was 74.59%. In differentiating AD from 
MCI, the accuracy using demographic information 
was 61.78%, and the accuracy using both demographic 
information and resting-state EEG features was 66.49%. 
In differentiating MCI from NC, the accuracy using 

demographic information was 57.33%, and the accuracy 
using both demographic information and resting-state 
EEG features was 59.05%. For all the classifiers in all the 
conditions, a classifier that used demographic information 
always performed worse than a classifier that used both 
demographic information and resting-state EEG features or 
resting EEG features alone.

Discussion

In the current study, a process was developed to implement 

Table 5 The classification results of MCI vs. NC

Classifier Accuracy (%) Empirical chance level Accuracy (%) Specificity (%) Sensitivity (%) AUC (95% CI) (%)

LDA 53.02 56.90 50.44 55.46 55.34 (47.86–62.57)

Logistic regression 43.53 56.47 39.82 47.06 58.54 (51.07–65.64)

Naive bayes 53.88 56.90 69.03 39.50 58.92 (51.45–66.00)

SVM 56.03 55.33 57.52 54.62 56.85 (49.35–64.04)

Nearest neighbor 58.62 56.03 77.88 40.34 63.95 (56.50–70.80)

Random forest 59.48 56.47 68.14 51.26 61.20 (53.71–68.19)

XGBoost 54.04 45.13 57.60 51.30 56.21 (54.86–58.60)

GBDT 54.38 44.76 57.04 52.87 57.31 (54.94–60.32)

RUS boosting 59.91 56.03 62.83 57.14 60.21 (52.67–67.31)

Empirical chance level accuracy is the 95 percentile of empirical performance distribution established by randomly permuting the labels 
1000 times. Larger than empirical chance level accuracy represents that the original classification is significant with P<0.05. CI, confidence 
interval; LDA, linear discriminant analysis; SVM, support vector machine; GBDT, gradient boosting decision tree; RUS, random under  
sampling.
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the automated assistant diagnosis of AD using resting-
state EEG signals. By combining the statistical analysis and 
classification methods, the results confirmed the potential 
of distinguishing among NC, amnestic, MCI, and probable 
AD subjects on a large data set. In line with previous 
studies, the statistical analysis results demonstrated the 
tendency to slow brain activity and reduced complexity with 
the progression of AD (15,24). Among them, entropy and 
spectral power features were better able to differentiate NC 
from AD, LZ complexity was better able to differentiate 
MCI from AD. At the same time, only the right temporal 
W-En showed statistical separability between NC and 
MCI (see Figures 2,3). Concerning the connectivity, our 
results provide evidence (see Figure 4) that the connectivity 
became weaker with the progression of AD (15,22,28). 
More and more complex features have been developed and 
explored in the emerging literature; however, our results 
showed that the plain spectral features are good candidates 
for filling the gap between clinical use and empirical 
studies. To assist clinicians to use EEG more efficiently to 
distinguish among patients in different states, we compared 
the EEG features among the NC, MCI, and AD groups 
more intuitively by showing the detailed distribution range 
of Band Power Ratio theta/(alpha + beta1) of the 3 groups 
with 95% confidence intervals (see Figure 2D). The values 
of the AD subjects were higher than those of the NC and 
MCI subjects in every channel; however, there was an 
overlap between the NC and MCI subjects. The red bars 
in Figure 1D can be accepted as an EEG biomarker of AD 
distribution with high confidence, and be used by clinicians 
to identify AD patients.

The classification results also supported the clinical 
diagnosis of AD via EEG signals. The AUC of AD vs. NC 
on the testing set was 80.08%, and the AUC of AD vs. MCI 
was 70.82%. It was also easier to classify AD vs. NC than 
AD vs. MCI in terms of classification accuracy. Notably, 
the AD group in the current study was only probable AD; 
thus, some patients may have been misdiagnosed, which 
should be noted when interpreting the results. Compared 
to the results of distinguishing AD from the other 2 groups, 
the performance of distinguishing NC from MCI was less 
satisfactory, but still surpassed the empirical chance level. 
Previous studies (22,40,73) have shown that MCI and 
NC groups can be distinguished using similar features. 
This may be because of the variable physiological states 
of MCI subjects in different studies, as the MCI state is 
easily influenced by many factors, such as non-pathological 
factors, even though the labels are evidence-based medical 

diagnoses. In our dataset, the MCI group comprised 
amnestic MCI patients, single-domain or multiple-
domain, while the NC group comprised outpatients of the 
Department of Neurology with a subjective complaint of 
memory decline. Those who were diagnosed as NC were 
taken as the control group. In some studies, this kind of 
subject was described as having subjective cognitive decline 
(SCD) based on the results of SCD-Q9 screenings or other 
SCD questionnaires. Unfortunately, we did not have these 
data; thus, the NC group included the subjects who were 
diagnosed as cognitively healthy. Previous studies have 
shown significant differences in EEG markers between 
SCD and healthy controls (74,75). The limited differences 
between MCI and controls in this study may partly be due 
to this.

Additionally, different acquisition conditions and 
processing methods could also affect the classification 
results. Relatively speaking, more reliable and generalizable 
conclusions could be drawn from results based on a larger 
scale of samples, such as the current study. Conversely, the 
timely diagnosis of MCI patients is also necessary to ensure 
they receive intervention and treatment to slow down the 
conversion to AD and better overall disease management. 
Thus, further investigation still needs to be conducted of 
the EEG features that better distinguish NC from MCI to 
diagnose MCI subjects.

Demonstrating the separability among the 3 categories 
could potentially be useful to achieve the early diagnosis of 
AD, but it is not sufficient. A longitudinal study (rather than 
a cross-sectional study) should be conducted to reveal the 
neural indicator of disease progressions. Ideally, separating 
MCI subjects with and without an AD etiology based on 
follow-ups is a straightforward approach for developing 
clinically useful tools to aid with early diagnosis. There 
are some other directions worthy of further study. The 
automated preprocessing methods are labor-saving, especially 
for large-scale data. Our study developed an automated 
method to preprocess the raw EEG data, but the results of 
the automated preprocessing were not quantitatively verified 
because of the limited available specifically labeled data. 
Additionally, more EEG data are required when using deep 
learning to train a more effective model. 
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