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Background: Myelin water imaging (MWI) is powerful and important for studying and diagnosing 
neurological and psychiatric diseases. In particular, myelin water fraction (MWF) is derived from MWI 
data for quantifying myelination. However, MWF estimation is typically sensitive to noise. Improving the 
accuracy of MWF estimation based on WMI data acquired using a magnetic resonance (MR) multiple 
gradient recalled echo (mGRE) imaging sequence is desired. 
Methods: The proposed method employs a recently introduced the multi-channel denoising convolutional 
neural networks (MCDnCNN). Five different MCDnCNN models, denoted as Delevel1, Delevel2, 
Delevel3, Delevel4 and DelevelMix corresponding to five noise levels (Level1, Level2, Level3, Level4 and 
LevelMix), were trained using the data of the first echo of the mGRE brain images acquired from 15 healthy 
human subjects. Using simulated noisy data that employed a hollow cylinder model, we first evaluated the 
improvement in estimating MWF based on data denoised by the five different MCDnCNNs, by comparing 
the MWF maps calculated from the denoised data with ground truth. Next, we again evaluated the 
improvement using real-world in vivo datasets of 11 human participants acquired using the mGRE sequence. 
The datasets were first denoised by five different MCDnCNNs (Delevel1, 2, 3, 4 and DelevelMix), and 
subsequently their MWF maps were calculated and compared with the MWF maps directly calculated from 
the raw mGRE images without being denoised.
Results: Experiments using the simulation data denoised by the appropriate MCDnCNN models showed 
that the standard deviation (SD) of the absolute error (AE) of the derived MWF results was significantly 
reduced (maximal reduction =15.5%, Level3 simulated noisy data, orientation angle =0, all the five 
MCDnCNN models). In the test using in vivo data, estimating MWF based on data particularly denoised 
by the appropriate MCDnCNN models was found to be the best, compared to otherwise not using the 
appropriate models. The results demonstrated that the appropriate MCDnCNN models may permit high-
quality MWF mapping, i.e., substantial reduction of random variation in estimating MWF-maps while 
preserving accuracy and structural details. 
Conclusions: Appropriate MCDnCNN models as proposed may improve both the accuracy and precision 
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Introduction

Myelin water fraction (MWF) derived from quantitative 
myelin water imaging (MWI), is a powerful and important 
magnetic resonance imaging (MRI) method for studying 
and diagnosing neurological and psychiatric diseases such as 
multiple sclerosis (1), schizophrenia (2), Alzheimer disease (3)  
and stroke (4,5). MWF maps are commonly calculated 
based on T2/T2* imaging data acquired using a Carr-
Purcell-Meiboom-Gill (CPMG) sequence or its accelerated 
version, i.e., the gradient and spin echo (GRASE) sequence, 
in which the T2 value of the multicomponent water is 
analyzed (6). Recently, a multiple gradient recalled echo 
(mGRE) sequence (7-9) was developed as an acquisition 
method for MWI data, in which T2* decay signals are 
analyzed for the entire brain. Compared with the CPMG or 
GRASE sequence, the mGRE sequence has the advantages 
of faster acquisition time, lower specific absorption rate, 
shortened first echo time (TE) and echo spacing.

MWF can be measured from mGRE through a complex 
three-pool model (3CCT2*) with each pool representing 
a different water component and a frequency offset term 
added to each of the three components to minimize extra 
frequency shifts that may possibly be introduced. Such 
frequency shifts depend on the angle of the underlying 
neural fibers orientation relative to the main magnetic 
field B0 (9-12). However, the sensitivity and instability of 
multiexponential decay analysis to noise (13), a well-known 
difficulty in MWF estimation (14-16) that will lead to 
inaccuracies in deriving MWF estimates, should be taken 
into consideration. In particular, the sensitivity also makes it 
more difficult to estimate MWF mapping at higher spatial 
resolutions, although higher resolutions may help to treat 
partial volume effect, detect small demyelization lesions 
and practice early diagnosis. The situation can be eased if 
the quantitative susceptibility mapping (QSM) pipeline is 
employed, for overcoming non-local phase contrast and 
orientation dependence (12). Then the challenges would 
turn to be the issue of signal-to-noise ratio (SNR), due to 

the reduced size of the voxels. To maintain necessary and 
adequate accuracy and precision, noise reduction filters 
should be applied in the stage of data postprocessing 
(8,16,17). However, the conventional linear filtering has a 
number of disadvantages, including introduction of possible 
bias that may lead to inaccurate parameter estimation and 
obscuration of small-scale structures due to partial volume 
effect (18). Although some advanced filters have been 
applied to improve MWF mapping, the performance of 
these advanced filters will decline when dealing with data 
containing moderate levels of SNR, as shown by their 
results (8,10,12).

A new denoising method was recently introduced. It 
was a feed-forward multi-channel denoising convolutional 
neural networks (MCDnCNN), which was originally 
proposed for removing noise from 3D volumes of MRI 
data (19). In contrast to a direct estimation of noise-free 
truth image (i.e., the latent clean image), MCDnCNN 
adopts a residual learning strategy to isolate noise rather 
than the latent clean image from its noisy observation (20).  
In other words, MCDnCNN has been designed so to 
predict the noise at each voxel of the raw image. The 
MCDnCNN has a training mechanism that is faster, 
more stable and more robust for denoising, compared 
to using the traditional 2D denoising network (19). Up 
to date, MCDnCNN has outperformed all other tested 
methods in study, including non-local means and discrete 
cosine transform, in terms of noise reduction and detail 
preservation (19). Moreover, MCDnCNN also performs 
much faster than other state-of-the-art methods for noise 
reduction (19,20). 

Our hypothesis was that MWF calculated from mGRE 
data using the MCDnCNN models corresponding to the 
specific noise level (denoted as appropriate MCDnCNN 
models) should be both qualitatively and quantitatively 
improved over that calculated from noisy MRI data or 
inappropriately MCDnCNN-denoised mGRE data, as the 
appropriate MCDnCNN models should be able to estimate 
the noise more accurately. Our procedure first trained the 

in estimating MWF maps, thereby making it a more clinically feasible alternative.
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five different MCDnCNN models corresponding to four 
specific noise levels and a mixed noise levels using real-
world in vivo brain imaging data acquired at the first TE of 
the mGRE sequence. We also simulated data in the brain by 
applying the hollow cylinder fiber model (HCFM), recently 
proposed by Wharton et al. (21), to generate complex 
signals of the magnitude and phase of the multicomponent 
mGRE data at five different noise levels. Next, we applied 
the five trained MCDnCNN models to denoise the 
simulated signals and in vivo data. Lastly, we analyzed these 
denoised signals of both the simulated and in vivo data 
using the 3CCT2* fitting models (9,12). We examined the 
results against published in vivo MWF results to assess the 
performance of our proposed method.

Methods

The main technique employed for evaluating the 
improvement in estimating MWF in this study was 
MCDnCNN, with the initial susceptibility in the data 
estimated using a method called sparse linear equation 
and least-squares (iLSQR) (22) based on the 3CCT2* 
model. To highlight how MCDnCNN may improve 
the accuracy of estimating MWF maps, we adopted 
two procedures for obtaining MWF maps, one using 
MCDnCNN in the procedure and the other not using it.  
In the former procedure, MCDnCNN was applied to 
obtain denoised magnitude images from original magnitude 
images. Meanwhile, iLSQR was used to obtain QSM 

(i.e., the magnetic susceptibility maps) from the original 
phase images. The denoised images and the QSM were 
synthetized to estimate the decay curves and then to 
evaluate MWF maps using 3CCT2*. The latter procedure 
did the same except for not including a step of using 
MCDnCNN (Figure 1). We will elaborate the details in the 
procedure of using MCDnCNN (Figure 2).

Data acquisition

The T2* imaging data and T1 weighted images were 
acquired on a 3-T MRI scanner (Siemens, Erlangen, 
Germany) with 20-channel radio frequency head-coil at 
Shanghai Key Laboratory of Magnetic Resonance. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). The study was approved by the 
local Ethics Review Board of East China Normal University 
(IRB#HR227-2019). Informed consents were signed by 
26 healthy adult volunteers (mean age 22.81±2.47 years).  
The imaging sequence was a 24-echo 3D gradient recalled 
echo scan with bipolar echo readout using the following 
acquisition parameters in axial plane: first echo time 
(TE1) =2.6 ms and echo spacing time (ESP) =1.50 ms,  
repetition time (TR) =62 ms, flip angle =15°, slice 
thickness =2.0 mm, voxel size =0.9×0.9×2.0 mm3, matrix 
size =288×288×64, bandwidth =870 Hz/voxel and phase 
encoding direction acceleration (GRAPPA) =2, field of view 
(FOV) =256×256×128 mm3. Duration of data acquisition 
was 10 min 42 s. The dimensions of the final images were 
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Figure 1 The general processing flow evaluating MWF in our protocol. The original magnitude images were first denoised using 
MCDnCNN; and its corresponding phase images were used to calculated QSM maps (magnetic susceptibility maps). The denoised images 
and QSM maps were used together to estimate the T2* decay curves and finally to compute the MWF maps based on the 3CCT2* model. 
QSM maps were useful in overcoming non-local phase contrast and orientation dependence. The flow denoted by the dark and red arrows 
represents the procedure of evaluating MWF using MCDnCNN (the first procedure). The flow denoted by blue and red arrows represents 
the procedure of evaluating MWF without using MCDnCNN (the second procedure). MCDnCNN, multichannel version of the denoising 
convolutional neural networks; iLSQR, initial susceptibility estimated by sparse linear equation and least-squares; QSM, quantitative 
susceptibility mapping; 3CCT2*, complex three-pool model; MWF, myelin water fraction.
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288×288×64 without zero-padding. T1-weighted images 
were acquired using a magnetization-prepared rapid 
gradient echo sequence (MPRAGE). The MPRAGE 
parameters were: 192 sagittal slices, TR/TE/inversion time 
(TI) =2,530/2.98/1,100 ms, flip angle =7°, slice thickness/
gap =1/0.5 mm, voxel size =1.0×1.0×1.0 mm3, matrix size 
=256×256×192, FOV =256×256×288 mm3. Duration of data 
acquisition was 6 min 03 s. Foam pads were placed around 
each subject’s head during each scan to minimize head 
motion. When subject motion was observed, the scan was 
repeated.

MCDnCNN

The MCDnCNN proposed by Jiang et al. (19) was 
developed based on a residual network for denoising 3D 
images. The goal of MCDnCNN was to compute the 
noise-free image of a noisy input image. The proposed 
MCDnCNN is a complicated multi-layer residual learning 
network (23), which explicitly fits a residual mapping 
using its deeper network containing multiple layers and 
is easier to optimize all the weights than conventional 
neuron learning (Figure 2). The structure of MCDnCNN 
consists of one input layer of convolution with a rectified 
linear unit (ReLU) (24) as an activation function (19,20), 

eight layers of convolution with batch normalization  
(BN) (25) (a normalization function for each mini-batch 
of the training to speed up training), and finally one 
output layer of convolution. Residual learning and BN are 
introduced to facilitate network optimization and to speed 
up the training process (23,25). The network implicitly 
removes the latent clean image through the 8 hidden layers 
so that an image of noise can be estimated, and the noise-
free image can be generated by subtracting the estimated 
noise image from the original image. 

This network (Figure 2) does not have any max-pooling 
layer, which is a feature reduction facility for identifying the 
most dominant features (26). Therefore, the output layer 
would generate an image of the same size as that of the 
input. For the input layer of convolution with an ReLU, we 
used 64 different kernels of size 3×3×5, whose weights were 
assigned with randomly generated real-values at the start of 
training. The input volume was split into several 3D blocks 
of size X × Y × 5 with a stride of 25 in the XY-plane and 1 in 
the Z-direction, and each individual block was used as input 
to the network to take into consideration the neighborhood 
context of the current slices. Thus, the first layer would 
result in 64 images of the same size for each of the X × Y 
× 5 image patch. Each of the 8 hidden layers employed a 
similar set of 64 individual 3×3×64 kernels while the last 

Figure 2 The network structure of the ten layers of the MCDnCNN learning model. The first layer is the input layer (purple) which 
consists of a convolution layer (blue). Each of the eight hidden layers (yellow) consists of a BN layer (green) and a convolution layer (blue). 
All convolutional layers are to be activated by ReLU (red). The last layer is the output layer (blue) which consists of a convolution layer (blue). 
The lower part in this figure illustrates the internal structures of the input and hidden layers, respectively. The note of ‘3×3×64, 64’ on the 
hidden layers denotes that each hidden layer processes 64 kernels each with an image window of dimensions =3×3×64. S−2 to S+2, a 5-slice 
block from slice location −2 to +2 centering the current slice S (the first to the fifth slice of the five-slice block); 64, number of features; 
3×3×64/3×3×5, size of convolution kernel; Conv, convolution layer; ReLU, rectified linear unit; S, the third (middle) slice of the five-slice 
block; MCDnCNN, multichannel version of the denoising convolutional neural networks; BN, batch normalization.
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output layer employed a single 3×3×64 kernel to continue 
processing the data resulted from the previous layer. Residual 
learning formulation and BN, as two key features (20)  
of this network, were incorporated to speed up training as 
well as to boost the denoising performance. During the 
training process, the averaged mean square error between 
the desired residual image (the noise that we superimposed) 
and the estimated ones (output from the network) from the 
noisy input was applied as the loss function of the networks 
to update and optimize the parameters of the MCDnCNN. 
The original image before noise was superimposed or the 
original noise free volume should be restored after the noise 
at every slice in the entire volume was estimated. 

We trained the MCDnCNN model at four specific noise 
levels and a mixed noise level. The noise took use of the 
standard deviation (SD) of the background in the image 
acquired at the last TE while the signal took use of the 
mean intensity in homogeneous regions of white matter in 
the image acquired at the TE1. The homogeneous regions 
were manually selected within one white matter structure 
visually identified with the biggest size in the image. The 
noise level was then computed as a ratio of noise divided 
by signal, basically a reverse of SNR for the entire mGRE 
dataset. We assumed in this scenario that TE1 images and 
the last TE images of the mGRE data were clean images. 
Then we added a specific level of Rician noise to both the 
first TE and last TE images to get the noised first TE and 
noised last TE images, and next evaluated the noise level 
based on the two noised images. The Rician distribution is a 
function of the underlying magnitude. Thus, adding Rician 
noise is defined as:

( ) ( ) ( )2 2 ; 0,1R r s s s randnδ δ= + × + × =  [1]

where δ is defined as the ratio between the noise value to be 
added and the maximum intensity of the image (such that δ 
=1% means the noise value 0.01 if the maximum intensity 
of image is 1), r and R represent the images (intensity-
normalized) before and after adding the noise, respectively. 
“randn(0,1)” is a function that generates random values 
following a normal distribution (mean =0, SD =1). For 
instance, we added 1% (δ =1%) Rician noise to both the 
first and last TE images to get the noised TE1 images and 
noised last TE images, and thus obtained Level1 defined by 
the ratio of the noise (in the image acquired at the last TE) 
divided by the mean signal intensity (of the image acquired 
at the first TE). The mGRE images at TE1 from human 
volunteers, which was added with the noise at the specific 

noise level, were used for training the MCDnCNN model. 
The SNR of the images at TE1 is typically highest before 
noise is added to the images, thus TE1 images were chosen 
for training the networks while images acquired at other 
echoes were not used for the training. Images of the 15 out 
of the 26 participants were randomly selected to add noise at 
a specific noise level (e.g., Level1, Level2, Level3, Level4, or 
LevelMix) for training the neural network (10 for training 
and 5 for validation). Noise was not added to the rest 11 
participants, and they were used as real-world datasets to 
evaluate the models. In the following text, Level1 (noise 
level =0.0065), Level2 (noise level =0.0113), Level3 (noise 
level =0.0205), Level4 (noise level =0.0293) and LevelMix 
denote the first and last TE images with added Rician noise 
(δ) at levels of 1%, 3%, 5%, 7% and also 1–7% (mixed), 
respectively; and Delevel1, Delevel2, Delevel3, Delevel4 
and DelevelMix denote the MCDnCNN denoising models 
corresponding to the noise levels, respectively. It should 
be noted that LevelMix actually added noise to each image 
with noise levels ranging from 1% to 7%. And we randomly 
picked the same number of patches with the other four 
noise levels to train the DelevelMix (19).

For training the models to denoise Rician noise at a noise 
level, patch size X × Y × 5 was set to 60×60×5, and thus 
for the 15 training datasets with the sliding window, about 
150,000 patches were obtained to train the corresponding 
model. The Adam’s gradient-based stochastic optimization 
algorithm was used to update the weights (27), which 
took the averaged mean square error as our cost function. 
To speed-up the optimization process, the windowed 
sub-images were fed to the training model using a so-
called mini-batch strategy, a well-established method for 
addressing stochastic optimization problems (28). The 
mini-batch size was set to 64 patches as allowed by our 
hardware to take full use of the GPU. The MatConvNet 
software package (29) was employed for the training of the 
MCDnCNN models. The training processes converged 
rapidly within only about 50 iterative epochs, in which the 
learning curves decayed exponentially and quickly moved 
from along 1e−1 to 1e−4. Each training took about 8 h on a 
personal computer equipped with an NVIDIA GeForce 
GTX 1050 when the computer was fully dedicated. 
Training to meet clinical needs on the fly was not practical.

MWF mapping

Signal processing and QSM
After applying channel-wise inverse Fourier transform to 
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obtain the coil magnitude and phase images, followed by 
combining coil images to obtain robust echo magnitude and 
phase images, the mGRE volumes at odd-numbered echoes 
of TE1, 5, 9, 13, 17 and 21 in the sequence with an interval 
of four ESP’s (i.e., 1.5 ms × 4=6 ms) were used for QSM 
calculation. The ESP was chosen so just to follow popular 
acquisition protocols for QSM (12). The magnitude image 
of the first echo was adopted to form a mask using the BET 
tool provided as part of FSL software package (https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/). The mask was then binarized. 
STI Suite V3.0 (https://people.duke.edu/_cl160/) was used 
to calculate QSM and by the way handled susceptibility 
maps. In particular, 3D V_SHARP (for removing the 
background phase) and iLSQR (22) in the STI Suite were 
used to generate 3D susceptibility maps. 

Signal synthetization
To reduce the influence of non-local magnetic fields, we 
computed quantitative susceptibility maps based on the 
phase information of the tissue. The susceptibility maps 
were subsequently used to estimate frequency shift to 
overcome drawbacks known in the procedure working 
directly with tissue phase (12) using:

 

2
0γBf χ
π

∆ =  [2]

where χ denotes the magnetic susceptibility, whose value can be 
estimated using the STI Suite pipeline, γ is the gyromagnetic 
ratio of hydrogen and B0 =2.89 T (for the nominally 3 T 
Siemens scanner) is the strength of the static magnetic field 
(30-32). Eq. [2] was particularly tailored for the current study 
as it may minimize the impact from the background field and 
preserve the local field introduced by the local underlying 
tissue and it was regarded as a denoising operation for the 
phase (12,33). Subsequently, the voxel-wise corrected version 
of the complex signal Sm(t) at each TE time point t can be 
obtained using magnitude Am and frequency shift Δfm:

 ( ) ( ) 2 m-j π f t
m mS t = A t e ∆  [3]

where, m denotes the ordinal number of TE, i.e., TE1, 
TE2, …, and so on and forth. In accordance with previous 
studies (12), compartments of the complex signal were 
modelled using the complex three-pool model {Eq. [4]} for 
the mGRE T2* data (3CCT2*): 

where MW = myelin water, AW = axonal water, EW = 
extracellular water; A’s and f’s respectively represent signal 
magnitudes and frequency offsets in each pool, and φ0 is 
the initial phase offset. Following the outcomes of our 
experiments and those from previous published reports, the 
searching boundaries and initial values of each variable in 
Eq. [4] were set according to those in the literature (9,12) 
assuming no background components in the frequency 
terms. The searching boundaries of AMW, AAW and AEW were 
from 0 to 2 times of the magnitude of the complex signal 
at the first echo (|S1|) while the initial values were set to 
0.1×|S1|,0.3×|S1| and 0.6×|S1|, respectively. The range 
of T2* of MW was limited to between 3 and 25 ms while 
the initial value was set to 10 ms. The ceiling and floor 
values of T2* of axonal water and extracellular water were 
25 and 150 ms, while the initial values were set to 64 and 
48 ms, respectively. The range of fMW was −75 to +75 Hz  
while the initial value was set to 5 Hz. The searching 
boundaries of fAW and fEW were −25 to +25 Hz and the initial 
values were set to 0. The upper and lower values of the last 
term, φ0, were −π to +π while the initial value was the angle 
of the signal of the first echo. All the searching boundaries 
and initials were consistent with those in the reference (12).

After the magnitudes of each myelin component, i.e., 
AMW, AAW, AEW, in Eq. [5] were estimated, the MWF can be 
calculated as the fraction of MW over the total water signal 
amplitude:

 ( )MW MW AW EWMWF = A / A + A + A  [5]

The MWF values were quantified based on imaging data 
before and after denoising, respectively. 

Data simulation and corresponding numerical analysis

A HCFM was used in the simulation. T2* components were 
generated for MW , axonal water, and extracellular water, 
with relaxation times for data simulated at 3 T equal to 
10, 64, and 48 ms (9), respectively. The percentages of the  
3 components in the brain were set as 12%, 38% and 50% 
(9,34). A total of 290,000 MWF values of these components, 
ranging randomly in the scope of 5–18% (MWF =5–18%), 
were simulated to reflect a range of myelin fraction from 
low to high. The values of the three pools, MW, axonl water 
and extracellular water varied with MWF and they summed 

 
( ) ( ) ( ) ( )2, 2, 2, 0

1/ 2 1/ 2 1/ 2MW MW AW AW EW EWT j f t T j f t T j f t j
MW AW EWS t A e A e A e eπ π π ϕ

∗ ∗ ∗− + − + − + = + +    [4]

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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up to 100%, mimicking the real cases in the in vivo data. 
We calculated a white matter mask of MWF map using 
an in vivo brain dataset and assigned the simulated MWF 
values to the voxels within the masked area. We sorted and 
relocated the simulated MWF values within the masked area 
so that the distribution of the MWF values was consistent 
with that of the in vivo brain. The manufactured MWF map 
was to be used as a ground truth later in our procedures 
for validating the calculated MWF maps generated based 
on MCDnCNN-denoised data. The frequency offsets for 
each of the three-pool components were calculated using a 
simplified 1D expression of the HCFM model (21) with an 
orientation setting of five different angles ranging from 0 to 
π/2 with an incremental step of π/8. 

The HCFM was used to predict average frequency 
perturbations (Δf) in each radial compartment [see (21) for 
a detailed derivation]. According to HCFM, the frequency 
shift of myelin water (fMW) can be expressed as follows: 

 

2

0
2

2
2 2

1cos
2 3

2 1 1 3sin ln
2 3 4 2

I

MW
i oA

o i i

E
Bf

r r
r r r

χ θ
γ
π χ θ

  − +    =      + − + −      −     
 [6]
where γ represents the gyromagnetic ratio and θ the angle 
between the orientations of the local fiber bundles and 
the magnetic field B0. The following parameters were 
used to calculate the frequency offset of MW: isotropic 
susceptibility (χI) =−100 ppb; anisotropic susceptibility (χA) 
=−100 ppb; chemical exchange (E) =20 ppb; g-ratio (ro/ri 
where ro: outer radius and ri: inner radius) =0.8; and B0 =3 T 
(9,35). Complex signals were generated for each orientation 
with the 24 echoes, TE1 =2.6 ms and ESP =1.5 ms.  
Rician noise (δ) was added only in magnitude images at 5 
different levels 1%, 3%, 5%, 7% and also 1–7% (mixed), 
which corresponded to Level1 (noise level =0.0065), 
Level2 (noise level =0.0113), Level3 (noise level =0.0205), 
Level4 (noise level =0.0293) and LevelMix, respectively, as 
mentioned earlier.

The simulated signals were then processed and analyzed 
following the procedures as previously described in the text, 
resulting in two versions, i.e., denoised by MCDnCNN 
or not denoised. Simulated data at every noise level were 
denoised by all five MCDnCNN models. For instance, the 
data at noise Level1 were denoised by Delevel1, Delevel2, 
Delevel3, Delevel4 and DelevelMix, respectively. To 
determine the acceptable level of mismatched noise, we also 

conducted an additional experiment. We chose to use the 
simulation data at Level2 (noise level =0.0113) and Level3 
(noise level =0.0205) with an orientation angle of π/2 (the 
myelinated fibers were perpendicular to B0 direction). The 
increments of adding Rician noise were ±0.25%, ±0.5% 
and ±0.75%, and the corresponding noise levels were also 
calculated, respectively. Delevel2 and Delevel3 were used 
to denoise the corresponding noisy images, respectively. All 
the results were then fitted using the complex three-pool 
model to calculate different versions of MWF maps. To 
demonstrate the effect of using MCDnCNN, the mean and 
SD of the absolute error (AE) between the calculated MWF 
(either before or after the denoising) and the ground truth 
MWF were computed. All simulations were performed 
within MATLAB (Matlab R2018b, The MathWorks Inc., 
Natick, MA, USA).

Analysis of in vivo data

T2* decay curves were first corrected using the corrected 
phase information and the original data. MWF maps were 
then calculated using the complex three-pool model. The 
same also applied to the mGRE data that were already 
denoised using MCDnCNN, so that another set of T2* 
decay curves and MWF maps were obtained. The 3CCT2* 
model is sensitive to noise. To explore the sensitivity of 
3CCT2* to noise and the effectiveness of the appropriate 
MCDnCNN models to obtain the MWF values, one 
original in vivo dataset was picked randomly. In the process 
of denoising, the noise level of the data was calculated and 
the five MCDnCNN models were applied to this dataset. 
At last, the four denoised T2* decay curves were obtained 
and compared with the T2* decay curves estimated based on 
the data without being denoised. To visualize the results in 
a more intuitive and informative way, we randomly sampled 
thirty voxels for reference from the 3D mGRE maps to 
illustrate the sensitivity and effectiveness. Meanwhile five 
versions of the denoised MWF were computed by 3CCT2* 
and compared with the MWF values calculated based on 
the data without being denoised (30 voxels for reference, 
two sample t-test, P<0.05, uncorrected).

All 11 subjects were repeated following the same 
procedures that calculated noise level and computed MWF 
values before and after denoising. Also, to confirm that 
the appropriate MCDnCNN models did not affect image 
contrast, we also analyzed contrast-to-noise ratio (CNR) of 
the data before and after denoising (36). Five regions-of-
interest (ROIs) in the brain of each of the 11 subjects were 
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selected to perform statistical comparisons of the MWF 
values in terms of mean and SD (two sample t-test, P<0.05, 
uncorrected). To examine the effectiveness of our method, 
the results were quantitatively validated against those 
published in the literatures (10,12,37). 

Results

Simulation experiments

MWF maps derived from the images denoised by 
appropriate MCDnCNN models [e.g., Level3 (δ =5%) 
should be denoised by Delevel3] exhibited that edges and 
small structures were well preserved and using appropriate 
MCDnCNN models may recover most of the structural 
details from noisy images (Figure 3). Checking against the 
ground truth MWF map, we may see that some of the 
structures were not completely recovered in the maps that 
were calculated based on the data without being denoised 
(e.g., the areas in the green and red rectangles in Figure 3).  
However, the structure in the Level3 data denoised 
by Delevel3 was appropriately preserved or restored. 
Nevertheless, if denoised by inappropriate MCDnCNN 
models, for example, by Delevel1, Delevel2, Delvel4 or 
DelevelMix, the structures in the ground truth indicated 
by the green and red rectangles were hardly recovered 
and the corresponding MWF values appeared to be 
overestimated, too. Furthermore, the mean and SD of AE 
values derived from images denoised using the appropriate 
MCDnCNN models were reduced, compared with those 
derived from the original data before denoising (Tables 1,2).  
In particular, taking the Level3 data (orientation angle 
=0) as an example, we may see that the mean and SD of 
AE values based on the data denoised by Delevel3 (an 
appropriate model) were 0.09739 and 0.07907 whereas 
those derived directly based on the original data were 
higher at 0.1177 and 0.09360, respectively. In contrast, 
the mean and SD of AE values derived from images that 
were denoised using inappropriate MCDnCNN models 
exhibited systematic overestimates and overall larger 
SD values (Figure 3, Tables 1,2). For example, when the 
Level2 data (orientation angle = π/8) were denoised 
inappropriately using Delevel1, the mean and SD of AE 
values derived from Delevel1 were 0.08911 and 0.07253 
whereas those derived from its appropriate Delevel2 model 
were 0.07346 and 0.06010, respectively. Again, it showed 
that using inappropriate models would inappropriately 
overestimate MWF values as the corresponding mean 

values of AE were obviously high.
In addition, the mean and SD of AE values derived 

from data denoised using the general MCDnCNN model 
DelevelMix were smaller than those using the appropriate 
MCDnCNN model at lower noise levels with smaller 
orientation angles. For instance, the mean and SD of the 
AE values derived from Level2 data (orientation angle =0) 
denoised by the appropriate Delevel2 model were 0.07513 
and 0.06069, respectively, whereas those derived from 
images denoised by DelevelMix were 0.06803 and 0.05413. 
These values represented a 9.4% lower mean and a 10.8% 
lower SD of the AE values in using DelevelMix than 
using Delevel2. However, the situation reversed when the 
imaging data contained higher levels of noise and/or larger 
orientation angles, which in reality are more prevail. For 
example, taking the Level2 data with an orientation angle 
= π/2, we resulted in the mean and SD of the AE values 
derived from data denoised by the appropriate Delevel2 
model to be 0.06904 and 0.05412, whereas those derived 
from images denoised by DelevelMix were 0.07350 and 
0.05911, respectively. The values based on using Delevel2 
were 6.1% (mean) and 8.4% (SD) lower than those based 
on using DelevelMix, respectively. 

When the MWF values calculated based on the Level2 
and Level3 data with additionally superimposed noise were 
compared with the MWF values estimated based on the 
corresponding noisy Level2 and Level3 data without the 
added mismatched noise, the maximal mean and SD of the 
AE of the MWF values were 0.0327 and 0.02555 as long as 
the mismatched noises were no more than 0.5% (Table 3). 
However, the results based on an additional 0.75% level of 
mismatched noise were much worse, although the 0.75% 
was just slightly higher than 0.5% (Table 3). Similarly, 
the mean and SD of AE values of the MWF difference 
between the Level2 data denoised by Delevel2 and the same 
Level2 data +0.5% denoised by Delevel2 were 0.02639 and 
0.02039, whereas those between the Level2 data denoised 
by Delevel2 and the same Level2 +0.75% data denoised 
by Delevel2 were much worse at 0.07271 and 0.05656, 
respectively. A mismatch of ±0.5% noise therefore appeared 
to be an acceptable limit for using an appropriate denoising 
model. The results confirmed that the MWF estimates 
using the appropriate models were good and stable, 
because all the noise levels employed here approximated to 
either Level3 or Level2, when the extra noise for testing 
acceptable levels of mismatched noise was not greater than 
0.5%. 
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Figure 3 A comparison of the MWF maps based on the simulation data of Level3 denoised by the five models. A typical slice at the same 
slice location of the five results is displayed. The top row is the ground truth of the MWF map. Figures in panel A from the second row to 
the last row (including the two-small zoomed-in insets) are the MWF maps at the same slice location of the 6 results (2nd row: derived from 
the original raw data without denoising; 3rd–7th rows: derived from the data denoised by the 5 models of Delevel1, Delevel2, Delevel3, 
Delevel4 and DelevelMix, respectively). Figures in panel B from the second row to the last row are AE maps of MWF at the same slice 
location corresponding to those in panel A. Figures in panel C from the second row to the last row are the corresponding AE histograms, 
with the mean and SD of AE values noted in red. Colored bars represent the MWF values. Delevel, the denoising model corresponding to 
the noise level; MWF, myelin water fraction; AE, absolute error; SD, standard deviation. 

Tr
ut

h 
M

W
F

W
ith

ou
t d

en
oi

si
ng

D
el

ev
el

1
D

el
ev

el
2

D
el

ev
el

3
D

el
ev

el
4

D
el

ev
el

M
ix

AE MWF
AE MWF

6×10−4

5×10−4

4×10−4

3×10−4

2×10−4

1×10−4

0×10−4

6×10−4

5×10−4

4×10−4

3×10−4

2×10−4

1×10−4

0×10−4

7×10−4

6×10−4

5×10−4

4×10−4

3×10−4

2×10−4

1×10−4

0×10−4

7×10−4

6×10−4

5×10−4

4×10−4

3×10−4

2×10−4

1×10−4

0×10−4

7×10−4

6×10−4

5×10−4

4×10−4

3×10−4

2×10−4

1×10−4

0×10−4

9×10−4

8×10−4

7×10−4

6×10−4

5×10−4

4×10−4

3×10−4

2×10−4

1×10−4

0×10−4

0        0.05       0.1       0.15      0.2       0.25       0.3      0.35

0        0.05       0.1       0.15      0.2       0.25       0.3      0.35

0        0.05       0.1       0.15      0.2       0.25       0.3      0.35

0        0.05       0.1       0.15      0.2       0.25       0.3      0.35

0        0.05       0.1       0.15      0.2       0.25       0.3      0.35

0        0.05       0.1       0.15      0.2       0.25       0.3      0.35

0           0.05         0.1          0.15          0.2          0.25          0.3         0.35 0                     0.05                     0.1                  0.15

AE histograms

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

Mean ± SD =
0.1248±0.1005

Mean ± SD =
0.1248±0.0998

Mean ± SD =
0.1199±0.0967

Mean ± SD =
0.1069±0.0875

Mean ± SD =
0.1147±0.0935

Mean ± SD =
0.0975±0.0876

A B C



1725Quantitative Imaging in Medicine and Surgery, Vol 12, No 3 March 2022

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(3):1716-1737 | https://dx.doi.org/10.21037/qims-21-404

Table 1 Experiment results (mean AE values) based on each denoising model to denoise simulated datasets at four different noise levels 

Level of noise Level of denoise
Mean of AE (%)

OA = 0 OA = π/8 OA = π/4 OA = 3π/8 OA = π/2

Level1 Noise data 3.87 3.60 6.11 3.68 3.96

Delevel1 3.86 3.59 6.19 3.67 3.97

Delevel2 4.05 3.78 6.56 3.83 4.26

Delevel3 5.43 5.09 7.07 4.88 5.41

Delevel4 6.10 5.73 7.58 5.49 6.20

DelevelMix 3.35 3.36 5.78 3.67 3.97

Level2 Noise data 9.07 9.00 6.62 7.53 7.41

Delevel1 8.99 8.91 6.76 7.46 7.36

Delevel2 7.51 7.35 6.61 6.91 6.90

Delevel3 7.83 7.68 7.11 6.95 7.06

Delevel4 8.10 7.99 7.52 6.93 7.21

DelevelMix 6.80 6.82 6.14 7.13 7.35

Level3 Noise data 11.77 11.95 7.70 10.38 10.16

Delevel1 11.74 11.92 7.72 10.33 10.11

Delevel2 11.16 11.22 7.70 9.65 9.47

Delevel3 9.74 9.60 7.53 8.70 8.69

Delevel4 10.56 10.51 7.55 9.18 9.09

DelevelMix 9.35 9.38 7.21 9.86 10.15

Level4 Noise data 12.58 12.88 8.72 11.99 11.76

Delevel1 12.56 12.86 8.72 11.97 11.73

Delevel2 12.40 12.61 8.46 11.48 11.23

Delevel3 12.04 12.17 8.27 10.95 10.73

Delevel4 11.26 11.35 8.11 10.15 10.07

DelevelMix 10.98 11.01 8.34 11.56 11.76

Comparison of the mean of the AE (in unit of percentages) between the derive the MWF from the five denoising models and the ground 
truth MWF based on all the 290,000 samples and their noisy versions with the five configurations of orientation angle. The mean of 
the AE values of the MWF from images denoised using the appropriate denoising models were reduced, compared with those of the 
MWF derived from the original data without being denoised. The experiment results showed that the appropriate denoising models 
outperformed the inappropriate denoising models [except the special case of using the DelevelMix models at lower noise level(s) with 
lower orientation angles] with lower mean of AE values in the experiments. Level1 (noise level =0.0065), Level2 (noise level =0.0113), 
Level3 (noise level =0.0205) and Level4 (noise level =0.0293). AE, absolute error; OA, orientation angle; Delevel, the denoising model 
corresponding to the noise level; MWF, myelin water fraction.

In vivo imaging

The data denoised using MCDnCNN models appeared 
to have helped reduce the disturbance caused by noise in 
estimating MWF (Figure 4). For example, the statistics 
based on the raw dataset (noise level =0.0197, corresponding 

to Level3) showed much larger variations than that based 
on the corresponding version after denoising (Figure 4). 
Randomly sampled a voxel from this in vivo image, we see 
that the T2* curve of the denoised voxel (the red curve) 
was very well fitted to the ideal pattern (the blue curve) 
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Table 2 Experiment results (SD) based on each denoising model to denoise the simulated datasets at four different noise levels

Level of noise Level of denoise
SD of AE (%)

OA = 0 OA = π/8 OA = π/4 OA = 3π/8 OA = π/2

Level1 Noise data 3.01 2.86 3.55 2.37 2.42

Delevel1 2.97 2.82 3.59 2.36 2.42

Delevel2 3.06 2.91 3.92 2.62 2.75

Delevel3 4.26 4.08 4.35 3.94 4.06

Delevel4 4.79 4.60 4.83 4.60 4.81

DelevelMix 2.42 2.43 3.53 2.33 2.42

Level2 Noise data 7.44 7.33 5.04 6.14 5.96

Delevel1 7.35 7.25 5.03 6.06 5.89

Delevel2 6.07 6.01 4.93 5.50 5.41

Delevel3 6.33 6.26 4.96 5.56 5.52

Delevel4 6.68 6.57 5.12 5.65 5.70

DelevelMix 5.41 5.41 4.36 5.72 5.91

Level3 Noise data 9.36 9.37 6.37 8.99 8.88

Delevel1 9.32 9.32 6.37 8.94 8.83

Delevel2 8.88 8.85 6.11 8.27 8.17

Delevel3 7.91 7.89 5.76 7.40 7.33

Delevel4 8.46 8.41 5.91 7.87 7.78

DelevelMix 8.29 8.29 5.63 8.69 8.85

Level4 Noise data 10.18 10.31 7.41 10.50 10.48

Delevel1 10.15 10.29 7.41 10.49 10.45

Delevel2 9.90 10.01 7.11 10.01 9.93

Delevel3 9.58 9.67 6.88 9.57 9.44

Delevel4 9.06 9.17 6.51 8.89 8.79

DelevelMix 9.95 9.99 6.95 10.37 10.46

Comparison of the SD of the AE (in unit of percentages) between the derived MWF from the five denoising models and the ground truth 
MWF based on all the 290,000 samples and their noisy versions with the five configurations of orientation angle. The SD of the AE values  
of the MWF from images denoised using the appropriate denoising models were reduced, compared with those of the MWF derived 
from the original data without being denoised. The results showed that the appropriate denoising models outperformed the inappropriate  
denoising models [except the special case of using the DelevelMix models at lower noise level(s) with lower orientation angles] with lower 
SD of the AE values in the experiments. Level1 (noise level =0.0065), Level2 (noise level =0.0113), Level3 (noise level =0.0205) and Level4 
(noise level =0.0293). SD, standard deviation; AE, absolute error; OA, orientation angle; Delevel, the denoising model corresponding to the 
noise level; MWF, myelin water fraction.

whereas that based on the raw data without being denoised 
(green curve) showed much larger variations fluctuating 
away from the ideal curve (Figure 4A). When the statistics 
was based on the collection of 30 randomly selected voxels 
from this in vivo image, we see that the MWF values of 

their denoised version (the red circles) were lower in 
both mean and SD than those of the voxels without being 
denoised (the green circles) (Figure 4B). However, as the 
noise level was 0.0197, Delevel3 appeared to be the most 
appropriate denoising model for this particular dataset, 
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and the voxels and the results based on Delevel3 were 
indeed the smoothest and significantly improved (two 
sample t-test, P=0.0072), whereas the results generated by 
Delevel1, Delevel2, Delevel4 and DelevelMix were not as 
good due to inappropriateness of using the models. In fact, 
the inappropriate models may lead to either an over- or an 
under-estimation (Figure 4), as discussed shortly after in the 
Discussion. The mean and SD of CNR before and after 
denoising were 45.96±22.56 and 48.76±23.33, respectively, 
demonstrating no difference (two sample t-test, P=0.7779), 
which indicated that Delevel3 did not alter the image 
contrast.

The comparison of four slices of MWF images based 
on a randomly picked raw dataset (noise level =0.0197, 
corresponding to Level3), before and after denoising 
using the five MCDnCNN models showed that there was 
substantial random variation in MWF maps derived from 
the noisy images, as well as artifacts known as “voids” 
(voxels with very low-MWF values), as indicated by the red 
rectangle and red arrow in Slice3 and red arrow in Slice2 
(Figure 5). After denoising by the MCDnCNN models, 
the MWF values appeared to have removed most of the 

artifacts, with those random variations removed and even 
the voids filled (Figure 5, Slice3 and Slice2, Delevel3). In 
contrast, the MCDnCNN models were also able to adjust 
those extraordinarily high MWF values to more appropriate 
ones (Figure 5, white arrow in Slice3). Moreover, the 
MWF maps calculated from the MCDnCNN-denoised 
images exhibited preservation of edges and small structures 
(Figure 5, green rectangle in Slice3). The results also 
demonstrated that all the 5 denoising models unanimously 
reduced random variation although the level of reduction 
was different. In addition, the MWF values obtained from 
the noisy images were generally higher than those obtained 
from the denoised images. The computation times required 
to denoise the entire dataset using MCDnCNN was about 
25 s.

The average noise level of all the 26 subjects were at a 
mean noise level and SD of 0.01968 and 0.00067 while the 
average noise level of the 11 subjects for evaluation were at 
a mean noise level and SD of 0.0202 and 0.000485, which 
actually corresponded to Level3 (noise level =0.0205). The 
differences between the MWF values of the five ROIs based 
on data either denoised by the five respective MCDnCNN 

Table 3 The mean and SD of the AE of comparing the calculated MWF of the data with additional mismatched noise against the calculated 
MWF of the denoised Level2 and Level3 data with an OA = π/2, respectively 

Denoising model Reference Rician noise (δ/noise level) Increments of Rician noise (δ) Noise level Mean of the AE SD of the AE

Delevel2 Level2 (3%/0.0113) +0.25% 0.0119 0.02147 0.01656

+0.50% 0.0133 0.02638 0.02038

+0.75% 0.0142 0.07270 0.05656

−0.25% 0.0101 0.0230 0.01780

−0.50% 0.0093 0.02833 0.02181

−0.75% 0.0088 0.07780 0.06000

Delevel3 Level3 (5%/0.0205) +0.25% 0.0213 0.02594 0.02029

+0.50% 0.0225 0.03232 0.02521

+0.75% 0.0235 0.06474 0.05036

−0.25% 0.0193 0.02710 0.02125

−0.50% 0.0182 0.03270 0.02555

−0.75% 0.0171 0.08810 0.06892

The results were based on the 290,000 samples. When the additional level of noise for testing mismatched level of noise was less than 
0.5%, the greatest mean and SD of the AE values were 0.03270 and 0.02555, respectively, representing a maximal average of extra MWF 
variation or error no more than 3.27% in estimating the MWF values. Therefore, 0.5% appeared to be an acceptable level of mismatched 
noise. Level2 (noise level =0.0113), Level3 (noise level =0.0205). SD, standard deviation; AE, absolute error; MWF, myelin water fraction; 
OA, orientation angle; Delevel, the denoising model corresponding to the noise level. 
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Figure 4 Illustration of the sensitivity of T2* to noise and the effects of the five MCDnCNN models on the T2* decay curve. Panel A 
shows signal decay as a function of TE at one typical voxel before (green line) and after (red line) denoising. The MWF values (shown in 
the upper-right rectangular boxes) of the randomly selected voxel were derived from the 5 denoising models (Delevel1, Delevel2, Delevel3, 
Delevel4 and DelevelMix), respectively. It appears that as the denoising level increased (Delevel1 to Delevel4), the T2* curve became 
smoother and smoother. Panel B displays the MWF values of 30 randomly selected voxels derived from data before (green circle) and after (red 
circle) denoising by the 5 models (Delevel1, Delevel2, Delevel3, Delevel4 and DelevelMix), respectively. It appears that as the denoise level 
increased (Delevel1 to Delevel4), the mean and SD of MWF values became smaller. Note that the overlap of the red and green curves using 
the DelevelMix model in panel A, and the close matches between the red and green circles in the corresponding figure in panel B (compared 
with the content in panel B), indicating that the improvement by DelevelMix was indeed minimal. red line, decay curve after denoised; green 
line, the original decay curve; blue line, complex three-pool model fitted decay curve after denoised; P, P value of two sample t-test between 
the 30 original and 30 denoised data samples. Delevel, the denoising model corresponding to the noise level; MWF, myelin water fraction; 
SD, standard deviation; MCDnCNN, multichannel version of the denoising convolutional neural networks.
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Figure 5 A comparison of four typical slices of MWF maps obtained from an example brain before and after denoising using five 
MCDnCNN denoising models. The first column to the last column stand for MWF maps at the same 4 slices location of the 6 data groups 
(the original data set without denoising and the 5 models of Delevel1, Delevel2, Delevel3, Delevel4 and DelevelMix). The two insets 
beneath Slice3 are the zoomed-in views corresponding to the two rectangular areas outlined in Slice3. Appropriate MCDnCNN models 
may reduce random variation substantially, fill voids (red rectangle and red arrows), preserve small structural details of the white matter (green 
rectangle) and correct the overestimated MWF values in some areas (white arrow). The colored bar codes the MWF values from 0% to 35% 
in the figures. The direction of B0 field was perpendicular to the axial plane (i.e., the view plane in the current case). Delevel, the denoising 
model corresponding to the noise level; T1W, T1-weughted imaging; MWF, myelin water fraction; MCDnCNN, multichannel version of 
the denoising convolutional neural networks.
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models or on data without being denoised were compared 
(Figure 6). We found that the MWF values derived from 
data without being denoised were not significantly different 
from the MWF values obtained from the Delevel1 images 
except for the forceps major, but were significantly different 
from the MWF values obtained from the other three 

models, i.e., Delevel2, Delevel3 and Delevel4 (two-tailed 
t-test with P<0.05). In addition, the MWF values obtained 
from the Delevel3 were all lower than those obtained from 
the noisy images. We compared our MWF results in the 
ROIs (Table 4) with those in the literatures (10,12,37) and 
found that for all the ROIs with Delevel3, the results from 
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this current study using the MCDnCNN model were 
comparable to those in (12) and were the most closely 
approximated among all the results. Moreover, the SD of 
the Delevel3 results was the smallest.

Discussion

Estimating MWF is a challenging work, as it involves 
dealing with both noisy imaging data and complex data 
models. MCDnCNN appears to be able to address the 
challenge quite well, which may significantly enhance the 
quality of deriving MWF maps from mGRE imaging data. 
Our numerical analysis demonstrated markedly reduced 
AE in MWF maps calculated based on data denoised by 
an appropriate MCDnCNN model as compared to noised 
images (Figure 3, Tables 1,2). Furthermore, analysis using 
in vivo data showed that estimation of MWF was markedly 
improved through use of the appropriate MCDnCNN 
models (Figures 4-6). Indeed, our results indicated that 
MWF using MCDnCNN benefits the estimation of MWF 

maps in preserving anatomic details and in delineation 
of local myelin patterns as compared to results obtained 
directly from noisy imaging data. 

The general applicability of the MCDnCNN models 
has been validated using different MRI datasets (19), that 
MCDnCNN is able to estimate any additional noise (e.g., 
Rician noise) superimposed onto the original image. In 
the subsequent process of denoising, the original image 
will be treated as a clean image, even if it appears noisy. 
Previous papers reported that a MCDnCNN could 
denoise different data bearing the same noise distribution 
(19,22). The general applicability is correlated to residual 
learning formulation and BN, which are two key features 
of MCDnCNN differentiating it from other types of deep 
leaning networks (19,22). The residual learning formulation 
is adopted to learn a residual mapping with the operations 
in the hidden layers but not to learn a mapping function to 
predict the latent clean image (20,38,39). This makes the 
inputs to each next layer specific-noise-like distributed, so 
that the inputs to the next layers are less and less correlated 

Figure 6 In vivo results. Mean and SD MWF values calculated in five different ROIs. The differences of MWF values of the five ROIs 
between data without denoising and data denoised by the five MCDnCNN models were compared (two-sample t-test). The vertical axis 
indicates the MWF values, and the horizontal axis indicates the 6 data groups (the original data set without denoising and the 5 models of 
Delevel1, Delevel2, Delevel3, Delevel4 and DelevelMix). *, P<0.05; **, P<0.001. Delevel, the denoising model corresponding to the noise 
level; MWF, myelin water fraction; ForcepsMajor, part of Forceps Major; ForcepsMinor, part of Forceps Minor; GCC, part of genu of 
corpus callosum; IC, part of internal capsules; SCC, part of splenium of corpus callosum; SD, standard deviation; ROIs, regions-of-interests; 
MCDnCNN, multichannel version of the denoising convolutional neural networks.
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with the latent image content (20). For instance, in Rician 
denoising the residual image is associated with the Rician 
distribution instead of the distribution of the latent clean 
images. Although the contrast and noise level change 
significantly depend on TE, the noise distribution is 
typically stable across the entire decay along all the TEs (40).  
After training, the network would be able to estimate the 
noise in each TE image. Thus, the contrast and noise 
level would have a less impact on denoising while the 
denoising model is appropriate. Therefore, MCDnCNN is 
suitable for denoising the images at each TE of the mGRE 
datasets. Using residual learning, we aimed to learn the 
noise distribution for obtaining the latent clean images 
but not directly the distribution of the latent clean images. 
However, we should try other powerful networks in the 
future, such as the U-net (41), to predict the distribution of 
latent clean images directly to make a comparison with our 
current work. In addition, training the model using clean 
mGRE data is certainly preferred, whenever the scanning 
technology of acquiring clean mGRE data becomes 
available. We expect a comparison based on such a model 
can be done with our work in the near future.

Simulations were conducted using a hollow cylinder 
model that incorporated susceptibility anisotropy fiber 
orientation dependencies. We have seen that appropriate 

MCDnCNN models generated smaller AE in MWF maps 
than inappropriate MCDnCNN models did (Figure 3,  
Tables 1,2). Moreover, MWF estimation is sensitive to 
noise and denoising levels. MWF values derived from 
data treated by inappropriate MCDnCNN models were 
always overestimated or underestimated. MWF values 
derived from data without being denoised had the same 
issue (Figure 6). The MWF values at voxels within the five 
ROIs demonstrated significant difference between the data 
with and without denoising. This may be attributed to the 
complexity of fitting the 3-pool model with ten unknown 
variables to a decay curve based on the mGRE data of 24 
echoes, however, within only a limited range of TEs, which 
is actually an inherently ill-conditioned problem (42).  
Consequently, the calculation may frequently fall into local 
minima and thus became sensitive to noise in fitting the 
curve. However, the results in the experiment based on 
simulation data denoised by the appropriate MCDnCNN 
models met our expectation that the MWF values should 
fall within 5–18%. Moreover, the results in the experiments 
based on in vivo  data denoised by the appropriate 
MCDnCNN models were generally in good agreement with 
those previously reported in the literature (Table 4). The 
observation showed that using the appropriate denoising 
models may effectively alleviate the ill-conditioned 

Table 4 ROI analysis results (MWF) of the in vivo data, whose noise level was approximately at Level3 (noise level =0.0205) 

Method ForcepsMajor ForcepsMinor GCC SCC IC

Original data (no denoising) 12.18±1.40 13.19±3.60 17.36±4.46 19.09±2.63 12.73±3.1

Delevel1 10.64±1.96 14.55±3.77 17.35±4.64 17.36±3.17 10.64±4.57

Delevel2 10.73±1.74 10.36±3.23 14.91±4.48 16.27±2.97 10.91±2.66

Delevel3 10.70±1.19 9.82±2.09 15.00±3.13 15.82±2.48 10.55±2.62

Delevel4 10.55±1.75 7.91±2.47 13.18±4.00 16.18±2.84 6.64±2.73

DelevelMix 10.49±2.11 13.58±3.53 15.88±4.83 17.98±2.99 11.21±4.80

Wu et al. (12) 11.96±0.84 9.27±1.17 14.01±1.68 11.99±1.05 9.33±1.04

Alonso-Ortiz et al. (10) 7±3 11±7 15±7 21±3 –

Whittall et al. (37) 10.11±0.51 8.40±0.89 9.86±0.96 13.05±0.96 15.00±0.95

In the comparison of MWF values (in unit of percentages) in the five white matter ROIs between the results using our proposed method  
and previous reported results, the results of Delevel3 were the optimal. In the five ROIs, the mean values of MWF based on data  
denoised by Delevel3 were very closer to those previous reported in the literatures (the last three rows), and the corresponding SD values  
of the MWF were also smaller. Delevel3 appeared to be the optimal denoising model for the in vivo datasets that corresponded to  
Level3. Delevel1 (noise level =0.0065), Delevel2 (noise level =0.0113), Delevel3 (noise level =0.0205) and Delevel4 (noise level =0.0293). 
ROI, regions-of-interest; MWF, myelin water fraction; ForcepsMajor, part of Forceps Major; ForcepsMinor, part of Forceps Minor; GCC, 
part of genu of corpus callosum; SCC, part of splenium of corpus callosum; IC, part of internal capsules; Delevel, the denoising model 
corresponding to the noise level.
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problem. In fact, MCDnCNN was designed to predict 
the residual images (noise), i.e., the difference between 
the noisy observation and the latent clean image (20),  
thus adopting MCDnCNN was expected to remove the 
noise from the input data to avoid the aforementioned ill-
conditioned problem. In other words, MCDnCNN may 
learn the pattern of the noise from the input data. The 
noise of the same pattern can therefore be removed from 
the mGRE data at each TE map, yet, without decreasing 
the resolution of the images.

The MWF values derived from the denoised in vivo data 
treated by the MCDnCNN models agreed well with the 
results derived from the data in the simulation experiments, 
whenever an appropriate denoising model was applied 
in accordance with the noise level of the corresponding 
dataset .  It  infers that to avoid overestimating or 
underestimating MWF in the in vivo data, we must first 
estimate the noise level of the data, and then particularly 
choose the Delevel model that is appropriate for the 
noise level of the data. In Figure 5, we see that using an 
appropriate MCDnCNN model (i.e., Delevel3) may 
improve the quality of MWF mapping, including filling the 
voids, reducing over-estimation and preserving structural 
details. Although the void (red rectangle in Slice3; Figure 5)  
was at  the boundary of  white matter  adjacent to 
neighboring gray matter, which is visible better in T1-
weighted image of the same subject, myelin component 
was expected. Similar but more convincing evidence is 
presented at the tips of the red arrows in Figure 5 on both 
Slice2 and Slice3. The areas pointed by the white arrow 
in Slice3 contained lots of myelinated fiber bundles. 
However, most of these fibers were approximately parallel 
or perpendicular to the B0 direction in our case (B0 was 
perpendicular to the axial plane in Figure 5). Previous 
studies reported that the angle between the myelination 
fiber bundles and the B0 direction will affect the accuracy 
of estimating MWF (9,10,12), just like what we have seen 
in our experiments using the simulated data. In line with 
the findings in these papers, the myelin components in the 
fiber bundles that were either parallel or perpendicular to 
the B0 direction would achieve lower SD in estimating the 
MWF values. According to the latest research, the MWF 
value range in this portion of the fiber bundles in the brain 
is about 9–15% (43), and our results of the data before 
denoising were obviously higher while the results of the 
data after denoising by Delevel3 were consistent with the 
reported in the literature. Therefore, we reasonably believe 
that our results showed an improvement of accuracy in 

MWF estimation. 
In contrast, the other four denoising models (Delevel1, 

Delevel2, Delevel4 and DelevelMix) performed poorly. 
For example, the same data denoised by the four models 
failed to estimate meaningful MWF values to fill the voids 
(Figure 5, areas at the red arrows in both Slice2 and Slice3). 
And in some areas, data denoised by Delevel1, Delevel2 
and DelevelMix resulted in MWF values that were 
obviously too higher than the reported range (Figure 5,  
areas indicated by the white arrows), while data denoised 
by Delevel4 resulted in MWF values that were obviously 
lower than the reported range (Figure 5). Moreover, 
extreme results appeared in the ROI analysis of the data 
denoised by Delevel1 and DelevelMix that, for example, 
the mean of MWF values in the forceps minor were overly 
higher than those derived from original data, which were 
already higher than the reported results (Table 4) (12,35). 
Thus, the inappropriate models led to denoised data that 
turned out either an over- or an under-estimation of MWF 
values. 

Checking against the corresponding T1-weighted 
image (last row, Figure 5)  in which the structural 
boundaries are more intuitive, we may see that the small 
structural details in white matter were well preserved in 
the data denoised by Delevel3 (Figure 5, green rectangle 
in Slice3). Yet, we noticed that some structures, such as 
the genu in the frontal lobe, disappeared in the results 
based on the data denoised by the MCDnCNN models. 
The disappearance here was also observed in data of 
high SNR acquired using an ultra-high field strength 
at 7 T (10). In fact, investigators speculated that such 
disappearance is not caused by denoising but is related to 
B0 inhomogeneity (8,17). Our main purpose in the current 
work was to study the benefits of employing appropriately 
denoised data in MWF estimation, however, denoising 
cannot correct artifacts caused by B0 inhomogeneity. 
The experiments have shown that the mean values of the 
calculated MWF values based on data denoised using the 
appropriate models were generally in good agreement 
with those previously reported in the literature (Table 4). 
However, the SD values of the MWF, especially in the 
genu of corpus callosum, were slightly higher than those 
reported, although they were still within the acceptable 
range according to Alonso-Ortiz’s report (44). We 
speculate that this phenomenon was due to a higher spatial 
resolution, and thereby a reduced SNR and inherently the 
aforementioned issue of ill-conditioned problem. Further 
experiments and analyses would be necessary to double 
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check this speculation. 
We have seen that the MCDnCNN models may permit 

substantially improved quality of MWF maps derived 
from mGRE imaging datasets. Employing MCDnCNN 
models has a number of advantages. First of all, significantly 
improved computational efficiency: MCDnCNN took only 
about 25 s to denoise an entire series of brain volumes, 
whereas few minutes were typically needed in denoising 
such a series of brain volumes using conventional methods 
(19,45,46). Second, quality improvement: employing 
the appropriate MDCnCNN models may well preserve 
brain details and image resolution. Third, convenience 
in training this network (19): the implementation of the 
network and its training are technically straightforward, 
which rely on only one single user-defined parameter, i.e., 
the noise level, defined as the noise at the last TE divided 
by the mean signal at the first TE. However, an appropriate 
MDCnCNN model suitable for this noise level must 
be used in this scenario, because using an inappropriate 
model will lead to an overestimation or underestimation, 
as demonstrated in the experiments. Previous papers 
smoothed the images using a non-local means filter (47) 
or an anisotropic diffusion filter (ADF), but the denoising 
parameter was determined by the SD of the noise in the 3D 
volumetric image acquired at the first echo (48). However, 
in the denoising practice, we noted that the T2* decay 
curve typically had larger deviation in the last TE images 
(Figure 4), making the data of the last TE image relatively 
more seriously biased. To effectively control and reduce 
such deviation and bias, and subsequently to maximize 
the tolerance of noise deviation in different TE images, 
we used only first TE and the last TE images to estimate 
the noise level. Our experiments indicated that whenever 
the denoised level (using an appropriate denoising model) 
corresponded to the noise level, credible results may be 
achieved. Although estimating the noise level in advance 
imposes an additional step, the slight overhead will not 
offset the huge advantages of employing MCDnCNN. 
Moreover, the SNR increase without sacrificing image 
resolution in the denoised images is desired in clinical 
applications, known as enhanced clinical applicability of 
advanced signal models exhibiting high sensitivity to noise 
(49,50).

It should be noted that the generalized MCDnCNN 
models, i.e., DelevelMix, showed better performance than 
an appropriate MDCnCNN model at lower noise level(s) 
with lower orientation angles in the experiments using the 
simulated data (Tables 1,2). However, when in vivo data were 

used, DelevelMix showed no advantages at all over Delevel3 
(Table 4 and Figures 4-6). These results were in line with 
those previously reported (19,20). Although the generalized 
convolutional neural networks may satisfy specific denoising 
tasks with certain levels of noise, their performance is 
generally not as stable as that of the noise-specific networks 
under the same conditions. Experiment results based on 
simulated and in vivo data showed that 3CCT2* is sensitive 
to noise that even a small disturbance may bias the results 
(Figure 4 and Table 3). However, our experiments also 
have provided helpful hints for training of the generalized 
MCDnCNN models, such as the sensitivity of the angle 
between the running orientation of the underlying fibers 
and B0 direction, which should be taken care of more 
carefully in the analyses.

The sequence of mGRE is being widely used in 
estimating MWF because of the advantages of the T2* MWI 
model, including the availability of the intercorrelation 
between echoes for use (7,8). However, the challenge turns 
to be the issue of SNR, due to the reduced size of the 
voxels when mGRE is applied for acquisition of images 
with a high spatial resolution. The low SNR will lead to the 
MWF estimation more prone to systematic errors using the 
direct complex fitting procedure, and consequently severely 
compromising stability and reliability of the estimation (12).  
Data with intrinsically low SNR based on small-sized voxels 
used in such correction procedures (17,51) may make the 
estimation highly unreliable. Although the method of 
using QSM and Eq. [2] in the current work to estimate 
tissue frequency and phase is a simplified approach, the 
signal decay accounted for QSM-derived phases may partly 
correct errors induced by magnetic field inhomogeneity to 
certain extent and thus may improve the estimation of the 
local phase introduced by the white matter tissue, thereby 
making 3CCT2* a better model in deriving MWF maps 
(12,33,52). As the focus of the current work was to examine 
the ability of MCDnCNN in estimating MWF, we did not 
further scrutinize this aspect but considered leaving it to a 
separated work in the near future. Although our procedure 
did not completely resolve some inherent QSM problems, 
such as motion artifacts caused by unbalanced gradient and 
pulsation (31,53,54), a recent paper succeeded in training 
a deep convolutional neural network to reduce the motion 
artifact in QSM (55). In addition, our proposed method 
only affected the magnitude images but not the complex 
images, therefore had little influence on phase images. A 
deep convolutional neural network trained to denoise the 
complex images was proposed in a recent paper (56), which 
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might improve the phase images. Such networks aiming to 
overcome the remaining QSM problems and to improve the 
quality of both the magnitude images and the phase images 
shall be tested in the future work. Also, previous studies had 
used mGRE to obtain susceptibility maps by employing 
a pipeline involving QSM (12,33,52,57). Wu et al.  
and Sood et al. (12,33) demonstrated that the accuracy in 
MWF estimation can get improved using the QSM pipeline 
with the STI suite by overcoming non-local phase contrast 
and orientation dependence, along with denoising the 
phase component. We therefore followed the same schema 
as an initial step of the effort, though it was relatively 
straightforward.

Some limitations existed in our study. First, all the 
involved subjects were healthy adults and therefore we 
did not have a chance to test its clinical usefulness using 
patient data, although the results have demonstrated the 
effectiveness of the proposed method. Future studies shall 
try validating the proposed method on patient data such as 
those of multiple sclerosis, schizophrenia, Alzheimer disease 
and stroke. Second, the simplified 1D representation of the 
hollow cylinder model (21) could introduce certain error 
into the estimation of T2*, especially for MW components 
in fibers that run in an orientation with a relatively large 
angle relative to the direction of the main magnetic field B0. 
Such error, if any, could eventually propagate to the MWF 
maps (43). For instance, SD values of the AE between the 
calculated MWF and the ground truth MWF close to the 
mean values could imply a wide distribution of the calculated 
MWF. These phenomena were in line with previous results 
that 3CCT2* had a lager variability (10). Although we have 
demonstrated through experiments with simulation data that 
the appropriate MCDnCNN denoising model may achieve 
ideal results, we shall further improve the model to cater 
better for the realistic conditions, and thereby address the 
possible inaccurate estimation of T2* and the consequent bias 
in the MWF maps (58,59). Nevertheless, past studies have 
pointed out that it would mostly affect a magnitude fitting 
model at higher field strengths (10,43). Third, the density 
of noise levels used for training may need to be increased. 
The models we trained were at Rician noise levels with a 2% 
increment (19). This incremental step seems to be a little 
too large for high-resolution images though. In our future 
study, we shall test training the denoising models using a 
smaller increment, such as using 1%, 0.5%, and 0.1%, which 
would allow us to study the denoising effects with a finer 
observation. Fourth, we used Rician noise to simplify a non-
central chi distribution instead of using other more complex 

noise models while using GRAPPA to reconstruct the 
magnitude images, considering that GRAPPA reconstruction 
was non-stationary (60), the noise distribution on mGRE 
was complex, and our major purpose was to improve MWF 
calculation using MCDnCNN. Our future efforts should 
consider using a more complicated noise model. Another 
limitation was the limited range of TE permitted by our 
scanner, which affected the visualization and also possibly the 
degree of accurate estimation of the multi-exponential shape 
of the decay curve (Figure 4). While a previous study (43)  
showed that the MWF value stabilizes at TE around  
40 ms using the complex three-pool model, we believe 
that an extended TE range would benefit the study as 
information will be more comprehensive. We should 
therefore expand the TE value range, once the scanning 
technology advances may allow us to do so. 

Conclusions

In conclusion, the accuracy and quality of in vivo estimation 
of MWF in the human brain from high spatial resolution 
with limited TEs were markedly improved through use of 
the appropriate MCDnCNN denoising models. The use of 
MCDnCNN denoising models may contribute significantly 
to the goal of obtaining high-quality MWF mapping 
efficiently that is useful in clinical practice and settings.
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