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Abstract: The emergence of computer graphics processing units (GPUs), improvements in mathematical 
models, and the availability of big data, has allowed artificial intelligence (AI) to use machine learning and 
deep learning (DL) technology to achieve robust performance in various fields of medicine. The DL system 
provides improved capabilities, especially in image recognition and image processing. Recent progress in 
the sorting of AI data sets has stimulated great interest in the development of DL algorithms. Compared 
with subjective evaluation and other traditional methods, DL algorithms can identify diseases faster and 
more accurately in diagnostic tests. Medical imaging is of great significance in the clinical diagnosis and 
individualized treatment of ophthalmic diseases. Based on the morphological data sets of millions of 
data points, various image-related diagnostic techniques can now impart high-resolution information on 
anatomical and functional changes, thereby providing unprecedented insights in ophthalmic clinical practice. 
As ophthalmology relies heavily on imaging examinations, it is one of the first medical fields to apply DL 
algorithms in clinical practice. Such algorithms can assist in the analysis of large amounts of data acquired 
from the examination of auxiliary images. In recent years, rapid advancements in imaging technology have 
facilitated the application of DL in the automatic identification and classification of pathologies that are 
characteristic of ophthalmic diseases, thereby providing high quality diagnostic information. This paper 
reviews the origins, development, and application of DL technology. The technical and clinical problems 
associated with building DL systems to meet clinical needs and the potential challenges of clinical application 
are discussed, especially in relation to the field of optic nerve diseases.
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Introduction

Optic nerve abnormalities are a common presentation 
in ophthalmology clinics. Diagnosis and monitoring 
the progression of the disease requires visual assessment 
of the shape of the optic disc, which traditionally relies 
heavily on the professional experience and knowledge 
of the doctors. Although trained ophthalmologists can 
easily identify most optic nerve abnormalities, emergency 
physicians, neurologists, general practitioners, and other 
non-ophthalmic health care providers, who also have 
an important role in screening eye diseases, often have 
limited ability and experience in using an ophthalmoscope 
to examine the optic disc. This can lead to high rates 
of misdiagnoses and missed diagnoses of optic disc 
abnormalities. Therefore, intelligent tools that can screen 
and manage medical data safely and effectively, and provide 
scientific and high-quality diagnoses are urgently needed. 

Recent advances in artificial intelligence (AI) and 
the collation of large medical data sets have stimulated 
great interest in the development of deep learning (DL) 
algorithms. Compared with subjective evaluation and other 
traditional methods, DL algorithms can identify optic nerve 
diseases faster and more accurately in diagnostic situations (1).  
This paper critically details the latest applications of DL 
models in optic neuropathy, discusses their advantages and 
limitations, and focuses on the inherent challenges of such 
models in screening, diagnosis, and progression detection. 
After a brief overview of DL and a comparison with 
traditional machine learning classifiers, the application of 
DL models in optic nerve-related clinical detection will be 
discussed.

AI, machine learning, and DL

AI is an important branch of computer science. It develops, 
studies, simulates, and extends human intelligent behavior (2).  
Machine learning is a crucial supporting technology for 
the realization of AI. It obtains rules from data analysis, 
establishes specific algorithms to identify patterns in data, 
and uses formulas to predict new samples (3).

In the 1980s, the development of machine learning 
algorithms rapidly escalated. The most successful early 
results were obtained through the statistical method of 
machine learning (4). This includes linear and logistic 
regression, classification, k-nearest neighbor, decision tree, 
random forest, kernel-based methods such as support vector 
machines (SVMs), and the like (5). In previous studies, SVMs 

have been used to skillfully combine the measurement 
of the optic disc edge and the optic cup area to achieve a 
glaucoma classification (6,7). However, although SVMs 
and other traditional algorithms performed satisfactorily 
in the field of problem-solving, these approaches cannot 
guarantee the improvement of human expertise through 
knowledge engineering technology. In fact, although 
many traditional machine learning technologies have been 
able to simulate the diagnosis of glaucoma and perimetry, 
they still need common sense information to solve many 
practical situations in the clinic. Subsequently, DL has 
been shown to be an effective method for constructing and 
training neural networks to solve complex problems. These 
algorithms automatically extract features to form solutions 
with complex perception and understanding, which can be 
copied and reused in combination with components from 
other solutions. One of the main benefits of DL is that it 
simplifies the requirements for professional knowledge (8).  
People can apply the original data directly to the DL 
model instead of manually identifying the relevant features 
from the data. These functions may be more efficient than 
those that are manually managed and may be close to or 
beyond the level of human capability. However, as a trade-
off, the features of automatic learning may not be easy to 
understand or explain.

The DL model is a type of artificial neural network 
which is composed of multiple layers of artificial neurons (9).  
It involves a huge data set and faster hardware. The data is 
input into the network and processed to achieve the desired 
results. Its performance can be enhanced by changing 
internal parameters repeatedly using back propagation 
algorithms. DL can process more complex data and 
improve the algorithm of neural network performance, 
generalization ability, and cross-server distributed training 
ability, all of which are superior to the performance of 
shallow artificial neural networks (10). With the help of 
well-labeled, large data sets, DL can be used for accurate 
classification of medical images, and it has shown unique 
advantages in a variety of medical disciplines, including 
ultrasound (11), dermatology (12,13), pathology (14), 
radiology (15,16), and ophthalmology. In the field of 
ophthalmology, the DL system (DLS) has been developed 
for the detection of various diseases, such as diabetic 
retinopathy, age-related macular degeneration, glaucoma, 
and retinopathy of prematurity and cardiovascular diseases. 
These DLS are often comparable to the performance of 
human clinicians (17).
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Optic nerve in fundus photographs

Identification, location, and extraction of the optic disc

Accurate positioning and segmentation of the optic disc on the 
fundus image is essential for the detection of optic neuropathy 
and other lesions. In traditional machine learning, there are 
three methods for locating the optic disc (18). The first is based 
on the characteristics of the optic disc; the second is based 
on the information of the vascular structure; and the third 
is the combination of the above two methods. The method 
based on the characteristics of the optic disc mainly relies on 
identification of an area with high brightness, approximate 
circular shape, and large internal gray contrast to locate the 
optic disc. This method is completely dependent on the 
characteristics of the optic disc itself, and thus, when there are 
lesions in the image that can lead to changes in the brightness 
and shape of the optic disc, the accurate identification of the 
optic disc cannot be guaranteed. The method of locating the 
optic disc based on the vascular structure relies on locating 
the optic disc and the blood vessels converging on the optic 
disc, as well as the characteristics of those blood vessels. This 
latter method improves upon the first method to a certain 
extent and has good robustness for fundus lesions. However, 
it depends on the accuracy of the vascular segmentation and 
it may be difficult to locate the optic disc accurately when the 
distribution of the vascular network is irregular or when the 
integrity of the vascular network is damaged due to the lesions.

In the field of DL, there are two types of research related 
to the optic disc: one is related to the detection of the optic 
disc in the whole fundus image (19) and the other is related 
to the classification of the optic disc in the cropped image (20).  
While there has been much research on the optic disc 
classification algorithm, the target detection of the optic 
disc has not been thoroughly studied (21).

At present, there are some limitations in the use of DL 
for optic discs. The optic disc is generally used as the target 
object in a photo of the fundus, and while it is not large, 
it is very prominent and contains rich features. However, 
even the most advanced object detection algorithms 
have difficulty detecting small defects. For example, 
in most fundus photos, the targets of interest, such as 
microaneurysms, bleeding points, hard exudation, cotton-
wool spots, and drusen, are relatively small, occupying only 
a small area of the image and thus, may be easily overlooked 
and difficult to capture (22). Although these lesions are 
small, their clinical risk and potential for harm can be 
significant. In addition, fundus images contain lesions that 
are morphologically diverse, such as hemorrhage, epiretinal 

membrane, and atrophy. The influence of comorbidity 
pathologies on the function of these algorithms is unclear 
as most of the algorithms have been trained and tested on 
data sets that exclude other eye conditions (such as retinal 
diseases and high myopia) (23). In addition, the problem 
with identifying the optic disc using Single Shot Multi-Box 
Detector and You Only Look Once is that the bounding 
box size is not uniform. To overcome this limitation, Rogers  
et al. (24) used the cloud-based AI system Pegasus to 
evaluate fundus photography using a set of convolutional 
neural network (CNN), with each dedicated to different 
tasks such as identifying special marks (optic disc, macula) 
and different types of fundus pathological lesions. The 
purpose of this design was to extend to any fundus 
photo that contains an optic disc. First, one CNN is 
used to recognize and extract the optic disc, and then 
the standardized format is input into another CNN to 
classify it. When developing a disease detection model, it is 
necessary to standardize the resolution of the images. After 
cropping the bounding box area, the resolution of the other 
images must be adjusted to the lowest resolution image, 
rendering it more efficient to cut out the images around the 
optic disc with the same resolution.

Segmentation of the optic cup and the optic disc

The regions of the optic disc and cup contain key pixel 
features. A large cup to disc ratio (CDR) is an important 
manifestation of optic nerve damage caused by glaucoma. 
Accurate calculation of the CDR is the basis of glaucoma 
screening (25). According to the method of DL, the 
minimum bounding box of the two regions is identified, the 
optic disc and optic cup regions are well segmented, and 
the diameter of the optic cup and the optic disc region is 
measured to calculate the CDR.

At present, optic disc segmentation is roughly divided 
into three categories (26). The first is based on the region 
growing method (27) where appropriate seed points are 
set in the optic disc. The region growing operation is then 
performed on the seed points according to the brightness 
and edge characteristics of the optic disc to obtain the 
optic disc contour. The key objective of this method is to 
determine the initial seed point, which is usually based on 
the optic disc positioning and is thus limited to the accuracy 
of the optic disc positioning. The second method is based 
on the template method, which uses a circle or ellipse to 
fit the boundary of the optic disc. Alternatively, the Hough 
transformation is used to determine the boundary of the 
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optic disc (28). However, since the optic cup is also shown as 
a bright circular area, this method can result in incomplete 
segmentation of the optic disc. In addition, some lesions 
(such as hard exudation) with similar brightness and shape 
as the optic disc will also render this method unsuccessful. 
The third method is based on the active contour model, 
which first determines the initial contour of the optic disc 
and then obtains the boundary of the optic disc by using 
the continuous evolution of the contour driven by external 
constraints and internal energy (29).

Usually, the traditional machine learning method and 
the DL method are combined to segment the visual disc. A 
novel optic disc sensing integration network for automatic 
glaucoma screening was proposed by Fu et al. (30). This 
method integrates the whole-field fundus photo and the 
deep context of the local optic disc area. The depth flow of 
the four different layers and modules are known as global 
image flow, guidance network of segmentation, local disc 
area flow, and disc pole transform flow. Finally, the output 
probability of different flows is integrated into the filter 
results. Using this method, experiments were carried 
out on two different glaucoma datasets, and the network 
was found to be superior to other most other advanced 
algorithms. Wang et al. (31) put forward a DL framework 
ranging from coarse to fine, based on the classical CNN, 
called the U-net model, to accurately recognize the optic 
disc. The network was trained on the fundus image and 
the gray-scale vascular density map, thereby generating 
two different segmentation results. The combined results 
from the overlapping strategies were used to identify the 
local image blocks (disk candidate regions) and input into 
the U-net model for further segmentation. Based on the 
collected data set and 2,978 test images from six common 
data sets, the developed framework achieved 89.1% and 
93.9% mean intersection over union and dice similarity 
coefficients, compared to 87.4% and 92.5% obtained by the 
unique U-net model, respectively. The contrast with the 
available methods showed that the proposed DL framework 
is reliable and has relatively high performance in automatic 
optic disc segmentation.

Ko et al. (32) evaluated and detected the performance of 
a CNN framework for vertical CDR (VCDR) classification 
using 944 fundus photographs, including 465 non-
glaucomatous optic neuropathy (NGON) eyes and 479 
glaucomatous optic neuropathy (GON) eyes. Based on 
stratified sampling, the images were divided into a training 
set consisting of 763 images and a test set consisting of 
181 images. The accuracy, sensitivity, and specificity 

of the CNN classifier were 95.0%, 95.7%, and 94.2%, 
respectively, compared with 92.8% accuracy obtained with 
the ensembles model. The area under the curve (AUC) 
was 0.992. Recently, efforts have been made to use DL 
algorithms to detect and classify glaucoma. Gao et al. (33) 
proposes a network called the recurrent fully convolution 
network (RFC-Net), which is used to segment the optic disc 
and the optic cup automatically and capture more advanced 
data and subtle edge information. The RFC-Net can 
minimize the loss of spatial information. The effectiveness 
and generalization of the proposed method was evaluated 
using the DRISHTI-GS1 data set. By designing effective 
data preprocessing, the number and diversity of training 
samples could be increased such that the training set 
contained 500 images and the test set consisted of 510 
images. Compared with the original full convolutional 
network method and other advanced methods, the proposed 
method achieved better segmentation performance.

Park et al. (21) studied and compared the performance 
of the most advanced DL architecture in detecting optic 
disc and VCDR in fundus images. The training data set was 
composed of 1959 eyes with normal fundus, glaucoma, and 
other optic neuropathy (in which VCDR >0.4 accounted for 
94.3%) which were randomly divided into a training data 
set and a verification data set at a ratio of 9:1. A total of 204 
eyes (95 healthy and 109 glaucoma-affected eyes) were used 
as the measurement data set. Three different architectures, 
namely, You Only Look Once V3, ResNet, and DenseNet, 
were compared in terms of accuracy of detection, processing 
time, diagnostic performance, graphics processing unit 
(GPU) effect, and image resolution. It was found that 
with an increase in the input image distinguishability, the 
accuracy of grading, positioning deviation, and diagnostic 
performance were modified. In addition, the optimal 
architecture varied with distinguishability. Thus, when 
balancing speed and accuracy, the choice of architecture 
may depend on the aims of the researcher.

In addition to the training data set, a perfect generator 
can provide significant annotated data as a supplementary 
segmentation information network. This can improve 
the final predicted segmentation results. Most of the 
existing DL techniques cannot achieve ideal segmentation 
performance because a large amount of pixel-level 
annotation data cannot be obtained during the period 
of training. To overcome this limitation, Liu et al. (34) 
proposed an effective and efficient joint segmentation 
method on the optic disc and the optic cup based on a 
semi-supervised conditional generative adversarial network 
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(GAN). The image data was derived from three sources. 
The ORIGA-650 dataset consisted of 650 fundus photos, 
including 168 glaucoma eyes and 482 normal eyes. This 
was divided into 550 training images (117 glaucoma eyes) 
and 100 test images (51 cases of glaucoma). The REFUGE 
dataset comprised of 400 fundus photos, including 40 
glaucoma eyes and 360 healthy eyes. A total of 300 fundus 
images were selected as the training set (including 30 cases 
of glaucoma) and the remaining were used as the test set. 
The additional unlabeled data set (including 159 fundus 
images from the RIM-ONE database and 50 fundus photos 
from the DRISHTI-GS database) significantly increased 
the quantity of training samples and eventually optimized 
the segmentation output. The architecture comprised of 
a segmentation network, a generator, and a discriminator, 
which was used to learn the object-relational mapping 
between the fundus image and the relevant segmentation 
image. Marked and unmarked data were used to improve 
the performance of the segmentation. The most advanced 
segmentation results for the optic disc and the optic cup 
were achieved with the ORIGA-650 and the REFUGE data 
sets. Jiang and colleagues (35) considered that the blood 
vessels passing through the optic disc region in the fundus 
image would affect the detection of the boundary box. 
They proposed to remove the blood vessels in advance to 
further improve the overall performance, assumed that the 
shape of the optic disc and optic cup region was an ellipse, 
and applied the DL method to achieve the most advanced 
segmentation performance of the optic disc and optic cup 
on the ORIGA-650 database.

However, most methods regard the division of the 
optic cup and optic disc as two independent tasks and do 
not fully consider the clear relationship between them. 
By considering the characteristics of the optic cup in the 
optic disc and the position between the optic cup and the 
optic disc, segmentation of the optic disc and cup can be 
achieved accurately. Bian et al. (25) proposed a depth neural 
network based on anatomy to implement the segmentation 
of fundus images. They also used the 400 images from the 
REFUGE official training data set and 650 images from 
the ORIGA-650 dataset, of which, 519 were randomly 
sampled from the ORIGA-650 data set for training and 131 
for validation. The model could accurately segment the 
optic disc and optic cup in the fundus images to accurately 
calculate the CDR. In the training process, a network based 
on cascaded attention mechanisms was used to effectively 
accelerate the convergence of a small target segmentation 
model and preserve the detailed contour of the small 

target accurately. The method was verified in the MICCAI 
REFUGE fundus image segmentation contest, and the 
dice score was 93.31% in optic disc segmentation and 
88.04% in optic cup segmentation. It can also be used to 
realize manual and semi-automatic interactive segmentation 
schemes and automatic segmentation algorithms. However, 
there are some limitations to this method. In contrast to 
the one-stage method, which divides the optic disc and the 
optic cup, the two-stage method proposed by the author is 
not sufficiently efficient. The end-to-end model proposed 
does not perform preprocessing and post-processing, and 
as such it saves a lot of time. In addition, the prediction of 
optic disc in this study may affect the results of the optic 
cup. If the division of the optical cup in the first stage is 
incorrect, erroneous information may be provided to the 
second stage.

Due to the significant overlap between the optic cup 
and the neuroretinal marginal region, it is a challenge to 
obtain the CDR value automatically with high accuracy and 
robustness. Based on a semi-supervised learning scheme, 
Zhao et al. (36) proposed a direct CDR estimation method 
which uses a CNN called MFPPNet for unsupervised 
feature representation of the fundus image and random 
forest regression to obtain the CDR value. Bypassing the 
middle segmentation allows the CDR value to be directly 
regressed based on the feature representation of the optic 
disc through DL technology. This method was verified 
using the glaucoma data sets Direct-CSU and ORIGA-650, 
achieving a lower average CDR error of 0.0563 and an AUC 
of 0.905 on the data set of 421 fundus images. Calculating 
the CDR value enables advanced CDR estimation and 
satisfactory glaucoma screening to be performed.

However, it should be noted that there are still significant 
challenges before these algorithms can be applied to the 
complex real world. For example, the photographic quality 
of color fundus images is not uniform. If DL algorithms 
are trained with photos captured by different cameras, the 
performance may be poor. Moreover, the current diagnostic 
performance results are only based on VCDR and it should 
be noted that during the diagnosis of glaucoma, VCDR is 
not the only factor used by ophthalmologists to identify an 
abnormal optic disc. The optic disc of the fundus image can 
also provide extra information associated with glaucoma 
diagnosis, such as the sign of lamina punctate, vascular 
system bayonet, retinal nerve fiber layer (RNFL) defect, 
optic disc hemorrhage, optic disc tilt, and peripapillary 
atrophy. Therefore, strictly speaking, the purpose of 
current research is not to evaluate glaucoma diagnostic 
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performance, but rather, to evaluate the performance of 
target recognition and classification algorithms represented 
by VCDR. Nonetheless, the ability to diagnose glaucoma 
using only VCDR is an important tool for health and allied 
health professionals. 

Application of DL in optic neuropathy of fundus images 

GON
Yang et al. (37) developed an AI classification algorithm 
called the ResNet-50 that aims to evaluate the efficacy of 
the DL method in distinguishing NGON from GON by 
using image recognition. Analysis of 3,815 fundus images 
showed 93.4% sensitivity and 81.8% specificity. The 
average precision-recall AUC was 0.874, which showed 
excellent performance.

In a retrospective single-center study, Al-Aswad et al. (38)  
graded 110 color fundus photographs using the DLS 
Pegasus. The consistency between Pegasus and the gold 
standard was 0.715, while the highest consistency between 
ophthalmologists and the gold standard was 0.613. In 
fact, the Pegasus achieved better results than 5 of the 6 
ophthalmologists in terms of diagnostic performance. There 
was no statistically significant difference between Pegasus 
and the ‘best case’ consensus between the ophthalmologists.

There are some limitations to the use of DLS for the 
identification of GON. Li et al. (39) collected 48,116 
fundus photos retrospectively and developed a DLS for the 
automatic classification of GON on color fundus photos. 
The DLS had an AUC of 0.986, sensitivity of 95.6%, and 
specificity of 92.0%, demonstrating that the DLS could 
detect reference GON with high sensitivity and specificity. 
However, the most common causes of false-negative and 
false-positive results occurred when a physiological large 
optic cup or the optic disc of a pathological myopia patient 
could not be accurately identified.

Moreover, in clinical practice, poor patient cooperation, 
small pupil, or refractive medium opacity will limit the 
performance of optical disc recognition. Ha et al. (40) 
proposed a DL method to improve the resolution and 
readability of fundus optic disc photos through contrast, 
color, and brightness compensation. Each high-resolution 
original fundus photo was converted into two counterparts, 
a reduced ‘low-resolution fundus photo’ and a ‘compensated 
high-resolution fundus photo’. This was produced using a 
customized image post-processing algorithm to enhance 
the visibility of the optic disc edge and the surrounding 
retinal vessels. Super resolution GAN (SR-GAN) is then 

used to learn the difference between the two counterparts. 
Finally, by inputting high-resolution photos into SR-GAN, 
‘enhanced fundus optic disc photos’ can be obtained with 
four-fold magnification and overall color and brightness 
conversion.

Abnormalities of the optic disc
In the past few decades, a large number of fundus 
photographs have been collated in the screening network 
for diabetic retinopathy (41). Through DL, these data sets 
have been used to train automatic systems to detect diabetic 
retinopathy and other common pathologies (42). However, 
challenging cases such as papilledema and anterior ischemic 
optic neuropathy (AION) can limit the use of these 
automatic detection systems. This is because standard DL 
requires too many examples of these conditions. Quellec  
et al. (43) proposed a new, small sample learning framework 
based on a t-SNE visualization tool. The framework 
extends the CNN to detect rare cases in fundus images, 
such as optic disc edema, by learning with only a small 
number of samples. Experiments on 164,660 screening data 
sets from the OPHDIAT screening network showed that 
an AUC greater than 0.8 was achieved in 37 of 41 cases 
(average AUC was 0.938). Therefore, this framework is 
superior to other frameworks in detecting rare cases. These 
richer predictions will facilitate the adoption of automatic 
ophthalmic pathological screening, which will completely 
change the clinical practice of ophthalmology.

Liu et al. (44) presented their research on high-
performance DLS for semantic labeling of neuro-
ophthalmic images using small data sets. The system 
modified the ResNet-152 deep CNN that was pretrained 
on ImageNet, which can distinguish between normal and 
abnormal optic discs and detect the optic disc laterality of 
the right and left eyes. The system could detect a variety 
of neuro-ophthalmic diseases, including but not limited to 
atrophy, AION, hypoplasia, and optic papilledema.

Biousse et al. (45) compared the diagnostic performance 
of AI DLS and neuro-ophthalmologists in the classification 
of optic disc appearance. Evaluated on 800 randomly 
presented fundus images without clinical information, this 
DLS performs at least as well as two professional neuro-
ophthalmologists in classifying optic disc abnormalities.

Optic disc edema is common in clinical practice, 
especially in patients with neurological diseases. It is often 
used to determine the presence of intracranial hypertension 
and to evaluate the progression of the disease. Due to the 
lack of ophthalmologists in many departments, it is often 
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necessary to use machine learning to evaluate optic disc 
edema. Ahn et al. (46) used machine learning to distinguish 
between patients with optic neuropathy, pseudopapilledema 
(PPE), and normal subjects. A model was designed and 
compared with the 3 most commonly used machine learning 
classifiers, GoogleNet Inception V3, 19 layers of super deep 
convolution network from visual geometry group, and 50 
layers of deep residual learning (ResNet). The accuracy 
and area under the receiver operating characteristic curve 
(AUROC) were analyzed. It was concluded that machine 
learning technology could distinguish between PPE and 
oedema optic disc of optic neuropathy.

Milea et al. (47) trained, validated, and externally tested a 
DLS to classify the optic disc as normal, with papilledema, 
or with other abnormalities using 15,846 retrospectively 
collected fundus photographs. Using the clinical diagnosis 
of neuro-ophthalmologists as the reference standard, it was 
demonstrated that the DLS could distinguished between 
papilledema, a normal optic disc, and an abnormal optic 
disc without papilledema. Notably, photos obtained after 
mydriasis were more conducive to accurate recognition. 
Vasseneix et al. (48) trained a DLS to accurately classify the 
severity of papilledema in 2,103 mydriatic fundus photos 
of patients with elevated intracranial pressure, and the 
results were comparable to that of independent neuro-
ophthalmologists.

As the structure of the optic disc is different between 
the nasal and temporal sides, the direction of the optic disc 
and whether the pathological lesion site is unilateral or 
bilateral are vitally important clinical data which can affect 
the diagnosis and determine the relative imaging and/or 
systematic evaluation. Several studies have shown that DLSs 
can accurately recognize the right or left eye in photos with 
optic discs (44,46). Furthermore, it can distinguish optic 
disc edema from normal optic disc with an average accuracy 
of 93%, and distinguish real optic disc swelling from 
pseudo-swelling with an accuracy of about 95%.

Optic disc and systemic diseases
Most DL studies on fundus photography are aimed at 
screening for retinal diseases and glaucoma. However, 
studies have shown that the information extracted 
from retinal fundus images can also be used to predict 
cardiovascular risk factors. Poplin et al. (49) trained data 
from 284,335 patients and validated the DL model on 2 
independent data sets of 12,026 and 999 patients. The 
trained DL model used the anatomical characteristics of the 
optic disc to predict cardiovascular risk factors previously 

thought to be non-existence or those that could not be 
quantified in retinal images, such as age (mean absolute 
error within 3.26 years), gender (AUC =0.97), smoking 
status (AUC =0.71), systolic blood pressure (mean absolute 
error within 11.23 mmHg), and major adverse cardiac 
events (AUC =0.70).

Although we can already apply DL to the recognition 
of fundus optic neuropathy, it may be a challenging task to 
deeply understand how the machine classifies fundus photos 
into normal or diseased states. Therefore, further research 
on visualization convolution layers and filters are needed to 
understand how the machine classifies images, and larger 
data sets may be needed to help verify existing findings.

Optic nerve in optical coherence tomography 
(OCT)

Positioning of the optic disc

Thompson and colleagues (50) used the spectral-domain 
optical coherence tomography (SD-OCT) Bruch’s 
membrane opening minimum rim width (BMO-MRW) 
parameter as the reference standard for optical disc photo 
marking. BMO-MRW may be particularly effective in 
grading optic discs in challenging images. For example, in 
cases of high myopia, DL prediction is highly correlated 
with the actual BMO-MRW. The AUC for distinguishing 
glaucoma from normal eyes was 0.945 as predicted by DL 
and 0.933 as assessed by actual measurement (P=0.587). 
Similarly, the class activation diagram confirmed that 
the edge of the neuroretina is very important to the 
classification of the algorithm.

There are some limitations in optical disc positioning 
in OCT. In the case of optic disc swelling, segmentation 
of projected retinal vessels from the volume of the OCT 
is challenging due to shadow artifacts caused by swelling. 
Islam et al. (51) proposed that the vascular information 
from multiple projected retinal layers can significantly 
improve vascular visibility and designed a method based 
on DL to segment vessels, which involves simultaneously 
using three front images of the OCT as input. In the case of 
optic disc swelling, using multiple frontal images achieved 
better vascular segmentation compared with the traditional 
method using a single front image.

CDR

To train neural networks with objective VCDR values, the 
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optic disc parameters measured with Cirrus high-definition 
OCT (HD-OCT) (Carl Zeiss Meditec, Dublin, CA) can be 
used for calculations. Since optic disc regions can change 
up to five times, there is no absolutely defined pathological 
VCDR. However, Mwanza et al. (52) reported that VCDR 
showed good glaucoma diagnostic performance using 
Cirrus HD-OCT (AUROC =0.951), and that there was 
no statistical difference between average and clock hour 
RNFL thickness (AUROC =0.950 and 0.957, respectively). 
In addition, another study demonstrated that the optic 
disc parameters of Cirrus HD-OCT for glaucoma showed 
brilliant reproducibility. In particular, the intraclass 
correlation coefficients of VCDR were ≥0.921 (53). Studies 
have compared Cirrus HD-OCT with confocal laser 
ophthalmoscope and reported a strong correlation between 
the two modes of VCDR (54,55). Although the optic disc 
parameters of HD-OCT and confocal laser ophthalmoscope 
are comparable in the diagnosis of glaucoma, the parameters 
cannot be used interchangeably. Moreover, there may be 
errors in the parameters measured by OCT (56). However, 
Cirrus HD-OCT can provide highly reliable and repeatable 
VCDR data for neural networks, and it is expected that 
these data may be more accurate than the VCDR measured 
by ophthalmologists (57).

RNFL

SD-OCT has become the most widely used tool in the 
diagnosis of glaucoma structural damage. Measurement of 
the optic disc and the RNFL is commonly used to monitor 
disease diagnosis and progression in clinical practice. 
However, the traditional SD-OCT structural damage 
assessment requires to segment the region of interest 
to extract measurements, such as the RNFL thickness. 
This measurement process is completed by the OCT 
software, but tends to be inaccurate. The results showed 
the presence of segmentation errors and artifacts in the 
RNFL scanning, and the average probability was 0.90±0.17 
and 0.12±0.22, respectively (58). In busy clinical practice, 
although it is feasible to correct segmentation errors by 
manual inspection, the actual operation is time-consuming 
and very difficult. Another challenge is the interpretation 
of the SD-OCT scanning, which requires the analysis of 
many parameters and different regions and it is not easy for 
clinicians to integrate all the different parameters from the 
RNFL thickness, the topographical parameters of the optic 
disc, and the macular assessment. The presence of many 
parameters increases the chance of making type I errors, 

that is, accidental anomalies. This led to the concept of ‘red 
disease’, that is, the incorrect diagnosis of glaucoma based 
on red results obtained from one or several parameters 
of the SD-OCT scan, without other confirmed clinical 
features (59).

Considering these limitations of OCT interpretation, a 
DL model can provide an alternative method to quantify the 
pathologic changes and structural damage without relying 
on the features defined by the automatic segmentation 
software. As mentioned above, provided there is enough 
data, the DL algorithm can automatically learn features 
from it. Therefore, these models can use the original SD-
OCT images without inputting predefined features. Along 
with these ideas, instead of the traditional method of 
calculating RNFL by quadrant, a DL algorithm without 
segmentation can be trained to predict RNFL thickness. No 
segmented prediction is highly correlated with conventional 
RNFL thickness, and the average absolute error of a high-
quality image is about 2 μm. Importantly, the DL model 
can extract reliable RNFL thickness information from 
images with conventional segmentation failure. To avoid 
errors in the traditional segmentation of RNFL, which 
may affect the accuracy of SD-OCT in detecting glaucoma 
damage, Thompson et al. (60) developed a segmentation-
free DL algorithm for evaluating glaucoma damage using 
full circle B-scan images from SD-OCT. A CNN is 
trained to distinguish glaucoma from normal eyes without 
a segmentation line by using SD-OCT circular B-scan. 
The segmentation-free DL algorithm is superior to the 
traditional RNFL thickness parameter in the diagnosis of 
glaucoma damage in OCT scanning, especially in the early 
stages of the disease. Petersen et al. (61) also reported that 
the DL model for detecting glaucoma using non-segmented 
SD-OCT performed better than the RNFL thickness 
parameters extracted by automatic segmentation.

Some reports have examined the role of OCT in 
diagnostic decisions when combined with other relevant 
clinical information. The machine-to-machine (M2M) 
DL algorithm trained by Jammal et al. (62) using RNFL 
thickness parameters of SD-OCT was applied to a subset of 
490 fundus photographs obtained from 370 subjects. The 
Spearman correlation between human classification and 
RNFL thickness predicted by the M2M DL was compared 
with the global index of standard automatic perimetry (SAP). 
The AUC and the partial AUC of the clinical significance 
specific area (85–100%) were used to compare the ability of 
each output to distinguish between eyes with a repeatable 
glaucoma SAP defect and eyes with a normal visual field. 
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The algorithm was trained to quantify RNFL damage in 
the fundus photographs. The performance of the M2M 
DL algorithm in detecting eyes with repetitive glaucoma 
visual field loss was comparable or even superior to that of 
human diagnostic performance. Indeed, this DL algorithm 
may replace glaucoma screening by health or allied health 
professionals. In the M2M model, the DL algorithm is 
used to train the color fundus photos and label them with 
the objective quantitative reference standards. The RNFL 
thickness is measured by SD-OCT.

When evaluating color fundus photos, the pretrained 
M2M DL model is used to efficiently predict the thickness 
of RNFL and thus, the damage of glaucoma can be 
quantified. Medeiros et al. (63) proposed a new method 
using quantitative SD-OCT data to train the DL algorithm 
to quantify the structural damage of glaucoma in optic disc 
photos. The DL CNN was trained to evaluate the optic 
disc images and predict the average RNFL thickness of 
SD-OCT. There was a significant correlation between the 
RNFL thickness measurement value predicted by the DL 
model and the actual value measured by SD-OCT (r=0.832; 
P<0.01). The performance of the M2M model and SD-
OCT RNFL thickness model in differentiating glaucoma 
from normal eyes was similar (the AUCs were 0.940 and 
0.944, respectively; P=0.724). For 95% specificity, the 
sensitivity of the predictive measure was 76%, while the 
sensitivity of the actual SD-OCT measure was 73%. For 
80% specificity, the predictive measurements were 90% 
sensitive, while the actual SDO-CT measurements were 
90% sensitive. The photo-trained DL network had an 
overall accuracy of 83.7% in replicating such classifications. 
Visual class activation maps or heat maps were used to 
highlight the most important areas in the images to predict 
the DL model, which showed that the model could correctly 
locate the detected optic disc and its adjacent RNFL areas.

Due to its high reproducibility and accuracy, SD-
OCT has become a practical standard for the objective 
quantification of glaucoma structural damage (64). 
However, in contrast to color fundus photos, SD-OCT 
technology is expensive and difficult to implement, which 
limits the feasibility of wide-spread screening.

Stereoscopic optic disc image

A study by Maetschke and colleagues (65) developed a 
DL algorithm which can distinguish glaucoma eyes from 
healthy eyes by using the original and undivided OCT 
volume of the optic disc. The performance of the algorithm 

was superior to the traditional SD-OCT parameter. The 
AUC was 0.94, while the AUC of a logistic regression 
model combined with SD-OCT parameters was 0.89. The 
class activation map appeared to highlight the areas in the 
volume of OCT which have been clinically identified as 
important areas for the diagnosis of glaucoma, especially 
the retinal nerve margin, optic cup, lamina cribrosa, and 
its surrounding areas. The class activation map provides 
a better understanding of the CNN by highlighting the 
areas causing high activation in the real image used for 
prediction, thereby allowing more detailed analysis of the 
prominent areas.

The optic disc pit (ODP), first described by Wiethe in 
1882, is a round or oval cavity or depression in the optic 
disc (66). It is a rare ophthalmic finding with an incidence 
ranging from about 1 in 500 to 1 in 11,000. While in many 
cases, ODP can remain clinically asymptomatic, visual 
field defects can be very severe and in extreme cases, it can 
result in complete blindness. Between 25% to 75% of ODP 
patients develop disc depression-associated maculopathy 
or ODP maculopathy, accompanied by retinoschisis, 
inner retinal atrophy, serous macular detachment, and 
significant visual loss. Before the development of OCT, it 
was impossible to image ODP in vivo. Maertz et al. (67)  
proposed a new and promising technique, namely, ultrahigh-
speed swept-source megahertz-OCT (SS-MHz-OCT) 
that can be used to display the optic papilla imaging of 
ODP or ODP maculopathy eyes by a-scans at 1.68 million  
per second. 3D volume reconstruction of the ODP and 
high-resolution images from a single densely sampled 
MHz-OCT data set can be used to generate a 3D rendering 
of the optic disc region to study ODP characteristics.

However, it is worth noting that in general, a class 
activation map does not have sufficient resolution to 
accurately locate small areas related to classification. The 
lack of accuracy is due to the convolution layer construction 
of the DL model, which leads to the decline of final layer 
sampling. In addition, the efficiency of class activation 
maps is largely determined by the model used and the 
quantity and quality of available training data. Although 
DL algorithms may indeed capture information that is not 
evident to the human eye, it is necessary to be aware of the 
resolution limitations of these class activation maps.

The optic nerve in computed tomography and 
magnetic resonance (MR) images

Head and neck (HaN) cancer (HNC), including oral cancer, 
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salivary gland cancer, sinus and nasal cancer, nasopharyngeal 
cancer, oropharyngeal cancer, hypopharyngeal cancer, 
and laryngeal cancer are amongst the most common 
types of cancer worldwide (68). Radiotherapy is one of 
the basic treatment methods for HNC (69). To minimize 
complications after treatment, it is necessary to provide a 
precise spatial description for the target volume and organs 
at risk (OAR), so as to direct a highly conformal radiation 
dose to tumor cells while preserving healthy tissues. 
Therefore, accurate depiction and segmentation of the 
target volume and the OAR from medical images is a vital 
step in the effective planning of radiotherapy in patients 
with HNC. For example, in nasopharyngeal carcinoma, 
the eye, optic nerve, and optic chiasm must be accurately 
delineated (70). Since manual rendering is a tedious and 
time-consuming task which is complicated by internal 
and/or inter-observer variability, computer automatic 
segmentation has been developed as an alternative. In the 
past decade, there has been a growing interest in medical 
imaging and radiotherapy planning. The emerging trend 
is to transform the automatic segmentation of HaN OAR 
from a map-based approach to a DL-based approach (71).

Zhu et al. (72) proposed an end-to-end, atlas-free, 3D 
convolution DL framework for fast and automatic full 
volume HaN anatomical segmentation. It provides a feasible 
solution to describe OAR from computed tomography 
(CT) images. The model could improve the segmentation 
accuracy and simplify the automatic segmentation of 
pipelines. With this method, the OAR could be depicted in 
a fraction of a second in the HaN CT scans.

Ibragimov et al. (73) proposed an algorithm based on 
DL to segment OAR in HaN CT images. A CNN was 
used to train the consistent intensity pattern of OAR in 
CT images, and the OAR was segmented in a previously 
invisible test CT image. The performance of the CNN 
in the segmentation of the spinal cord, mandible, parotid 
gland, submandibular gland, larynx, pharynx, eyeball, optic 
nerve, and optic chiasm was verified in 50 CT images. The 
segmentation results ranged from 37.4% of optic chiasm 
dice similarity coefficient to 89.5% dice similarity coefficient 
of the mandible. At the same time, it was suggested that the 
combination of MR images may be beneficial to some OAR 
with unclear boundaries.

For the comparison of CT and MR images, Tong  
et al. (74) developed a novel method based on GAN with 
shape constraint (SC-GAN) for automatic HaN OAR 
segmentation on CT and low field MR imaging. The full 
convolution DenseNet with deep supervision was used as 

the segmentation network of voxel prediction. Compared 
with CT, MR imaging has higher accuracy in automatic 
segmentation of optic nerve. The low field MR images 
obtained with the MR-guided radiotherapy system could 
support the accurate and automatic segmentation of OAR 
soft tissue for adaptive radiotherapy.

Since the outline of the OAR directly affects the planning 
optimization and local dose distribution, it also influences 
the evaluation and efficacy of the radiotherapy regimen. 
Guo et al. (75) evaluated the dosimetric effect of automatic 
OAR segmentation based on DL on nasopharyngeal 
carcinoma treatment. There was no correlation between 
geometric measurement of automatic segmentation 
and dosimetric differences. Furthermore, automatic 
segmentation based on DL showed good therapeutic effect 
on tumor tissues.

Discussion

Previous studies have suggested that classifier models 
trained using both structural and functional tests may have 
better discrimination ability compared to machine learning 
classifiers trained using only structural or functional tests. 
Similarly, DL models that have had combinatorial training 
may also show superior performance. However, most 
notably, many eye diseases, such as glaucoma, lack a perfect 
reference standard or gold standard. Therefore, it is difficult 
to establish an appropriate unbiased study to evaluate 
the accuracy of a proposed novel diagnostic method that 
relies on a combination of structural and functional tests. 
In such cases, it is important to consider the clinical needs 
and settings of the innovation application. To develop 
and extend a DL model that can accurately replicate the 
diagnosis of diseases by an ophthalmologist, a reasonable 
combination of the fundus phase, a reference standard 
graded visual field, and SD-OCT images and printouts can 
be used, possibly in combination with other clinical texts 
and imaging information. Such a model can have a huge 
impact in clinical practice and increase the performance of 
the clinical diagnosis of diseases.

In a recent study, Mariottoni et al. (76) proposed a 
set of relatively uncomplicated structural and functional 
parameters which can be integrated in an objective 
approach as a reliable reference standard for the research 
and development of glaucoma AI diagnosis models. 
According to the RNFL evaluation of SD-OCT and the 
visual field evaluation of standard automatic visual field 
examination, the diagnostic criteria of glaucoma optic 
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neuropathy should include the corresponding structural 
and functional damage. They summed up a set of criteria 
using well-developed global and local parameters, requiring 
topographic correspondence between the neural structural 
and functional impairments, which improved the specificity 
of the diagnosis. They also developed a DL model which 
uses fundus photos to distinguish glaucoma from normal 
eyes and classifies them according to objective reference 
standards. The total AUC of the model was 0.92, with a 
sensitivity of 77% and a 95% specificity. It is worth noting 
that an objective reference standard combining SD-OCT 
and SAP data may avoid laborious, prolonged expert 
scoring, and it may also increase the comparability of 
integrating various equipment and diagnostic research on 
different types of populations.

With unparalleled progress in computer technology and 
imaging technology, medical imaging has developed from 
an auxiliary and supporting discipline to an indispensable 
means of examination for clinical and research applications 
in modern medicine. DL is an exciting technology. High 
precision models show that DL can use relatively small 
data repositories to effectively learn increasingly complex 
information and high degree of generalization images. 
To some extent, AI can completely change the diagnosis 
and management of diseases by classifying difficult 
images for clinical experts and viewing a large number of 
images quickly. Compared with artificial evaluation, AI 
has significant advantages in data mining, information 
integration, data processing, and interactive query.

DL has great prospects in the diagnosis and treatment 
of optic nerve diseases. DL models have been shown 
to use simple images to detect and quantify optic nerve 
damage, thereby facilitating low-cost, rapid, and immediate 
screening of diseases. Furthermore, DL has been shown 
to optimize the damage estimate of the original SD-OCT 
and visual field data, which can facilitate the application of 
these tests in clinical diagnosis and treatment. Although 
AI and DL have made great progress in the diagnosis and 
treatment of optic nerve diseases, most medical applications 
using this technology are still in its infancy. Through the 
interdisciplinary cooperation of clinicians, engineers and 
designers, AI in health care may eventually accelerate the 
diagnosis and referral of ophthalmic diseases. The validation 
of novel diagnostic tests must meet strict performance 
confirmation procedures and tight quality control criteria. 
Furthermore, constant monitoring and evaluation must be 
performed, with particular focus on reference standards 
and the setting of test strategies in clinical practice. In 

neuro-ophthalmic diseases, the reference standards used 
in the clinical setting may vary greatly, depending on 
the application mode and purpose of the test. Similarly, 
the accuracy requirements for diagnostic tests may also 
vary, depending on whether they are used for community 
group screening or opportunistic screening, or for disease 
detection or surveillance in tertiary care centers.

At present, the application of DL in clinical practice 
still faces many challenges. Combining important clinical 
information relating to each patient in conjunction with 
information obtained from multimodal imaging will 
be more beneficial for clinical diagnosis and treatment 
planning. Future research should focus on the development 
of highly accurate AI systems capable of not only detecting 
optic nerve abnormalities but also predicting the nature of 
potential conditions. Large clinical real life data sets should 
be used to evaluate the efficacy of AI systems in terms of 
clinical deployment and cost-effectiveness, and to address 
whether DL can become an accurate and affordable solution 
for patients in the future.
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