
© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2021;11(12):4847-4858 | https://dx.doi.org/10.21037/qims-21-168

Introduction 

Radiation therapy is one of the most common treatments 
for cancer, requiring patient-specific treatment planning 
to deliver conformal radiation doses to the target while 
sparing the healthy tissues. The treatment planning starts 
with the target volumes and Organs-At-Risks (OAR) 
contouring on computed tomography (CT), magnetic 
resonance (MR) or positron emission tomography (PET), 

which lays the foundation of the precision of the entire 
workflow moving forward. The target volume contouring 
is manually delineated by radiation oncologists, which is 
taken as the golden standard in the clinical practice but a 
time-consuming process and may suffer from substantial 
inter- and intra-observer variability (1-3). In addition, the 
rapid development of online adaptive radiation therapy also 
raises the requirement of contouring efficiency (4). Based 
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on the failures mode analysis of chart review in radiation 
therapy indicated by AAPM Task Group 275 (5), the wrong 
or inaccurate target volume contours was ranked as the top 
one high-risk failure mode through the entire workflow, 
indicating plenty of room for improvements in safety and 
efficiency of radiation therapy that may be achieved through 
the development of target volume automatic segmentation. 

Prior to the emerging trend of deep learning, classic 
imaging processing techniques such as atlas-based methods 
had shown promising performance in target volume 
automatic segmentation in selective clinical sites (6-9). 
However, the fuzzy anatomical features shown in images 
impose a challenge on deformable registration, which 
is the pre-requisite step of multi-atlas-based automatic 
segmentation (MABAS), thus set a ceiling for the accuracy 
of MABAS. In comparison, deep learning-based methods, 
a new branch of machine learning with greater modeling 
complexity and trainable to vast amount of data, are good 
at automatic feature extraction from image data, and are 
capable of directly learning from the imaging data in an 
end-to-end manner. Benefiting from the development of 
advanced computer hardware as well as accumulatively 
increasing clinical data for model training, deep learning-
based automatic segmentation has gradually outperformed 
previous methods and become the state-of-the-art methods 
in automatic segmentation field. This trend can be observed 
in Figure 1, which shows how the number of deep learning-
based papers for automatic segmentation in radiotherapy 
has increased strongly in the last years. 

In this paper, we provide an overview of state-of-the-
art deep learning techniques for target volume automatic 
segmentation in three commonly used imaging modalities 
in radiotherapy (i.e., CT, MRI, PET), and discuss the 

advantages and remaining challenges of current deep 
learning-based target volume segmentation methods that 
hinder widespread clinical deployment. To our knowledge, 
there have been several papers that reviewed the general 
applications of deep learning in radiotherapy (10-12), 
however, none of them has provided a systematic overview 
focused on the automatic segmentation of target volumes. 
This review paper aims at providing a comprehensive 
overview from the debut to the state-of-the-art of deep 
learning algorithms, focusing on a variety of target volume 
segmentation in different clinical sites and multi-modality 
imaging.

To identify related studies, search engines like PubMed 
were queried for papers containing (“deep learning”) and 
(“target volume”) and (“delineation”) or (“segmentation”) 
in the title or abstract. Additionally, for conference 
proceedings such as MICCAI and ISBI were searched 
separately based on the titles of papers. The last update to 
the included papers was on Feb 5th, 2021.

Fundamentals of deep learning methods

Architectures

In this section, we first introduce basic deep neural network 
architectures and then briefly introduce variation models 
with building blocks that are commonly used to boost the 
ability of the networks to perform automatic delineation of 
radiotherapy target volumes.
Convolutional neural networks (ConvNets)
The typical structure of ConvNets usually consists of: 
Convolutional layers, Pooling layers and Fully Connected 
layers. As indicated by Karpathy et al. (13), a common 

Figure 1 Overview of numbers of papers published from 2016 to 2020 regarding deep learning-based methods for radiotherapy applications 
and deep learning-based automatic segmentation applications for radiotherapy.
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pattern of ConvNets can be visualized as in Figure 2. 
The convolutional layers take the original input image 

and extract feature maps from the image by convolving the 
input image with a series of kernels (also known as filters or 
features). For an m × n kernel K and a 2D input image I, the 
output unit after convolution equals to

 ( ) ( ) ( )
0 0

, , ,
m n

a b
S i j I i a j b K a b

= =

= + +∑∑  [1]

In modern ConvNets architectures, element wise non-
linear transformation is applied after each convolution 
operation,  and the default  recommendation is  to 
use Rectified Linear Unit (ReLU) (14,15) defined as 
g(z)=max(0,z) to threshold at zero. Therefore, the (i,j) 
element of the output feature map, after applying a non-
linear transformation ReLU and adding a bias B(i,j), equals 
to

( ) ( ) ( )( ), , ,F i j g S i j B i j= +  [2]

The values of each kernel is learned by the ConvNets 
during the training process, and generate lower-level 
features focusing on local details, which aggregating 
together into higher-level features corresponding to 
complex and abstract human visual concepts. The size of the 
output feature map is controlled by three hyper-parameters: 
(I) depth d, corresponds to the number of different kernels 
applied to the input image; (II) stride s, indicates the 
number of pixels that are jumped every time the kernel 
slides over the input image; (III) zero-padding p, refers to 
the amount of zeros padded around the input image border 
that help control the output feature map size. Assuming the 
input image size is I, and the kernel size is K, the output size 
of the feature map stack is given by F=[(1−K+2p)/s+1]×d.

The pooling layers takes a large feature map generated 

by the convolutional layer and shrinks its dimension by 
replacing each value in the feature map with the statistics of 
the nearby outputs, such as the maximum, or the sum the 
average. One of the most commonly used pooling methods 
is max pooling, which moves a window in steps across the 
feature map and extract the largest value within the window. 
While introducing pooling layers to ConvNets can improve 
the invariance of local deviations, reduce the amount of 
parameters to be computed and control over fitting, it can 
also lead to problems such as losing pose and orientation 
information in deeper layers, as well as complicating 
the architectures that use top-down design (16). Some 
researchers have proposed alternative methods to replace 
the pooling layers in the ConvNets: Springenberg et al. (17) 
suggested competitive performance of object recognition 
can be accomplished by using a ConvNets composed solely 
of repeated convolutional layers with greater strides. In a 
latest architecture CapsNet proposed by Sabour et al. (18), 
the dynamic routing mechanism that generates a parent 
capsule and calculates the output from grouped capsules, 
replaces the max pooling in typical ConvNets by applying 
the dynamic routing on the capsule outputs to ensure the 
feature representations are equivariant. 

Different from Convolutional layers and Pooling layers 
that preserve the spatial structure of an image, a Fully 
Connected layer can be considered as a one-dimensional list 
that connects with every single neuron, i.e., the activation 
function in the previous layer which is calculated by matrix 
multiplication followed by a bias offset. 

Although the major applications of ConvNets is in 
image classification, it can also be employed in target 
volume delineation tasks without major revisions to the 
architecture. However, this requires extracting patches from 
the original image and then classify the pixel at the center 

Figure 2 An illustration of the typical ConvNets architecture. ×N, ×M, and ×K indicate repetitions of the corresponding structure. 
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of each patch. Major drawbacks associated with this sliding-
window method include (I) redundant computation caused 
by repetitive convolutions of highly overlapped patches 
and (II) inability for ConvNets to learn global features due 
to the small patch size and (III) being applicable only for 
binary segmentation task while fully connected layers exist. 
As a result, an end-to-end segmentation network at pixel 
level, namely, fully convolutional neural network (FCN) 
is more commonly used, and will be discussed in the next 
section.

FCN
In 2014, Long et al. (19) proposed their FCN for dense 
predictions. With fully connected layers replaced 
by convolutions, the resulting FCN can use existing 
classification ConvNets to learn the hierarchies of 
features and output feature maps in a more efficient 
manner compared to the sliding-window method. The 
FCN architecture proposed by Long et al. is considered a 
milestone of applying ConvNets in semantic segmentation 
and most state-of-the-art segmentation neural networks 
have adopted this paradigm (20). A classic example of FCN 
was shown in Figure 3.

Apart from fully connected layers, pooling layers also 
hinder the direct use of ConvNets in segmentation tasks. 
In ConvNets, pooling layers are used to increase the field 
of view and prevent overwhelm of system memory while 
reducing the feature map resolution and discarding the 
spatial information. From the aspect of segmentation, 
however, this is unfavorable since segmentation tasks 
require accurate alignment of classification map, hence the 
need to preserve spatial information. Various methods have 
been developed to tackle the challenge of preserving spatial 
information while reducing the resolution of feature maps, 
leading to multiple variants of the initial FCN architecture. 

In general, all the FCN-based architectures employ 
classification ConvNets, with their fully connected layers 
replaced by convolutions, and produce low-resolution 
feature maps. This process is usually named Encoder. 
Decoder then refers to the process of mapping the low-
resolution feature maps to the pixel-wise prediction in 
terms of segmentation. As above mentioned, variant 
architectures of FCN usually diverge at this point: Long 
et al. (19) utilized backward-strided convolution (or 
well-known as deconvolution) to up-sample the feature 
maps by fusing features from different coarseness and 
produce dense per-pixel outputs with the original image 
size. Ronneberger et al. (21) pushed one step further 
and proposed U-net architecture, which up-sampled the 
feature maps by connecting the encoder and the decoder 
at every stage. Although not the first paper proposing 
up-sampling method through learned deconvolutions, 
an important contribution by Ronneberger et al. (21) is 
introducing the skip-connections that directly forward the 
feature maps computed in each encoding stage to each 
decoding stage, allowing the decoder of each stage to 
learn relevant features that will be lost when pooled by the 
encoder. The original U-net architecture is 2D ConvNets, 
and it was later expanded to 3D architecture by Çiçek 
et al. (22) Furthermore, Milletari et al. (23) modified the 
original U-Net (known as V-Net) by introducing ResNet-
like (24) residual blocks and replace the original cross-
entropy objective function with dice similarity coefficients. 
Despite architecture variations, Isensee et al. (25) proposed 
“no new net” (nnU-Net) to show that the basic U-Net 
can still outperform many recently proposed methods 
by autonomous transforms to different datasets and 
segmentation tasks.

As an alternative to the encoder-decoder design, another 
way of restoring spatial information in the image is Dilated 

Figure 3 A classic example of FCN-based target segmentation. The model takes the whole image as input through encoder, extracts feature 
maps through a series of deconvolution layers in the decoder, and eventually generates the probability maps for multiple target classes, where 
each pixel is assigned to the class with the highest probability.

Input image Target segmentation
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Convolutions. The main idea of dilated convolutions is 
to insert spaces between each convolution filter cell; in 
other words, dilated convolution is like a usual convolution 
but with up-sampled filters, and it is useful to expand the 
field of view exponentially without increasing parameters 
or computation time. Chen et al. (26) and Yu et al. (27) 
firstly combined the dilated convolutions with semantic 
segmentation. Specifically, the dilated convolutional layers 
with increasing dilation rates were inserted to replace the 
last several pooling and convolutional layers and to output 
dense predictions. 

Model enhancement techniques
There are several techniques in the literatures that have 
been used to enhance classic FCN architectures (e.g. U-Net, 
ResNet) for more accurate target volume segmentation: (I) 
multi-branch inputs: allows additional information from 
other imaging modalities to be fused with the planning 
images to propagate feature extraction (28,29); (II) advanced 
convolution kernels: examples include using dilated kernel 
that performs convolution with a wider stride to expand 
the receptive field in the feature extraction process (30); 
(III) inter-channel connections: examples include using (i) 
residual connections that connect outputs from previous 
layer to the feature map generated by the current layer to 
boost feature reusability and thereby increase the depth of 
the network (31,32), (ii) dense connections that link all the 
outputs from previous layers to the feature map generated 
by the current layer to boost feature exploration (33,34).

Deep learning model training

Common loss functions
Given the class imbalance issue is usually associated with 
target volume automatic segmentation, cross entropy (CE) 
is one of the most common loss functions being used in 
many studies. In particular, the cross-entropy loss for target 
volume segmentation summarizes pixel-wise probability 
errors between a predicted output  c

ip  and its corresponding 
ground truth label map  c

ig  for each class c through the total 
number of data samples N:

( )
1 0

1 log
N C

c c
CE i i

i c
L g p

N = =

= − ∑∑  [3]

where c=0 accounts for the background class and 1≤c≤C 
accounts for all target volume foreground classes.

Another classic loss function that is frequently used in 
image segmentation tasks is soft-Dice loss, which penalizes 

the misalignments between a predicted probability map  c
ip  

and its ground truth label map  c
ig  at the pixel-wise level:
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Evaluation metrics
To quantitatively evaluate the performance of automatic 
target segmentation methods, there are three types of 
metrics commonly used: (I) volume-based metrics (e.g., 
Dice similarity coefficient, Jaccard similarity index), (II) 
distance-based metrics (e.g., surface distance, Hausdorff 
distance), (III) comparisons with expert variability (e.g., 
inter- and intra-observer variabilities). 

The Dice similarity coefficient evaluates the ratio of 
overlap between the automatic segmentation and the 
ground truth contours: 

 
 2 2

2
A G TPDice

A G TP FP FN
∩

= =
+ + +  [5]

where A stands for Auto-segmented contours, G represents 
the Ground-truth contours, TP is the true positive rate, FP 
is the false positive rate and FN is the false negative rate. 

Amongst distance-based evaluation metrics, mean surface 
distance and Hausdorff distance are commonly used to find 
the maximum distance of all voxels on the automatically 
segmented target surface to the ground truth contour 
surface, where the mean surface distance is defined as:

 

1

1 N
p
g

i
MSD d

N =

= ∑  [6]

where  p
gd  marks the distance from the current voxel to the 

closest voxel on ground truth contours first proposed by 
Gerig et al. (35).

Hausdorff distance is another variation of surface 
distance metric, in which it accounts for the maximum 
distance of all voxels along the segmentation surface: 

 
 { }max max min ,max min

P GG P

p p
g gp N g Ng N p N

HD d d
∈ ∈∈ ∈

=  [7]

Often the accuracy of automatic segmentation were 
compared with variability among expert human operators. 
The rational for such comparison was to provide a fair 
evaluation of the automatic segmentation results, because in 
the case that the training data is comprised of inputs from 
various observers, the output of the model is expected to 
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reflect that variability as well. There are two major types 
of observer variability: Inter-observer variability, which is 
quantified by the differences among contours delineated by 
multiple observers on the same target volume; and intra-
observer variability, which is quantified by the differences 
among contours delineated by a single observer on the 
same target volume at several different tries, usually 
longitudinally at different time points.

It is worth noting even though the segmentation 
accuracies of different methods were presented in this 
paper, they are not directly comparable unless these 
methods are evaluated on the same dataset. This is because, 
even for the same target volume segmentation task, the 
intrinsic characteristics of datasets can vary across imaging 
modalities, acquisition protocols, and patient populations—
each of these variations can lead to significant effects 
on the data distribution and result in different model 
performances.

Deep learning for target volume delineation

CT-based target volume segmentation

CT is a routine technique that is used for target definition 
and treatment planning in radiotherapy. There are two 
main imaging modalities: non-contrast CT imaging and 
contrast-enhanced CT. Non-contrast CT utilizes the 
variation in density of tissues to generate the image, such 
that different densities using various attenuation values 
can be easily distinguished, and is generally the standard 
of clinical practice for treatment planning. In comparison, 
contrast-enhanced CT is acquired after the injection of a 
contrast agent, which provides better visualization of lymph 
nodes and vessels, has shown to be helpful in target volume 
definition (36,37). In the following sections, we will review 
some of the most commonly used deep-learning-based 
target delineation methodologies using CT images as input.

FCN-based segmentation
Men et al. (30) were among the first ones to apply a 
FCN to segment the Clinical Target Volume (CTV) on 
non-contrast CT images of rectal cancer. Their end-
to-end FCN approach enhanced by dilated convolution 
channels achieved competitive segmentation performance, 
significantly outperforming traditional non-deep-learning-
based methods in terms of both speed and accuracy. In the 
following years, multiple studies based on FCNs have been 
proposed, aiming at achieving further improvements in 

automatic target delineation performance. In this regard, 
one stream of work focuses on modifying the network 
architecture to enhance the feature extraction capacity - for 
example, Men et al. (38) modified the structure of VGG-16 
with reversed deconvolutions at decoder level to re-establish 
the feature maps to achieve pixel-wise segmentation of 
gross tumor volume (GTV) and CTV segmentation in 
nasopharyngeal cancer. Schreier et al. (39) modified the 
U-Net architecture by adding interconnected channels 
between high- and low-resolution feature maps. Cardenas 
et al. (40) and Wang et al. (41) investigated different loss 
functions, such as weighted cross-entropy and weighted dice 
loss to boost the target delineation performance. Initially, 
many FCN-based methods used 2D networks rather than 
3D networks for segmentation. This is mainly due to the 
typical computational memory constraints on the hardware, 
which limits the applicability of 3D networks. Besides, 
training 2D networks requires less data, since each CT 
slice can be one sample. Li et al. (42) investigated a hybrid 
2D/3D to re-use the 2D features map in a 3D architecture 
to take advantage of both intra- and inter-slice features 
extraction. As more datasets and hardware with larger 
memory becoming available, more 3D networks on target 
volume segmentation are expected. 

Data pre-processing
Due to different protocols being used during patient 
simulation, CT images being input into FCN may have 
various contrasts, resolutions and image size, which 
make it difficult to standardize the network structure. To 
overcome these challenges, most studies employed data pre-
processing as a pre-requisite step before the model training 
process. Two main concerns were addressed through the 
pre-processing step. (I) Homogenize the input image size. 
Schreier et al. (39) and Song et al. (31) chose to re-sample 
the breast imaging data from three institutions into a 
uniform size along both axial and longitudinal directions 
for the sake of easiness of model training and hardware 
memory consumption. Furthermore, Cardenas et al. (43)  
not only performed data re-sampling but also used 
anatomical landmarks in the cranial and caudal directions 
and body contour to help identify the region of interests. 
(II) Enhance contrast-to-noise ratio of the input image. 
Many classic image processing methods were fused with 
FCN through this process. For example, Men et al. (30) 
utilized contrast limited adaptive histogram equalization 
(CLAHE) (44) to improve the image contrast especially on 
the boundaries while eliminating the noise amplification in 
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the homogeneous area. Pixel intensity normalization was 
also frequently used to remove contrast variations among 
images by different scanners (28,45). 

Hybrid loss
Another problem that may limit the target delineation 
performance in both 2D and 3D FCNs is that they are 
typically only trained with pixel-wise loss functions, such 
as Cross Entropy and soft-Dice loss. These pixel-wise 
loss functions may not be sufficient to learn features that 
represent the underlying anatomical structures. Several 
approaches therefore focus on designing combined loss 
functions to address class imbalance issues and improve the 
predictive accuracy and robustness of the network. The 
anatomical constraints are represented as regularization 
terms to take into account the shape information (46) 
or contour and region information (45), encouraging 
the network to generate more anatomically plausible 
segmentations. 

Other imaging modalities

Although CT is taken as the standard imaging technique 
during radiotherapy treatment planning, its application in 
target definition is sometimes constrained by the limited 
contrast on the boundary of tumor volumes. The pitfalls 
brought by the inherent characteristics of CT were usually 
addressed by associating with other imaging modalities 
such as magnetic resonance imaging (MRI), and positron 
emission tomography (PET). In MRI, by utilizing different 
sequences, it allows accurate quantification of functional 
and pathological tissue. PET, on the other hand, provides 
quantitative metabolic information by highlighting 
malignant regions with greater signal, thus helpful in 
characterizing lesions. Recently, there is an emerging trend 
of utilizing multi-modality imaging to train deep learning-
based target delineation models. In the following sections, 
we will describe and discuss these methods in detail 
regarding different applications.

MRI-based target volume segmentation
The architectures utilizing MRI recently emerged in the 
target volume delineation, and are mainly focusing on the 
brain tumor treatment, where MRI is the dominant if not 
exclusive imaging modality. On other body sites, however, 
MRI-based target volume segmentation is only auxiliary due 
to MRI’s intrinsic limitations, including geometry distortion, 
filed of view limitation, and unstandardized intensity 

representation. For instance, Ermis et al. (33) adapted 
DenseNet (47), an encoder-decoder FCN composed of 
four levels connecting using skip connections, to perform 
resection cavity in glioblastoma patients using T1-weighted, 
T2-weighted and fluid-attenuated inversion recovery 
(FLAIR) MRI sequences. Peeken et al. (48) proposed a 
regression fully connected neural network that was capable 
of estimating tumor volume fraction based on diffusion 
signals, the model was then applied to T1-weighted (with 
and without contrast), T2-weighted and FLAIR MRIs to 
estimate the infiltrative GTV. More recently, one of the 
variations of FCN named U-net has become the method 
of choice for target volume segmentation: He et al. (24) 
modified the 3D U-Net (22) with dual contraction paths 
for nasopharyngeal carcinoma segmentation. Lin et al. (32) 
also worked on nasopharyngeal carcinoma target volume 
segmentation, but utilized a different 3D encoding-decoding 
FCN, VoxelResNet (49), to do the work. 

PET-based target volume segmentation
Different from MRI that could function as an independent 
imaging modality in the treatment planning of radiotherapy, 
PET images almost always need to be registered with 
CT due to the limited resolution and the lack of density 
conversion table. Depending on whether the PET images 
were acquired at the same time of patient CT simulation, 
there may be substantial misalignments between PET 
and CT acquired at two different times and with different 
patient positioning setup. To solve this issue, Jin et al. (29) 
proposed an architecture that firstly performed automatic 
image registration between PET and CT, and then trained 
a two-channel encoding-decoding network, one channel 
with CT only and the other channel with both CT and 
registered PET-CT. These two results from separate 
channels were then fused through late fusion to generate 
the final prediction. The model has been developed to 
tackle the challenging problem of esophageal cancer tumor 
delineation and achieved promising performance compared 
to clinical contours (50). Guo et al. (28), on the other hand, 
used the PET scans acquired at the same time as planning 
CT images, and used the fused images as input into a single-
channel model to perform target volume delineation in head 
and neck cancer. Table 1 summarized some selective deep 
learning studies on target volume automatic segmentation 
with various imaging modalities and at different clinical 
sites. Several studies also employed inter-observer (quantifies 
the variations in contours made by multiple observers) 
or intra-observer variabilities (quantifies the variations in 
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contours made by a single observer longitudinally across 
time) as a gauge of their auto-segmentation performance, 
which can provide a fair comparison of auto-segmentation 
versus human expert contours as most models are trained in 
a supervised fashion. 

Challenges and future work

Scarcity and inconsistency of supervised labels

One of the biggest challenges for deep learning models is 
the scarcity of high-quality annotated data. In this review, we 
found that the majority of studies used a supervised fashion 
to train their networks, which requires a large number of 
annotated images. As mentioned, annotating target volumes 
on treatment planning images is time consuming and 
often requires significant amounts of clinical expertise. To 
tackle this challenge, current studies either compromised 
the network structure with 2D fashion, or introduced data 
augmentation into the pipeline, which intends to boost 
the number of training samples and the variety of training 

images by artificially generating new samples from existing 
annotated data. Networks can be robust to simple variations, 
such as translation and rotation, with data augmentation. 
This method, however, still has its own limitations where 
the artificial augmentation may fail to reflect the real-world 
data distributions. On the other hand, previous studies have 
observed substantial differences in target volume delineation 
among multiple physicians mainly driven by clinical 
experience and expertise. These inconsistencies could be 
a major bottleneck of deploying and transferring the deep 
learning target delineation model from one institution to 
the other. In the future, building and setting up benchmark 
datasets at various clinical sites is essential to stimulate 
the research in this area and help standardize the model 
performance evaluation by different studies. 

Incorporation of multi-modality clinical inputs

Different from OAR automatic segmentation, target 
volume delineation relies not only on treatment planning 
images, but also supportive information provided by 

Table 1 A summary of target volume automatic segmentation accuracies in representative deep learning studies on various clinical sites and with 
multiple imaging modalities

Selected studies Year Network architecture
Imaging 

modalities
Clinical sites

No. of patients Mean dice coefficient

Train/validation Test Auto Observer variability

Men et al. (30) 2017 2D DenseNet with multiple 
dilated convolution paths

CT Rectal 218 60 0.88 N/A

Cardenas et al. (42) 2018 3D U-Net CT Oropharyngeal 210 (3-fold CV) 75 0.81 0.80 (1)

Men et al. (38) 2017 2D FCN with VGG-16  
encoding structure

CT Nasopharyngeal 184 46 0.83 0.80 (1)

Guo et al. (28) 2019 3D DenseNet PET/CT Head and Neck 175 75 0.73 0.80 (1)

Jin et al. (50) 2021 Two-channel 3D progressive 
nested network with early  

and late fusions

PET/CT Esophageal 148 (4-fold CV) N/A 0.79 N/A

Ermis et al. (33) 2020 2D DenseNet MRI GBM 30 (6-fold CV) N/A 0.84 0.85

Lin et al. (32) 2019 3D ResNet MRI Nasopharyngeal 715 203 0.79 0.74

Cardenas et al. (45) 2020 3D U-Net CT Head and neck 71 32 Up to 
0.93

Contours modified  
by physicians

Men et al. (51) 2018 2D ResNet CT Breast 800 (5-fold CV) N/A 0.91 N/A

Bi et al. (52) 2019 2D ResNet CT NSCLC 200 50 0.75 0.72

Liu et al. (34) 2020 2.5D U-Net CT Cervical 210 (5-fold CV) 27 0.86 0.65 (53)

CV, cross-validation; N/A, not applicable. FCN, fully convolutional neural network; NSCLC, non-small cell lung cancer; CT, computerized 
tomography. 
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functional imaging, microscopic involvement and clinical 
health record. The diversity of the input information 
drives the future development direction towards multi-
modality imaging learning or even joint learning across 
heterogeneous data spaces (i.e., images and texts) (54). 

Model generability across various machines and 
institutions

Another common limitation in deep learning-based target 
volume delineation is the lack of generalization power 
when presented with samples subject to different data 
distributions. In other words, deep learning models tend 
to be biased by their respective training data, thus limit the 
ability to deploy single-institution-trained models to other 
clinics with different delineation guidelines or protocols, 
patient population with different anatomies, and machines 
with different imaging parameters. Currently there is an 
emerging trend in radiology to build up large multi-vendor, 
multi-institution diagnostic datasets being annotated with 
heterogonous clinical practice (55). However, this approach 
may not scalable in radiation oncology, as the process 
of data annotation is much more involved in radiation 
therapy applications. Instead, some recent studies have 
started to investigate the use of unsupervised learning that 
aims at optimizing the model performance on a target 
dataset without additional labeling costs. Several works 
have successfully applied generative-adversarial learning 
to cross-modality OAR segmentation tasks, i.e., adapting 
the segmentation model trained on synthetic MR to aid 
segmentation tasks on CT (56,57).

Conclusions

In this review paper, we provided a comprehensive overview 
of deep learning-driven target volume segmentation using 
three common imaging modalities in radiation therapy 
(CT, MRI, PET), covering a wide range of existing deep 
learning approaches that are designed to segment CTVs 
and GTVs of various clinical sites. We also outlined the 
remaining challenges and discussed the future potential of 
these deep learning-based automatic segmentation methods. 
Regardless of the challenges facing down the road, the 
great potential of deep learning-based target volume 
automatic segmentation in efficiency and standardization 
enhancement of radiation therapy will keep the topic an 
active direction in research, product development, and 
clinical implementation. 
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