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Background: Ultrasound is commonly used in breast cancer screening but lacks quantification ability and 
diagnostic power due to its low specificity, which can lead to overdiagnosis and unnecessary biopsies. This 
study evaluated the diagnostic efficacy and clinical utility of adding shear-wave elastography (SWE) to the 
screening of the Breast Imaging Reporting and Data System (BI-RADS) category 4 breast cancer.
Methods: A machine learning–based diagnostic model was constructed using data retrospectively 
collected from 3 independent cohorts with features selected using lasso regression and support vector 
machine-recursive feature elimination algorithms. Propensity score matching (PSM) was used to preclude 
confounding baseline characteristics between malignant and benign lesions. A decision curve analysis (DCA) 
was used to evaluate the clinical benefit of the diagnostic model in identifying high-risk tumor patients for 
intervention while simultaneously avoiding overtreatment of low-risk patients with integrative evaluation 
using a net benefit value and treatment reduction rate.
Results: In our training center, a total of 122 patients were enrolled, and 577 breast tumors were collected. 
The comparison between malignant and benign lesions revealed significant differences in patient age, tumor 
size, resistance index (RI), and elasticity values. The maximum elasticity value (Emax) was identified as an 
independent diagnostic feature and was included in the diagnostic model. The combination of Emax with BI-
RADS category 4 demonstrated a significantly better diagnostic efficacy than the BI-RADS category alone [BI-
RADS+Emax: AUC =0.908, 95% confidence interval (CI): 0.842−0.974; BI-RADS: AUC =0.862, 95% CI: 
0.784−0.94; P=0.024] and significantly increased the clinical benefit for patients and policy makers by effectively 
reducing overdiagnosis and biopsy rates. In the BI-RADS category 4A subgroup, adding Emax to breast cancer 
screening benefited patients and showed a greater absolute benefit than did the BI-RADS category alone when 
used for patients with a higher probability of cancer (>0.403), demonstrating a 50% overtreatment reduction.
Conclusions: Adding Emax to BI-RADS category 4 breast cancer screening using SWE significantly 
reduced overdiagnosis and biopsy rates compared with the BI-RADS category alone, especially for BI-RADS 
4A patients.
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Introduction

Breast cancer is the most common cancer and the sixth 
leading cause of cancer death worldwide (1). Breast cancer 
screening and early diagnosis effectively prolong patients’ 
overall survival and quality of life (2). Therefore, they have 
clinically significant value. With the development and 
progress in medical imaging technology, breast imaging-
based examinations demonstrate good efficacy in breast 
cancer diagnosis and play an important role in breast cancer 
screening (3).

Ultrasound is one of the most commonly used imaging 
methods in breast cancer screening due to its lack of 
radiation, noninvasiveness, and reasonable cost (4). The 
Breast Imaging Reporting and Data System (BI-RADS) 
developed by the American Society of Radiology is used 
to standardize the description of breast imaging terms and 
the potential malignancy of breast lesions (5). However, 
ultrasound alone lacks diagnostic power, especially in the 
differential diagnosis of BI-RADS category 4 lesions. The 
malignancy rate of BI-RADS category 4 lesions ranges 
between 3% and 94% (6). Therefore, further subcategories 
of 4A, 4B, and 4C were introduced with positive predictive 
values (PPVs) of 3.5–9.8%, 20.2–31.2%, and 71.2–88.5%, 
respectively (7). Because B-ultrasound is subjective, it is 
necessary to combine it with other imaging examination 
results such as mammography (MMG), magnetic resonance 
imaging (MRI), and pathology results from puncture 
biopsies to reach a precise diagnosis, which creates 
psychological stress, physical damage, and economic burden 
for patients (8). Therefore, there is a clinical imperative to 
build an objective, sensitive, and accurate diagnostic model 
with real clinical utility for the screening of BI-RADS 4 
lesions.

Shear-wave elastography (SWE) is a novel, noninvasive 
ultrasound imaging method that can visualize and quantify 
tissue stiffness in vivo (9). By virtue of its quantification 
ability, it can overcome the influence of human factors, 
such as manual pressure and use frequency of the static/
quasi-static elastic imaging probe. It also has the advantages 

of repeatability and high-speed compared with strain 
elastography (10,11). At present, shear-wave imaging is 
widely used to examine the thyroid, breast, liver, prostate, 
and other organs. Previous studies have shown that SWE 
can be used in the diagnosis of breast cancer and the 
evaluation of neoadjuvant chemotherapy efficacy (12,13). 
However, SWE has not been widely used for primary 
breast cancer screening in clinic settings and has not been 
recommended in the National Comprehensive Cancer 
Network (NCCN) guidelines (Version 4. 2021) (14).  
Therefore, the diagnostic efficacy of SWE requires 
comprehensive evaluation.

With the rapid development of machine learning and 
artificial intelligence (AI)–aided medicine, the construction 
and evaluation of clinical models have provided novel 
insights into understanding medical data and images. This 
study aims to explore the diagnostic value and clinical utility 
of shear-wave imaging in BI-RADS category 4 breast cancer 
screening using a machine learning–based diagnostic model.

Methods

Study design and patient enrollment

This research was designed as a retrospective cross-sectional 
study. The primary outcome was the area under the 
receiver operating characteristic (ROC) curve (AUC) of the 
predictive model. Other outcomes included recall sensitivity, 
specificity (SP), and accuracy. Data were retrospectively 
collected from April 2018 to May 2020. The sample size 
calculation was based on previously published studies, with 
an expected sensitivity of 0.8 and an expected specificity 
of 0.9 used in the final calculation (15-17). Alpha (α) was 
0.05, with an allowable error of 10%. The calculation was 
made using PASS software (NCSS, version 24.0), and the 
calculated sample size was 70. The inclusion criteria were 
as follows: (I) patients with a breast lesion detected under 
ultrasound with a clinical diagnosis of BI-RADS category 
4 (A/B/C) or 5 given by radiologists with over 10 years’ 
experience; (II) patients who had undergone thorough 
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evaluations using B-mode ultrasound (B-US), color Doppler 
flow imaging (CDFI), and SWE; (III) patients who had 
undergone biopsy or surgery with a pathological diagnosis; 
and (IV) patients who had provided informed consent. 
Patients with any of the following conditions were excluded: 
(I) previously diagnosed breast cancer or other cancers; (II) 
receipt of neoadjuvant chemotherapy or radiotherapy; (III) 
patients who were pregnant or lactating; and (IV) patients 
who refused to give informed consent to participate in the 
study.

External testing was completed using 2 independent 
cohorts collected under the same criteria within the 
6 months. This study was approved by the Ethics 
Committees of Anhui Medical University, Jinan University, 
and Guangdong Key Laboratory of Traditional Chinese 
Medicine Research and Development. Individual consent 
for this retrospective analysis was waived. This study 
was reported according to the transparent reporting of a 
multivariable prediction model for individual prognosis or 
diagnosis (TRIPOD) statement (18).

Ultrasound examination

Ultrasound examinations were performed using an 
Aixplorer color Doppler ultrasound diagnostic instrument 
and an SL15-4 linear array probe (SuperSonic Imagine, 
Aix-en-Provence, France) with a 5–14 MHz frequency. 
Patients assumed the supine position to expose both breasts 
and armpits fully. The bilateral breast was firstly scanned by 
B-mode gray-scale ultrasound (B-US). The location, size, 
shape, edge, internal and posterior echo, calcification, and 
surrounding tissue of the mass were observed. Quantitative 
features were recorded, including the transverse diameter 
(T diameter) and anteroposterior diameter (AP diameter). 
The T:AP ratio was manually calculated. The blood flow in 
the lesion was displayed by CDFI. The resistance index (RI) 
and the maximum flow velocity of each vessel (Vmax) were 
measured and recorded. The classification of the lesions 
was made by experienced radiologists according to the BI-
RADS fifth edition of the American College of Radiology 
and based on the above information combined with relevant 
medical history. For SWE, the regions of interest (ROIs) 
were manually depicted at the highest SWE velocity point 
within the lesion as previously described (19). Effective 
images were then captured in SWE, and the maximum 
and average elasticity values of the lesions were generated 
using the built-in quantitative analysis software “Q-boxTM 
Ratio”. Each lesion was measured 3 times, and the average 

value was recorded.

Pathological diagnosis

For all patients with lesions classified as BI-RADS category 
4 or more, additional mammographic or MRI examinations 
were recommended. Clinical recommendations were given 
by surgeons based on the comprehensive evaluations from 
the radiologists. Histopathological results were obtained 
as the gold standard for patients who underwent biopsy 
or surgery. Immunohistochemical examinations were 
performed for malignant lesions only.

Propensity score matching (PSM)

Clinical characteristics were collected according to the 2012 
World Health Organization (WHO) standard for breast 
tumor grading (20). PSM was used to match participants 
in the benign and malignant groups to maintain a similar 
baseline covariate distribution. Covariates were identified 
based on logistic regression with age, tumor size, and Vmax 
matched for balance. Patients from the cancer and benign 
group were 1:1 matched using nearest-neighbor matching. 
PSM was performed with the R package “MatchIt” (The R 
Foundation for Statistical Computing) (21).

Machine learning–based feature selection and diagnostic 
model construction

Continuous quantitative features were first estimated 
for collinearity, including age, T diameter, AP diameter, 
Vmax, RI, Emax, and Eave. For variables with identified 
collinearity, the data were converted into classified variables 
using cutoff values (RI: 0.7) (22). For multiclassification 
variables, dummy variables were introduced to transform 
multiclassi f ication variables into multiple binary 
classification variables. We used both lasso regression 
and support vector machine-recursive feature elimination 
(SVM-RFE) algorithms for the feature selection. SVM 
models are a powerful tool to identify predictive models or 
classifiers because they can accommodate sparse data and 
can also classify groups or create predictive rules for data 
that linear decision functions cannot classify. The RFE 
algorithm for nonlinear kernels allows ranking of variables 
but does not compare the performance of all variables in 
a specific iteration. Lasso and SVM-RFE algorithms were 
combined to select features by both linear and nonlinear 
decision functions (23). In the lasso regression, the AUC was 
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designated as the target parameter to minimize during the 
selection of a model for cross-validation, and the minimum 
lambda value was used for the feature selection. Patients 
were randomly assigned, with 70% composing the training 
set and 30% composing the validation set. Lasso regression 
was performed with the R package “glmnet” (24). In the 
SVM-RFE analysis, feature selection was obtained with 
5-fold cross-validation using the R package “e1071” (23).  
All features were used to construct the models, and the 
generalization error of each model was estimated within 
10-interval folds and 5-fold external cross-validation. The 
model with the highest accuracy and the lowest error 
was selected as the output. Features selected by both the 
lasso regression and SVM-RFE algorithms were used 
for the model construction. The stability of the model 
was estimated by comparing the training set with the 
validation set, and the model’s effectiveness was verified in 
independent external verification sets.

Decision curve analysis (DCA)

DCA was used to evaluate the diagnostic model's clinical 
benefit in identifying high-risk tumor patients for 
intervention while simultaneously avoiding overtreatment 
of low-risk patients (25). A clinical judgment was made of 
the relative value of benefit (treating a true-positive case) 
versus harm (treating a false-positive case) associated with 
the prediction models. As such, the preferences of patients 
or policy makers were accounted for by using threshold 
probability. A net benefit was then calculated for each 
possible threshold probability, which put benefits and harms 
on the same scale. A model’s clinical utility is estimated by 
determining if its net benefit is greater than that achieved 
by treating all patients or treating none (26). The bootstrap 
method was used to compare the confidence intervals of 
the 2 decision curves. DCA was performed using the R 
package “dca.r” with treatment reduction calculated per 200 
patients.

Statistical analysis

All analyses were performed using RStudio version 1.2.5033 
(RStudio, Boston, MA, USA) statistical software. For 
measurement data, variables with normal distribution are 
expressed as mean (SD) and were compared using the 
Student’s t-test. Variables with a skewed distribution are 
expressed as median (IQR) and were compared using the 
Wilcoxon rank-sum test. Multigroup comparisons were 

performed with one-way analysis of variance (ANOVA). 
For count data, variables are expressed as numbers and 
percentages and were compared using the chi-square test. 
The receiver operating characteristic curve (ROC) was 
drawn using the R package “pROC” (6). The area under the 
ROC AUC and 95% confidence intervals (95% CIs) were 
calculated and compared using the bootstrap method. A 
2-tailed P value <0.05 was considered statistically significant.

Results

Basic clinical characteristics of enrolled patients 

A total of 577 patients were retrospectively identified 
with breast masses in the training set, of whom 346 were 
excluded with a BI-RADS classification of 3 or lower. Of 
the remaining 231 patients, 127 patients underwent follow-
up biopsy or surgery and had a pathological diagnosis. Four 
patients were excluded due to histories of contralateral 
breast cancer, and one patient had complications from other 
tumors. A final number of 122 patients met the eligibility 
criteria and were included in this study, comprising 51 
benign lesions and 71 tumors (Figure 1A,1B). The median 
age was 50.61 years, with 56 patients younger than 50 years 
and 58 patients older than 50 years. The BI-RADS category 
of enrolled patients included 4A (n=36), 4B (n=21), 4C 
(n=35), and 5 (n=30), with 2 types of malignant pathological 
diagnoses [ductal carcinoma in situ (DCIS) and invasive 
ductal carcinoma (IDC)] and 5 types of benign lesions 
[benign phyllodes tumor (BPT), granulomatous mastitis 
(GLM), intraductal papilloma (IDP), fibroadenoma, and 
fibroadenosis]. For patients with pathologically confirmed 
breast cancer, the expression of estrogen receptor (ER), 
progesterone receptor (PR), human epidermal growth 
factor receptor 2 (HER-2), and Ki-67 were recorded, and 
pathological classifications were manually determined by 
experienced breast surgeons (Table 1).

Univariate and multivariate logistic regression

We used PSM to fully explore the diagnostic value of SWE. 
The variables matched for balance were age, tumor size, 
and Vmax. A total of 84 patients remained after PSM (42 
tumors, 42 benign lesions). Univariate and multivariate 
logistic regressions were used to select the diagnostic 
variables (Table 2). In the univariate analysis, identical results 
were found in the direct comparisons between benign and 
cancer patients, except for Eave [odds ratio (OR) =1.02; 
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Figure 1 Flow diagram of patient selection and ultrasound images of enrolled patients. (A) Flow diagram of patient selection for the 
training set. (B) Ultrasound images of pathologically diagnosed fibroadenoma, IDP, DCIS, and IDC are shown, including B-US, CDFI, 
and SWE. Experienced radiologists manually depicted the ROIs. The hardness of the mass is shown on the image with hard to soft being 
represented by red to blue, respectively. Blood flow is illustrated with arteries in red and veins in blue. IDP, intraductal papilloma; DCIS, 
ductal carcinoma in situ; IDC, invasive ductal carcinoma; B-US, B-mode ultrasound; CDFI, color Doppler flow imaging; SWE, shear-wave 
elastography; ROIs, regions of interest.

Table 1 Basic clinical characteristics of enrolled patients

Characteristics Statistics

Total (n) 122

Age, n (%) 50.61 (14.73)

<50 56 (49.1)

≥50 58 (50.9)

BI-RADS, n (%)

4A 36 (29.5)

4B 21 (17.2)

4C 35 (28.7)

5 30 (24.6)

Pathological diagnosis, n (%)

Benign 51 (41.8)

BPT 1 (0.8)

Fibroadenoma 17 (13.9)

Fibroadenosis 17 (13.9)

GLM 4 (3.3)

IDP 12 (9.8)

Table 1 (continued)

Table 1 (continued)

Characteristics Statistics

Tumor 71 (58.2)

DCIS 10 (8.2)

IDC 61 (50.0)

ER, n (%)

Negative 21 (30.9)

Positive 47 (69.1)

PR, n (%)

Negative 23 (33.8)

Positive 45 (66.2)

HER2, n (%)

Indeterminate 9 (13.2)

Negative 46 (67.6)

Positive 13 (19.1)

Ki-67, n (%)

High 41 (61.2)

Low 26 (38.8)

Table 1 (continued)
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Table 1 (continued)

Characteristics Statistics

Subtype, n (%)

HER2 5 (7.4)

LumA 12 (17.6)

LumB 37 (54.4)

TNBC 14 (20.6)

For count data, variables are expressed as numbers and  
percentages. BI-RADS, Breast Imaging Reporting and Data  
System; BPT, benign phyllodes tumor; GLM, granulomatous 
mastitis; IDP, intraductal papilloma; DCIS, ductal carcinoma 
in situ; IDC, invasive ductal carcinoma; TNBC, triple-negative 
breast cancer.

Table 2 Univariate and multivariate logistic regression of included ultrasound characteristics

Characteristics
Univariate logistic regression Multivariate logistic regression

OR 95% CI P value OR 95% CI P value

Age 1.07 1.03–1.11 <0.001 1.04 0.99–1.1 0.096

≥50 years 1 NA

<50 years 0.21 0.08–0.5 <0.001

BI-RADS

4A 1 NA

4B 15.45 3.44–111.29 0.001 7.59 1.36–63.76 0.032

4C 82.17 18.67–604.56 <0.001 17.37 2.73–162.07 0.005

Tumor size (mm)

T diameter 1.07 1.03–1.13 0.002

AP diameter 1.2 1.09–1.34 <0.001 0.9 0.75–1.06 0.202

T/AP ratio 1.37 0.73–2.66 0.331

Vmax (m/s) 2.1 0.8–9.01 0.186

RI

>0.7 1 NA

≤0.7 0.15 0.06–0.39 <0.001

Elasticity value (kPa)

Emax 1.03 1.02–1.04 <0.001 1.03 1.01–1.06 0.005

Eave 1.02 0.98–1.06 0.287

For both univariate and multivariate logistic regression, a 2-tailed P value <0.05 was considered statistically significant. BI-RADS, Breast 
Imaging Reporting and Data System; T diameter, transverse diameter; AP diameter, anteroposterior diameter; Vmax, the maximum velocity  
of blood flow; RI, resistance index; OR, odds ratio; 95% CI: 95% confidence interval.

95% CI: 0.98–1.06; P=0.287]. The variables included in the 
multivariate logistic regression were selected by randomized 
gradient descent methods, which excluded the RI and T 
diameters. Among the variables included, only the BI-
RADS category and Emax were significant, demonstrating 
their putative value in diagnosing breast cancer.

Machine learning–based construction and validation of the 
diagnostic model

We conducted a machine learning–based construction of 
the diagnostic model with variables selected using both 
lasso regression and SVM-RFE (Figure 2). Variables 
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Figure 2 Machine learning–based construction and validation of the diagnostic model. Quantitative features were selected using lasso and 
SVM-RFE algorithms. The intersection between the 2 algorithms (BI-RADS 4A+Emax) was used to build the diagnostic model. Receiver 
operating characteristic (ROC) curves were drawn, and area under the curve (AUC) values were calculated. Comparisons between the training 
and validation sets demonstrate the model had excellent stability (P=0.761). The effectiveness of the model was verified in 2 independent 
external verification sets. Further comparisons were made with patients stratified by BI-RADS categories and in total. BI-RADS, Breast 
Imaging Reporting and Data System; SVM-RFE, support vector machine-recursive feature elimination. *, P<0.05; **, P<0.01; ***, P<0.001.
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previously analyzed as both measurement and count data 
were included only once to avoid multiple comparisons. 
With age used as measurement data and RI as count data, 9 
variables were included. Decisions were made based on the 
logistic regression results. Among all features included, only 
BI-RADS category 4A and Emax were selected by lasso 
regression as having the highest AUC.

Meanwhile, variables were ranked by SVM-RFE. 
The models constructed with 6 variables demonstrated 
the highest accuracy and the lowest error. The variables 
selected included Emax, BI-RADS category 4A, T/AP 
ratio, T diameter, BI-RADS category 4C, and age, with the 
sequence of variables ordered accordingly. Only Emax and 
BI-RADS category 4A were chosen by 2 methods and were 
included for model construction.

In both the training and validation sets, the combination 
of Emax and BI-RADS category 4A demonstrated 
outstanding and stable diagnostic efficacy, with the AUC 
of both sets above 0.85 (training set: AUC =0.92, 95% CI: 
0.843−0.998; validation set: AUC =0.897, 95% CI: 0.765−1; 
P=0.761). Furthermore, the model showed high recall 
sensitivities in both the training and validation sets (training 
set: 0.9643; validation set: 0.9), which is essential for cancer 
screening. Comparatively, the combination of Emax and 
BI-RADS category 4A had a significantly higher AUC than 
did either measure used alone (Emax: AUC =0.863, 95% 
CI: 0.781−0.944, P=0.046; BI−RADS 4A: AUC =0.783, 
95% CI: 0.701−0.866, P<0.001). The combined efficacy of 
Emax and BI-RADS category 4A was further tested in 2 
independent cohorts. A total of 77 patients were enrolled 
in test cohort 1; the diagnostic efficacy was validated 
using the same model, and the AUC was 0.908 (95% CI: 
0.834−0.982), with a recall sensitivity of 0.945. Comparisons 
between models also showed a significantly better efficacy 
with Emax and BI-RADS category 4A considered together 
than did the BI-RADS category 4A used alone (P=0.003). 
Similar results were seen in the test cohort 2 in which 55 
patients enrolled; the AUC was 0.939 (95% CI: 0.874−1), 
and the recall sensitivity was 0.977. Moreover, compared 
with BI-RADS categories used alone, the addition of Emax 
showed significantly better efficacy, demonstrating the 
good predictive value of combining Emax with BI-RADS 
category 4A in the screening of breast cancer.

As the BI-RADS category 4 contains  3  levels , 
extrapolative comparisons were made between the 4A, 4B, 
and 4C subgroups. As shown in Figure 2, BI-RADS category 
4A had the highest AUC among all 3 subgroups. However, 
the 4B and 4C categories also showed good predictive 

value, and comparisons between subgroups revealed no 
significant differences. Therefore, we speculated that Emax 
had significant diagnostic value in patients with BI-RADS 
category 4 lesions. Comparisons between models confirmed 
the significantly better efficacy of Emax combined with BI-
RADS category 4 than of the BI-RADS category alone (BI−
RADS+Emax: AUC =0.908, 95% CI: 0.842−0.974; BI−
RADS AUC =0.862, 95% CI: 0.784−0.94; P=0.024).

The clinical benefit of Emax in BI-RADS category 4 breast 
cancer screening

To estimate the clinical benefits of the model, DCA was 
used to compare the combination of Emax and BI-RADS 
category 4 with either used alone. In the BI-RADS category 
4A subgroup, adding Emax to the breast cancer screening 
benefited patients and showed a greater absolute benefit 
than did the BI-RADS category alone in patients with 
a higher probability of cancer (>0.403; Figure 3A). The 
clinical benefit of the model demonstrated similar efficacy 
when used in all BI-RADS category 4 lesions, with a higher 
absolute benefit seen in patients with a threshold probability 
of over 0.389 (Figure 3B).

Further evaluations were made regarding the reduction 
of overtreatment. Intriguingly, in patients with a threshold 
probability of less than 0.403, the BI-RADS category 
was significantly valuable in reducing overdiagnosis and 
treatment. For patients with a higher probability, the 
combination of Emax and BI-RADS category outperformed 
the BI-RADS category alone, with the highest reduction of 
50% per 200 patients (Figure 3C,3D). This demonstrated 
the significant value of adding Emax to BI-RADS category 
4 lesions in breast cancer screening in ensuring clinical 
benefit to patients and reducing overtreatment.

Discussion

We constructed a machine learning–based diagnostic 
model for breast cancer screening with data collected 
from 3 independent centers. Analyses using multivariate 
logistic regressions confirmed Emax and the BI-RADS 
category as independent diagnostic features. Emax and 
BI-RADS category 4A were selected as the diagnostic 
variables to build the model using both lasso regression and 
an SVM-RFE algorithm and demonstrated significantly 
better efficacy than did the BI-RADS category alone in 
2 independent validation cohorts. Furthermore, DCA 
analysis showed that adding Emax to the screening of BI-
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Figure 3 Clinical benefit evaluation of the diagnostic model. DCA was used to evaluate the clinical benefit of the diagnostic model in 
identifying high-risk tumor patients for intervention and in avoiding overtreatment of low-risk patients. The net benefit plot of the 
diagnostic model is shown using (A) BI-RADS 4A+Emax. (B) BI-RADS+Emax. The net reduction plot of the diagnostic model is shown 
using (C) BI-RADS 4A+Emax. (D) BI-RADS+Emax. BI-RADS, Breast Imaging Reporting and Data System; Emax, maximum elasticity 
value; DCA, decision curve analysis.

RADS category 4 patients could reduce overdiagnosis and 
treatment, indicating the clinical value of Emax in the 
screening and early diagnosis of BI-RADS category 4 breast 
cancer.

Our results support adding SWE to B-US, which has a 
well-established clinical utility in detecting, screening, and 
diagnosing breast cancer. Quantitative SWE parameters 
used alone have been able to classify breast lesions with a 
specificity of 86% and a sensitivity of 84% (27). Our results 
also agree with a previous study that found Emax to be the 
best-performing parameter in classifying breast lesions, 
achieving the highest AUC of 0.90 (95% CI: 0.77–1.00) (15).  
Similarly, the integration of SWE and B-US has been 
shown to improve diagnostic efficacy in breast cancer 

screening, particularly in specificity (28). A previously 
published meta-analysis focusing on the comparison of the 
pooled diagnostic accuracy of combined SWE and B-US to 
that of B-US alone revealed significantly elevated pooled 
specificity in all SWE parameters (SWE+B-US: AUC 
=0.85, 95% CI: 0.77–0.90, B-US: AUC =0.61, 95% CI: 
0.42–0.78, P=0.009) (29).

However, the studies mentioned above used the 
retrospective data of relatively small sample sizes from 
either single centers or limited centers, which significantly 
reduced the quality of these studies. The methods adopted 
lacked statistical rigor considering the information provided 
was often based on a limited sample size without calculation 
of the required sample size, and the methods chosen were 
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restricted to logistic regression with multiple comparisons 
where baseline biases were unadjusted. 

Comparatively, the sample size of our study was both 
scientifically and statistically acceptable. In this study, we 
calculated the required sample size for statistical reliability, 
which has rarely been done in previous research. The 
sample size reported in our study included samples enrolled 
in the training cohort only (n=122). Furthermore, there 
were 77 patients enrolled in the external validation cohort 1 
and 55 in the external validation cohort 2, making a total of 
259 patients in our study. Compared to previously published 
studies, Zhang et al. conducted a retrospective study of 
291 women from 2 centers to compare the diagnostic 
performance between B-US and SWE in classifying breast 
masses (15). Patients were divided into a training cohort 
(n=198), an independent validation cohort (n=65), and an 
external test cohort (n=28). However, among the patients 
enrolled, only 87 patients were pathologically diagnosed 
with malignant masses. Moreover, Yang et al. reported a 
high diagnostic performance of SWE with only 63 patients 
(malignant:benign ratio =33:30) (16), and Ranjkesh et al. 
enrolled 104 women in their study with 110 breast lesions, 
of which 77 were benign and 33 malignant (17). 

Despite the perspectives and advantages mentioned 
above, this study has several limitations, one of which is the 
absence of diverse pathological types, particularly for cancer 
samples. Among the enrolled patients, only DCIS and IDC 
were included, and discussions were limited to subtypes 
only. Comprehensive evaluations with all pathological types 
should be conducted for further validation.

A recent study by Wang et al. demonstrated that with the 
assistance of AI, a number of unnecessary biopsies can be 
avoided (30). AI-based stratification systems significantly 
reduced the biopsy rate in BI-RADS 4 lesions from 
100% to 67.4% without missing biopsy cases. Another 
study developed a dual-modal neural network model to 
characterize ultrasound images of breast masses (31) that 
demonstrated significant clinical utility, with an AUC of 
0.982, 95% CI: 0.961–0.993, a specificity of 88.7%, 95% 
CI: 0.86–0.92, and an accuracy of 92.6%, 95% CI: 0.90–
0.94. The implementation of computer-aided diagnostic 
systems has validated the clinical benefits and potency of 
the ultrasound-based diagnosis of breast lesions, providing 
novel perspectives to the use of ultrasound in breast cancer 
screening (32). Combined with the present results, the 
implications for machine learning in the interpretation of 
radiomic images and data suggest a promising future for 
further explorations into the medical image-based diagnosis 

of breast cancer.
In conclusion, we constructed a machine learning–based 

diagnostic model for BI-RADS category 4 breast cancer 
screening with an integrative combination of Emax and 
the BI-RADS category that demonstrated significantly 
better efficacy than did the BI-RADS category alone. This 
indicates the clinical value of SWE in BI-RADS category 
4 breast cancer screening in reducing overdiagnosis and 
unnecessary biopsies.
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