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Background: Radiologists currently subjectively examine multi-parametric magnetic resonance imaging 
(MRI) to detect possible clinically significant lesions using the Prostate Imaging Reporting and Data System 
(PI-RADS) protocol. The assessment of imaging, however, relies on the experience and judgement of 
radiologists creating opportunity for inter-reader variability. Quantitative metrics, such as z-score and signal 
to clutter ratio (SCR), are therefore needed. 
Methods: Multi-parametric MRI (T1, T2, diffusion, dynamic contrast-enhanced images) were resampled, 
rescaled, translated, and stitched to form spatially registered multi-parametric cubes for patients undergoing 
radical prostatectomy. Multi-parametric signatures that characterize prostate tumors were inserted into 
z-score and SCR. The multispectral covariance matrix was computed for the outlined normal prostate. 
The z-score from each MRI image was computed and summed. To reduce noise in the covariance matrix, 
following matrix decomposition, the noisy eigenvectors were removed. Also, regularization and modified 
regularization was applied to the covariance matrix by minimizing the discrimination score. The filtered 
and regularized covariance matrices were inserted into the SCR calculation. The z-score and SCR were 
quantitatively compared to Gleason scores from clinical pathology assessment of the histology of sectioned 
wholemount prostates.
Results: Twenty-six consecutive patients were enrolled in this retrospective study. Median patient age 
was 60 years (range, 49 to 75 years), median prostate-specific antigen (PSA) was 5.8 ng/mL (range, 2.3 to 
23.7 ng/mL), and median Gleason score was 7 (range, 6 to 9). A linear fit of the summed z-score against 
Gleason score found a correlation of R=0.48 and a P value of 0.015. A linear fit of the SCR from regularizing 
covariance matrix against Gleason score found a correlation of R=0.39 and a P value of 0.058. The SCR 
employing the modified regularizing covariance matrix against Gleason score found a correlation of R=0.52 
and a P value of 0.007. A linear fit of the SCR from filtering out 3 and 4 eigenvectors from the covariance 
matrix against Gleason score found correlations of R=0.50 and 0.44, respectively, and P values of 0.011 and 
0.027, respectively.
Conclusions: Z-score and SCR using filtered and regularized covariance matrices derived from spatially 
registered multi-parametric MRI correlates with Gleason score with highly significant P values. 
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Introduction

Clinical management of prostate cancer (PCa) critically 
depends on knowing the cancer’s potential aggressiveness 
and ability to metastasize (1-3). PCa staging and nomograms 
that predict clinical outcomes, such as biochemical 
recurrence after treatment (4-6), conventionally use a wide 
variety of clinical indicators (4-17), including prostate-
specific antigen (PSA) (7-9), seminal vesicle involvement 
(10,11), tumor volume (12-16), magnetic resonance imaging 
(MRI) (17-21), cancer spread (10,11,14), and Gleason 
score (22) after biopsy or prostatectomy. Some of this input 
information, like PSA (8), is not consistently predictive of 
outcome. Other input, such as assessment of imaging or 
histology slices, rely on the experience and judgement of 
radiologists and pathologists (17-20), creating opportunity 
for inter-reader variability. A quantitative approach could 
reduce such variability.

PCa has been studied using multi-parametric MRI (MP-
MRI) via the Prostate Imaging Reporting and Data System 
(PI-RADS) protocol (17-20). In the PI-RADS approach, 
radiologists apply a series of learned rules to the visualized 
PCa to generate a PI-RADS score for the lesion. Currently 
research (20) employing the PI-RADS approach successfully 
assesses tumors for lymph node involvement, extra-prostatic 
extension, and clinically significant disease, but only weakly 
correlates with Gleason score. A more quantitative and less 
subjective approach for assessing MP-MRI may raise the 
evaluation accuracy and consistency.

Recently (23-25), pilot studies of hyperspectral target 
detection techniques were applied to hypercubes derived 
from spatially registering MP-MRI. These studies predicted 
Gleason score using image-based signatures, measured 
tumor volume, and calculated tumor eccentricity or shape 
and correlated with Gleason score. Instead of comparing 
image-based signatures (23) to determine Gleason score, this 
study uses the spatially registered hypercubes to compute 
the degree of disease through the summed z-score and 
signal to clutter ratio (SCR) and relates them to Gleason 
score. For each modality in MP-MRI, z-score and SCR 
computes the ratio of the tumor signal value minus the mean 
background (or normal prostate) to the standard deviation 
of normal prostate. Normalizing the tumor signal partially 

mitigates (23) varying MRI pulse sequences, magnetic fields, 
injection of contrast, etc. among patients. Normalizing to 
this background presumes that the variation within a given 
patient’s normal prostates are roughly similar for all patients. 
Z-score and SCR differ in how they gather the information 
from among the different MP-MRI modalities.

The goal of this study to see if quantitative measures 
from spatially registered MP-MRI such as z-score and 
modified versions of SCR are correlated with Gleason 
score, a proven indicator of clinical outcome. The goal is 
to develop a non-invasive, objective measure for assessing 
PCa and provide guidance for disease management. This is 
merely a retrospective pilot study that will hopefully lead to 
more definitive research. 

We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://dx.doi.
org/10.21037/qims-21-761).

Methods

Overall method description

Figure 1 shows the overall scheme to compare Gleason score 
derived from histology with z-score and SCR generated 
from spatially registered MRI. Gleason score is determined 
from pathology analysis of the histopathology slides from 
radical prostatectomy (blue arrows). In the MP-MRI arm of 
the study (red arrows), spatially registered hypercubes are 
assembled from the individual MRI pulse sequences. The 
prostate is outlined and in scene signatures are derived from 
the hypercube and provide input for the z-score and SCR 
computation. Noise in the SCR is reduced. The z-score 
and SCR following noise reduction through eigenvalue 
filtering and also regularizing the covariance matrix (CM) is 
compared to the histology-based Gleason score.

Study design and population

The Cancer Imaging Archive (TCIA) (26,27) affiliated with 
The National Institutes of Health (NIH) stored collected 
patient data from prostate tumor MRI and histology 
from wholemount prostatectomy specimens. The local 
institutional review board (IRB) approved this publicly 
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available, single institution retrospective study. The study 
was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). Due to previous protections 
implemented by TCIA, this retrospective, anonymized 
study was exempt from further IRB review and individual 
consent for this retrospective analysis was waived. 

Whole mount prostatectomy and histology

Three-dimensional (3D) models of each prostate (28,29) 
were generated by segmenting the prostate capsule on in 
vivo triplane T2-weighted (T2W) MRI, and extracting 
from the high-resolution 3D surfaces. Commercially 
available 3D computer aided design software helped design 
each mold. The design accounted for the deformation of 
the endorectal coil. A 3D printer (Dimension Elite 3D 

printer, Stratasys, Inc.) deposited styrene to fabricate each 
mold. The specimen was fixed at room temperature in 
formalin for 2 to 24 h after radical prostatectomy, then 
placed in the customized 3D mold, and sliced in axial 6 mm 
sections. Using the customized mold for histopathology, 
the whole mount histopathology patient specimens were 
sectioned corresponding to the axial plane of the MRI 
sections. Two experienced pathologists independently, and 
blinded from MRI analysis, shortly after the prostatectomy 
in 2008 to 2009, mapped the slides for individual tumor 
foci, dimensions, and classified the tumor blobs into 
Gleason scores, not the International Society of Urological 
Pathology (ISUP) grading. Individual blobs in a given 
patient’s histology slide can have differing Gleason scores. 
As in previous efforts (23-25) and to better reflect the 
patient’s status, a patient’s Gleason score is a weighted 

Figure 1 Overall scheme to compare Gleason score derived from histology (blue arrows) with z-score and SCR generated from spatially 
registered MRI (red arrows). SCR, signal to clutter ratio; MP-MRI, multi-parametric magnetic resonance imaging.
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average (based on histology blob size) of the Gleason scores 
assessed by the pathologist. Future studies with greater 
patient samples may find that ISUP correlates better with 
z-scores and SCR.

MRI

The MRI collection is composed of Diffusion Weighted 
Images (DWI), dynamic contrast enhanced (DCE), and 
structural (T1, T2) images. The pulse sequences were 
described in earlier studies (27-29). These studies (28-30) 
were performed with an endorectal coil (BPX-30, Medrad; 
Pittsburgh, PA, USA) tuned to 127.8 MHz and a 16-channel 
cardiac coil (SENSE, Philips Medical Systems; Best, the 
Netherlands). The MRI used a 3 Tesla (T) magnet (Achieva, 
Philips Medical Systems). Prior bowel preparation was not 
used. Standard methods were used to insert the endorectal 
coil. The MRI protocol used triplanar T2W turbo spin 
echo, DW MRI, 3DMR point resolved spectroscopy, and 
axial pre-contrast T1-weighted axial 3D fast field echo 
DCE MRI sequences. Their detailed sequence parameters 
were defined in a prior study (29). 

Image processing, pre-analysis

The presence of elevated vasculature that feeds the rapidly 
growing tumor helps distinguish lesions from normal 
tissues. DCE displays the time evolution of contrast 
material over several hundred seconds after its injection and 
shows uptake in the tissues. The vasculature is porous to 
contrast material. The contrast material enters the tumor’s 
extravascular space (but not the cells) and can fill and empty 
of MRI contrast material more quickly than the normal 
prostate organ. DCE analysis and exploitation of the unique 
tumor physiology can identify a portion of the tumors. 
A simple two compartment model (31,32) describes the 
tracer concentration in the tissue that supplies and empties 
through the tumor vasculature. The model is used to create 
the washout kep image.

In the superior-inferior direction, the slices were 
resampled to 6-mm spacing based on the patient’s table 
position. Fine-tuned rigid registration (minor transverse 
translation, resampling) was applied between the structural, 
diffusion, and DCE due to the short time intervals between 
scans (<20 minutes). The MRI images were digitally 
resampled (23-25) to 1-mm resolution in the transverse 
direction. Individual slices were scaled, translated, resliced 
and spatially registered at the pixel level to create a “cube”. 

Multiple axial cubes in three dimensions were “stitched” 
together by sequentially connecting them together into a 
narrow 3D image. Four dimensions (3D body volume plus 
the fourth dimension composed of MRI sequences) object is 
thereby re-expressed as a 3D mosaicked cube. Each voxel is 
treated as a vector composed of MRI modality rather than a 
scalar value. Multispectral MRI data contain 7 components 
(23-25) [T1 (pre contrast), T1 (maximum contrast), T2, 
automated diffusion coefficient (ADC), DWI-high B 
(B=1,000 s/mm2), Washout or kep from DCE].

Overall quantitative metrics description: z-score and SCR

To generate a quantitative metric (33-36) for assessing 
the degree of disease (and used in many fields), a z-score 
is computed using the digital values from MRI. Figure 2 
schematically illustrates the z-score computation for three 
modalities, specifically Washout or exit rate of contrast 
material derived from kinematic analysis of DCE (Figure 
2A,2D), the “high B” component of the DWI (Figure 
2B,2E), and ADC (Figure 2C,2E). These three MRI 
modalities have been spatially registered to each other. 
The red cross hairs in Figure 2A-2C, the horizontal profiles 
in Figure 2D-2F, and the downward pointing arrows in 
Figure 2A-2E correspond to the same set of point(s) in 
the patient’s body (horizontal pixel 120 in Figure 2D-2F). 
Prostate tumors show hyperintense regions in the Washout 
(Figure 2A) and DWI (Figure 2B) and hypointense region 
in the ADC (Figure 1C). The red crosshairs in Figure 2A-
2C denote a point in the prostate tumor. Prostate tumor 
exhibits an elevated value Si − μi (solid green) relative 
the prostate mean MRI μi (solid blue line) and the added 
standard deviation σi (dashed green line) (see Eq. [2]).

Specifically, the z_score for given for each modality i is (36):

 2

_ i i
i

i

Sz score µ
σ

 −
=  
 

 [1]

and i ranges from i=1,2,3…M (M=7 in this study), where Si 
is the tumor signature or value in the modality i (mean over 
the T tumor pixels), μi is the mean value for normal prostate 
in MRI modality i, where 

 1/2
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and σi is the standard deviation for the normal prostate in 
modality i, and p ranges over all N prostate voxels. S, the 
in-scene tumor signature, is selected from yellow voxels in a 
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three-color display of the spatially-registered MP-MRI (red 
is Washout, green is DWI, high-B, blue is ADC) (23-25).  
The background voxels needed for μ and CM were taken 
from digitally outlining the prostate on the spatially-
registered MP-MRI. A simple way of combining all MP-
MRI modalities i is to sum the individual z-scorei, i.e.,

 
_ _

M

i
i

z score z score=∑  [3]

The z score (Eq. [3]) is the Euclidean distance (34-
36) between the tumor or target and the prostate or 
background. The simple sum of z-scorei (Eq. [2]) from each 
modality i is only one quantitative metric that incorporates 
all MP-MRI contributions into characterizing the prostate 
tumor. Another, the SCR (32-34) is given by

 ( ) ( )1TSCR S CM Sµ µ−= − −  [4]

that is a matrix multiplication over MP-MRI modalities, 
the superscript T denotes a vector transpose operation, 
CM is the covariance matrix, and the superscript −1 
denotes a matrix inverse operation. Note: the SCR (Eq. 
[4]) is commonly expressed in decibels (dB) [SCR(dB) =20 

log10(SCR)]. The CMi,j is given by 

 ( )( ), ,, jp i

N

i j i p j
p

CM xx µ µ= − −∑  [5]

for the sum over N xi and xj voxels in the prostate for MRI 
modalities i and j. The SCR (Eq. [4]) is the Mahalanobis 
distance (34-36) or Euclidean distance in the “whitened 
space” between tumor and normal prostate. 

CM is a symmetric square M × M matrix and, therefore, 
diagonalizable (37) and composed of variations (cross 
variations) along the diagonal (non-diagonal) directions. 
SCR (Eq. [4]) is identical to z-score (Eq. [3]) if CM is the 
identity matrix.

After diagonalization, eigenvector generation, the 
whitening transform linearly combines, and rotates the 
M MRI modalities. The SCR (Eq. [4]) maximizes the 
z-score. However, the CM contains noise components 
resulting in inaccurate and undesired quantitative  
metrics (38). To reduce the CM noise, two options are 
invoked, namely filtering out the high noise/low value 
eigenvalue components (section “Filtering noise”) 
(38,39), and regularizing or shrinking the CM (section 

Figure 2 The z-score computation for three modalities, specifically Washout or exit rate of contrast material derived from kinematic 
analysis of dynamic contrast enhancement images (DCI) (A,D), the “high B” component of the diffusion weighted image (DWI) (B,E), and 
automated diffusion coefficient (ADC) (C,F).
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“Regularization and shrinkage”) (38). 

Filtering noise

To reduce the noise, image information is decorrelated by 
using principal component analysis and removing the noise 
in the low eigenvalue channels (38,39). CM is a square 
symmetrical matrix that is decomposed into three parts (37), 

 TCM λ= Λ Λ  [6]

Similarly, the inverse covariance matrix CM−1 is a square 
symmetrical matrix that is decomposed into three parts, 

 1 1TCM λ− −= Λ Λ
 

[7]

namely the eigenmatrix Ʌ, transpose of the eigenmatrix ɅT, 
and diagonal matrix λ with eigenvalues λ2
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Conventionally, the eigenvalues are ordered according 
to size ranging from the largest λ1 to the smallest λM. The 
images corresponding to the eigenvalues and eigenvectors 
range from high signal and variation (1,2) to low variation 
and very noisy (M−1, M). The eigenvalues span a huge range 
of values. The lowest value eigenvalues (M−1, M) elevate the 
noise due to the inversion in the inverse matrix CM−1 (Eq. 
[8]). Figure 3 depicts a specific display of eigenvalues from 
analyzing the CM for a spatially registered 7 component 
MP-MRI from a particular patient and masking for prostate. 
Filtering out the noisy eigenvectors means removing the 
lowest valued eigenvalues from the inverse matrix, i.e., 
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λ
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 =  
 
 
 
  

 [9]

and inserting Eq. [9] into Eq. [7] 

 1 1T
Filtered FilteredCM λ− −= Λ Λ

 
[10]

resulting in

 ( ) ( )1T
Filtered FilteredSCR S CM Sµ µ−= − −

 
[11]

After inserting Eq. [10] into Eq. [4].

Regularization and shrinkage 

Another approach for  reducing noise  i s  through 
regularization and shrinkage (38). That is shrinking the 
difference in the highest and lowest eigenvalues by adding 
a diagonal component that is controlled by the parameter 
γ and thereby perturbing the CM into the regularized 
CMReg(γ) 

( ) ( ) ( )
Reg 1

Tra CM
CM CM I

M
γ

γ γ= − + [12]

by control value γ where Tra denotes the trace operator 
and I is the identity matrix. γ ranges from γ=0.0 or no CM 
modification to γ=1.0 or CM is proportional to the identity 
matrix. The goal of regularization is to perturb the CM(γ) 
so as to maximize the normal distribution, or equivalently 
minimize the discriminant function d(γ) [=−ln(normal 
distribution)], i.e.,

Figure 3 Eigenvalues from analyzing the covariance matrix for a 
spatially registered 7 components MP-MRI from patient #11. Lowest 
value eigenvalues are filtered out of covariance matrix to remove noise. 
MP-MRI, multi-parametric magnetic resonance imaging.
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( ) ( ) ( ) ( )

( )( )( )

1
Reg Reg

Regln det

N
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i i
i

d x CM x

CM

γ µ γ µ

γ

−= − −
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∑
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where the sum is over all N samples in the prostate 
ensemble and det denotes the determinant operation. A 
search is conducted among the γ’s (range 0<γ<1) for the 
lowest discriminant function that can be achieved with γmin 
and results in a regularized SCRReg:

( ) ( ) ( )( )1
Reg Reg

T
Min MinSCR S CM Sγ γ µ γ γ µ−= = − = −   [14]

A less well studied CM regularization CMmod(γ) instead 
corrects the CM by

 [15]( ) ( )mod_Reg 1CM CM Vγ γ γ= − +

V is not the identity matrix I but instead is a diagonal 
matrix filled up with the square of the standard deviations 
from M modalities and is given by

 2
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And using Eqs. [15,16] the modified discriminant 

function dmod_Reg (γ) is

( ) ( ) ( )( )
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mod_ Reg mod_ Reg

mod_ Regln det
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i i
i
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CM

γ µ γ µ

γ

= − −
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∑
 [17]

is computed for 0<γ<1. A minimum dmod(γmin) is found at 
γmin. resulting in a SCRmod_Reg (Eq. [18]) using a modified 
regularization procedure (using Eqs. [15-17]).

( ) ( ) ( )( )1
mod_ Reg min mod_ Reg min

TSCR S CM Sγ γ µ γ γ µ−= = − = − 
[18]

It should be noted that γ=0 results in the standard SCR 
(Eq. [4]) and γ=1 results in the z-score (Eq. [3]).

Figure 4 shows the dependence of discriminant function 
dReg(γ) (Eq. [13]) and dmod_Reg(γ) (Eq. [17]) on the parameter 
γ for patient #11. The minimum discriminant function and 
modified discriminant function in this case occurs at γ=0.30 
and γ=0.40, respectively. 

Results

A total of 26 consecutive patients enrolled in the study 
between July 2008 and July 2009. All patients showed 
biopsy-proven adenocarcinoma of the prostate. Median 
patient age was 60 years (range, 49 to 75 years). Median 
PSA was 5.8 ng/mL (range, 2.3 to 23.7 ng/mL). Median 
Gleason score was 7 (range, 6 to 9). No restrictions 
were placed on tumor location within the prostate. A 
robotic assisted radical prostatectomy was performed at 
a median time of 60 days (range, 3 to 180 years) after the 
MRI without any intervening treatment. The histology 
assessment of the prostate specimen was done right after 
the prostatectomy. One patient was excluded due to failure 
to uptake the MRI contrast material. Table 1 summarizes 
relevant patient features for this study including Gleason 
score, contrast uptake, and tumor volume derived from 
analysis of the histology of wholemount prostatectomy. 

From analysis of 25 patients (1 patient excluded due to 
no contrast uptake), Figure 5 shows the Pearson correlation 
coefficient R (red, filled dot) and P values (blue, half-
filled square) for fitting filtered SCR (Eq. [11]) against the 
Gleason score. The correlation (shown in red) shows a 
maximum value, whereas the P value shows a minimum. 
Cutting off 3 and 4 of the lowest value eigenvectors from 
the CM calculation yielded acceptable (P<0.05) filtered 
SCRFilter for fitting to the Gleason score. The Pearson 

Figure 4 Discriminant and modified discriminant function for 
patient #11 as a function of γ. Minimum discriminant (γ=0.30) and 
modified discriminant (γ=0.40) denoted by red and blue arrows, 
respectively.
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correlation coefficients for 3 and 4 remaining eigenvectors 
were 0.44 and 0.50, respectively. The P values for 3 and 
4 eigenvectors were 0.027 and 0.015, respectively. Table 2 
displays a summary for Pearson correlation coefficient and 
P values of cutoffs with Gleason score. 

Figure 6 shows a scatterplot (25 patients) of filtered 
SCR (Eq. [11]), regularized SCRReg (Eq. [14]), modified 
regularized SCRmod_Reg (Eq. [18]), and z-score (Eq. [3]) 
against Gleason score. Processing 25 patients, yielded the 
Pearson correlation coefficients from fitting the histology 

derived Gleason scores to MP-MRI-based z-score, 
SCRReg from regularized covariance, SCRmod_Reg from 
modified regularized CM, and SCRFilter from filtering out 
4 eigenvectors 0.48, 0.52, 0.39, and 0.50, respectively. 
Regularization and shrinkage and modified regularization 
calculation for 25 patients yielded an average minimum γ’s of 
γmin =0.316±0.0464 and γmin =0.373±0.0452, respectively.

In addition, the P values from comparing histology 
derived Gleason scores and MP-MRI-based z-score, SCRReg 
from regularized covariance, modified regularized SCRmod_Reg  
and SCRFilter from filtering out 4 eigenvectors are 0.015, 
0.052, 0.007, and 0.011, respectively. Table 2 summarizes the 
Pearson correlation coefficient and P values of z-score and 
regularization with Gleason score.

Figure 5 Correlation coefficient (R) (red, filled dot) and P values 
(blue, half-filled square) for fitting filtered SCR and Gleason score. 
SCR, signal to clutter ratio.

Table 2 Summary of Pearson correlation coefficient (R) and P 
values for MP-MRI and Gleason score

Variables
Correlation  

coefficient (R)
P value

Cutoff (3 remaining eigenvectors) 0.44 0.027

Cutoff (4 remaining eigenvectors) 0.50 0.011

Regularization 0.38 0.058

Modified regularization 0.52 0.007

Z-score 0.48 0.015

R, Pearson correlation coefficient; MP-MRI, multi-parametric 
magnetic resonance imaging.

Table 1 Summary of patient characteristics (Gleason score, contrast 
uptake, volume)

Patient # Gleason score Contrast uptake Histology volume (cc)

1 6.67 Yes 0.745 

2 8.67 Yes 18.168 

3 6.8 Yes 2.970 

4 7.73 Yes 12.620 

5 7.87 Yes 5.310 

6 7.47 Yes 2.350 

7 8.44 Yes 3.160 

8 6.75 Yes 1.040 

9 6.39 Yes 4.057 

10 6.27 Yes 0.697 

11 7.83 Yes 3.215 

12 6.50 Yes 2.325 

13 8.00 Yes 1.270 

14 6.4 Yes 5.134 

15 6.67 Yes 1.600 

16 6.67 Yes 1.150 

17 6.67 Yes 1.900 

18 6.67 Yes 5.470 

19 6.67 Yes 2.540 

20 7.33 Yes 4.947 

21 6.67 Yes 1.210 

22 6.67 Yes 2.270 

23 6.67 Yes 0.420 

24 8.33 No 1.260 

25 6.89 Yes 1.049 

26 6.89 Yes 0.570 

Filtering eigenvectors and SCR/Gleason score fit
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Discussion

The metrics, z-score and SCR that use the regularized, 
modified regularized, and filtered CM, correlate with the 
Gleason score. For the SCR calculation, however, it is 
essential to reduce the noise by filtering or regularizing 
the CM. Inserting unregularized CM into the SCR 
calculation yields huge ratios albeit with poor correlation 
with Gleason score. By deriving quantitative metrics from 
digital values from the images instead of evaluating the 
visual appearance of the image, it is hoped that reliable 
assessments of patient images can accurately ascertain a 
patient’s disease status. 

Although the Pearson correlation coefficients between 
z-score, SCR and Gleason score are not close to 1.0, 
they remain statistically significant with low P values. 
To provide perspective, depending on the study, the far 
better studied connection between PSA and Gleason score 
Pearson correlation coefficient varies from R=0.59 (8)  
to R=0.43–0.46 (9) to having P=0.75 and showing no 
statistical significance (7). The connection between PI-
RADS and Gleason score also shows variation among 
studies. Bastian-Jordan (18) demonstrated the incidence 
of clinically significant disease for different PI-RADS 

grades. PI-RADS score was not associated with significant 
differences regarding Gleason score distribution within 
the target (19). However, the relationships between PI-
RADS score and postoperative extracapsular extension, 
lymphovascular invasion, and seminal vesicle involvement 
were significant (P<0.001, P=0.032, and P=0.007, 
respectively) (20).

A previous pilot study used image-based transformed 
spectral signatures (24) derived from spatially registered 
MP-MRI to predict Gleason scores. This current study 
instead uses z-scores and modified SCR to determine 
Gleason scores. Analysis of spatially-registered MP-MRI 
offers two independent direct measures (Gleason score 
signatures and z-score/SCR) to assess Gleason scores. 
These measures may complement and supplement more 
indirect indicators of tumor aggressiveness such as tumor 
volume and eccentricity. It may be clinically advantageous to 
combine predictions from signatures and z-scores/modified 
SCR in a complementary fashion such as in a nomogram or 
a multivariable fit.

No algorithm proscribes the cutoff for filtering 
eigenvalues. An empirical approach (38,39), as in this study, 
determines the optimal filtered value by comparing the SCR 
calculation to Gleason score. The cutoff is often chosen to 
reside at the “shoulder” in the eigenvalues to filter out the 
noise. The eigenvalue number cutoff of 3 or 4 found in this 
study resides at the shoulder (see Figure 3 as an example), 
following previous efforts.

Regularization of the CM is often invoked in order 
to mitigate the rank deficiency matrix singularity due 
to undersampling relative to the number of features or 
components (38). In this study, however, the number of 
samples (roughly 2,000) far exceeds the 7 components. 
Nevertheless, regularization and modified regularization 
greatly increased the correlation between Gleason score and 
SCR.

The modified regularized CM is not well studied relative 
to the regularized CM (38). This modified regularized CM 
was previously suggested for study but not examined (38). 
Figure 4 shows the discriminant function for the modified 
regularized covariance is larger than the discriminant 
function for the ordinary regularized covariance. However, 
employing the modified regularization relative to the 
customary regularization resulted in increasing the Pearson 
correlation coefficient (R=0.38 to 0.52) and reducing the 
P value (P=0.058 to 0.007) in this study. To understand 
the result, it should be noted that γ=1 for the ordinary 
regularization procedure (Eqs. [12,13]) results in 

Figure 6 Scatter plot for 25 patients SCR with cutoff filter 
(red, filled dot), SCR regularized (blue, half-filled square), SCR 
modified regularized (green, half triangle), and Z-score (black, 
filled diamond) against Gleason scores. Correlation coefficients R 
and P values also shown. SCR, signal to clutter ratio.
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where σmean corresponds to the mean standard deviation 
(Tra(CM)/M, Eq. [12]). Eq. [19] uses a single value of σmean 
rather than M different σi’s. Evidently, it is important to 
correct for variations within each MRI modality through 
the individual standard deviations (Eqs. [1,3,18] with γ=1.0) 
in order to predict the Gleason score. This study combines 
different modalities with significantly varying standard 
deviations. The standard deviation for images from different 
wavelengths in hyperspectral imagery, however, do not vary 
much and so normal regularization may be sufficient, unlike 
this study. 

To optimize regularization and modified regularization, 
this study varied the γ to search for the minimum 
discriminant score (Eqs. [13,17]). The search can be 
computationally burdensome. Due to the narrow range 
of the minimum γ’s for regularization and modified 
regularization (γmin =0.316±0.0464 and γmin =0.373±0.0452) 
and the broad minimum in the discriminant functions, it 
may be advantageous to choose a single γ, γ=0.3 and γ=0.4 
for regularization and modified regularization, respectively. 
Choosing a single γ instead of searching for an optimal γ 
should speed up the calculation resulting in minimal loss of 
accuracy and precision.

If additional studies (using greater number of patients, 
conducted prospectively) confirm that SCR/z-scores, 
eccentricity significantly correlate with Gleason score, then 
clinical implementation is feasible. The biggest issue is 
generating spatially registered hypercubes from MP-MRI 
in a timely manner. However, software development should 
enable autonomous spatial registration that would reduce 
the time for assembling the hypercubes. Identifying tumors 
by the radiologist to generate tumor signature is simplified 
for spatial-registered hypercubes by using color processing 
previously discussed in an earlier study (25). The clinical 
implementation is non-invasive and reduces possible side 
effects for the patient. 

The eigenvalue filtering and covariance regularization 
processes discussed in this paper are not the only way 
to reduce noise or singularities in the CM (40). The  
other approaches more directly reduce [relative to 
regularization (38)] the difference in the disparity between 
the highest and lowest eigenvalues. Such other approaches 
may generate improvement in correlating CM-based 
approaches with Gleason score and should be investigated.

This study suffers from a number of limitations. 

The patients from this study originated from a single 
institution (NIH). Variations in clinical implementation 
were, therefore, not examined and its effect on this study 
is uncertain. This is a retrospective, not a prospective 
study thereby limiting the conclusions. Although a small 
number of patients were assessed, consecutive patients 
were analyzed and statistically significant P values showing 
potential clinical value were achieved.

Conclusions 

Z-score and SCR using filtered and regularized covariance 
matrices derived from spatially registered MP-MRI 
correlates with Gleason score with statistically significant 
low P values. 
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