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Background: Magnetic resonance (MR) images generated by different scanners generally have inconsistent 
contrast properties, making it difficult to perform a combined quantitative analysis of images from a range of 
scanners. In this study, we aimed to develop an automatic brain image segmentation model to provide a more 
reliable analysis of MR images taken with different scanners. 
Methods: The spatially localized atlas network tiles-27 (SLANT-27) deep learning model was used to train 
the automatic segmentation module, based on a multi-center dataset of 1,917 three-dimensional (3D) T1-
weighted MR images. Subsequently, a framework called Qbrain, consisting of a new generative adversarial 
network (GAN) image transfer module and the SLANT-27 segmentation module, was developed. Another 3D 
T1-weighted MRI interscan dataset of 48 participants who were scanned in 3 MRI scanners (1.5T Siemens 
Avanto, 3T Siemens Trio Tim, and 3T Philips Ingenia) on the same day was used to train and test the Qbrain 
model. Volumetric T1-weighted images were processed with Qbrain, SLANT-27, and FreeSurfer (FS). The 
automatic segmentation reliability across the scanners was assessed using test-retest variability (TRV). 
Results: The reproducibility of different segmentation methods across scanners showed a consistent trend 
in the greater reliability and robustness of QBrain compared to SLANT-27 which, in turn, showed greater 
reliability and robustness compared to FS. Furthermore, when the GAN image transfer module was added, 
the mean segmentation error of the TRV of the 3T Siemens vs. 1.5T Siemens, the 3T Philips vs. 1.5T 
Siemens, and the 3T Siemens vs. 3T Philips scanners was reduced by 1.57%, 2.01%, and 0.56%, respectively. 
In addition, the segmentation model improved intra-scanner variability (0.9–1.67%) compared with that of 
FS (2.47–4.32%). 
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Introduction

Quantitative volumetric analysis of brain magnetic 
resonance imaging (MRI) is a widely used method applied 
to routine clinical practice in radiology departments and to 
research in the neurosciences. Brain volumetry is influenced 
by several technical factors, such as the MRI scanner field 
strength and imaging parameters defined by the scanning 
vendor (1,2), as well as several subject-related factors (3,4) 
and post-processing methods (5,6). Reliable and robust 
quantitative volumetric brain segmentation analysis is 
critical for individualized precision treatment of brain 
disorders, such as Alzheimer’s disease (AD) and MS (6-8); 
however, it is unrealistic that every patient will be allocated 
to the same scanner in the clinical setting. This diversity 
of equipment makes it challenging to achieve reliable and 
robust quantitative volumetric brain segmentation analysis 
in individuals across different MRI field strengths and 
vendors.

Generally, automated segmentation methods can be 
classified into 3 categories: probabilistic-based, atlas-
based, and deep learning (DL)-based segmentation. One 
of the most well-known probabilistic-based segmentation 
methods is FreeSurfer (FS) (9), which is renowned for its 
reliability and accuracy. It is used as an a priori method 
to identify anatomical structures and their relationship to 
corresponding landmarks. Atlas-based methods have also 
performed well in whole-brain segmentation. In general, 
these methods use non-rigid registrations to align a brain 
mask template, or many templates, with an input brain 
image and then assign template labels to the target brain 
region. Compared with probabilistic-based and atlas-
based segmentation methods, DL-based methods can 
more accurately segment brain regions. The U-net (10) 
and V-net (11) models are 2 DL-based methods that have 
been designed for the accurate segmentation of medical 

images. The most basic DL-based method for whole-brain 
segmentation feeds the entire three-dimensional (3D) brain 
image into a 3D U-net or V-net model. 

However, DL-based models usually require large 
amounts of data, and the manual labeling of training 
data is a laborious undertaking. To assemble data for the 
DL model, Roy et al. proposed using a large number of 
auxiliary labels to train 2D convolutional neural networks 
(CNNs), where the auxiliary labels could be generated by 
other automated tools, such as FS (12). In their study, the 
spatially localized atlas network tiles (SLANT) aligned 
multiple, traditional, spatially-distributed CNNs to learned 
contextual information for a fixed spatial location and more 
accurately generated a 3D whole-brain segmentation. It 
has also been shown that segmentation performance is best 
when the results from a network of 27 tiles of overlapped 
sub-spaces are combined; therefore, SLANT-27 (which 
divides the volume into 27 overlapped network tiles) was 
employed in in the current research. Compared to CNNs, 
the generative adversarial network (GAN) is a model 
generated for capturing data distribution in an adversarial 
way to produce more realistic images (13). There have 
been several attempts to generate brain images using MRI 
coupled with GAN. For example, Han et al. (14) produced 
synthetic multi-sequence brain MRI by GAN and Lei  
et al. (15) used GAN to realize a transformation between 
computerized tomography (CT) and MRI, demonstrating 
that GAN can decrease the variabilities caused by image 
modality or contrast. However, cross-scanner variabilities 
due to differences of field strength and MR image acquisition 
sequences have not been considered in previous studies. 

In order to make comparable quantitative measurements 
of brain tissue in individual subjects, we propose an automatic 
whole-brain segmentation framework called Qbrain, which 
consists of the domain image transfer and a SLANT-27 
segmentation module to reduce the variability effects of 

Conclusions: The newly developed QBrain method combined with GAN image transfer module and a 
SLANT-27 segmentation module was shown to improve the reliability of whole-brain automatic structural 
segmentation results across multiple scanners, thus representing a suitable alternative quantitative method of 
comparative brain tissue analysis for individual patients.
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field strength and vendor across different MRI scanners. We 
present the following article in accordance with the Materials 
Design Analysis Reporting (MDAR) checklist (available at 
https://dx.doi.org/10.21037/qims-21-653).

Methods

Participants

Two datasets were used in this study. The first dataset was 
used to train a segmentation model using the SLANT-27 (16)  
model. The second dataset was used to train and test the 
image domain transfer model, using GAN to support the 
SLANT-27 model. All the MRI data employed in this 
study were collected with the approval of the local ethics 
committee. The age of participants ranged from 10 to 
78 years, and informed written consent was provided by 
each participant prior to data collection and analysis. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

The dataset for training the SLANT-27 automatic 
segmentation model consisted of 1,917 3D T1-weighted 
MRI scans of patients aged 18–78 years. The images 
were acquired using 1.5T Siemens Avanto MR scanners 
(Siemens Healthineers, Erlangen, Germany) and collected 
from multiple centers. High-resolution, T1-weighted 
images were acquired according to the parameters of the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

project (voxel size 1.0×1.0×1.0 mm3). For this study, the 
dataset was designated as 2K for simplicity. We randomly 
assigned 15% of the data in the 2K dataset as the testing set, 
and the remaining data were used as the training set. There 
were 60 labels for each scan, and the labels were established 
by clinical experts in the field. We used FS to generate 187 
labels for each scan, and then the 187 labels were merged 
into 60 labels as the training mask. The experimental data 
set is illustrated in Figure 1.

The second dataset was collected to train and test 
the image-to-domain transfer GAN model. The dataset 
contained 48 participants from one center. For each subject, 
3 clinical MRI scanners, including the 1.5T Siemens 
Avanto, 3T Siemens Trio Tim, and 3T Philips Ingenia 
(Philips Healthcare, Amsterdam, The Netherlands), were 
used to acquire 3D T1-weighted images on the same day. 
In addition, half of the participants were scanned twice 
with repositioning in-between, resulting in a total of 6 T1-
weighted volumes per participant; thus, there were 216 
T1-weighted scans in total, with 144 inter-scanner T1-
weighted images in the dataset, thereafter referred to as 
Interscan48. Of the subjects in the Interscan48 dataset, 
38 were used as the training set, and the remaining 12 
participants who had both intra- and inter-scans were 
used as the testing set. The MRI exclusion criteria 
were contraindications to having an MRI scan, severe 
neurological disorders, or a history of serious head trauma 
or brain tumors (no participants were excluded). The MRI 

Figure 1 Experimental data sets: 2K dataset and Interscan48 dataset. T1w, T1-weighted. 
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acquisition parameters are detailed in Table S1.

Image processing

The entire QBrain framework is depicted in Figure 2. Pre-
processing was performed for the input MR images, which 
included N4 bias field corrections and affine registrations. 
This was followed by the use of image domain transfer 
modules to transfer the input images from different 
scanners into the same scanner style, allowing for the 
following automatic segmentation process to be executed.

Image domain transfer

The image domain transfer model was used to transfer 
data to a unified target domain based on the GAN 
network. Namely, the model standardized the different 
field strengths (1.5T and 3T) or vendor scans to medium 
contrast images with fewer variations and thus improved 
image segmentation. A comparison between the 3T image, 

the GAN-converted image, and the 1.5T image is shown 
in Figure 3. In this section, we introduce the network 
architecture of the image domain transfer model and the 
objective function.

Network architecture

The architecture of our image domain transfer model, 
based on GAN, consisted of 2 parts, the generator (G), and 
the discriminator (D). The G adopted a 3D volume from 
the source domain (3T MRI) as input and generated a fake 
volume to imitate the target domain (1.5T MRI). Then, the 
D aimed to classify the inputs that were true volumes from 
the target domain. By adversarial training, the G was able to 
transfer data from the source domain to the target domain. 
The network architecture of the image domain transfer 
model is illustrated in Figure 4.

The G was a U-net-like structure with an encoder and a 
decoder. The encoder stage had 5 blocks; the first 4 blocks 
consisted of a convolution operation and a separate down-

Figure 2 The entire QBrain framework consisting of a GAN image transfer module and SLANT-27 segmentation module. GAN, 
generative adversarial network; SLANT, spatially localized atlas network tiles.

Figure 3 A comparison of the 3T image, the GAN converted image, and the 1.5T image. (A) A 3T MRI image; (B) the output image by 
the image domain transfer module, GAN; (C) the corresponding 1.5T image of the 3T image. GAN, generative adversarial network; MRI, 
magnetic resonance imaging.
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sample operation. The convolution layer had kernel and 
stride sizes of 3×3 and 1, respectively. The activation was 
composed of the Leakey rectified linear unit (ReLU) with a 
ratio of 0.6 and a batch normalization (BN) that constituted 
the convolution operation. 

The down-stream sampling consisted of the convolution 
with a stride size of 2. The last block was the only 
convolution operation performed. The numbers of feature 
maps in each convolution layer were 16, 16, 32, 32, 64, 
64, 128, 128, and 256. The decoder also had 5 blocks, 
except for the last layer, with each layer consisting of an 
up-sampling and convolution operation. The convolution 
operation was only applied in the last layer. The numbers 
of feature maps in each convolution layer were 256, 128, 
128, 64, 64, 32, 32, 16, and 1. The concatenate connection 
linked the corresponding down-sampling operation in the 
encoder with the up-sampling operation in the decoder.

The D was a traditional 6-layer classifier. The first 5 

layers consisted of the down-sampling operation, and the 
last layer consisted of the convolution operation. The 
numbers of feature maps were 16, 32, 64, 128, 256, and 
1. To improve the reliability of the GAN and accelerate 
the convergence model, we removed the BN layer in 
the first convolutional layer of the generator and the last 
convolutional layer of the discriminator, as proposed by 
Radford et al., to use the deep convolutional (DC) GAN (17).

Objective function

The optimized function, Ltotal, of the above-described GAN 
consists of 4 parts: adversarial loss, Ladv, content loss, Lcontent, 
focal loss, Lfocal, and feature loss, Lfeature. This function can be 
described as:

 λ γ β= + + +total adv content focal featureL L L L L  [1]

Figure 4 The network architecture of the image domain transfer model. (A) The basic architecture of a GAN used to transfer an image 
from the 3T scanner to an image from the 1.5T scanner; (B) the architecture of the generator, a U-net-like structure; (C) the architecture of 
the discriminator, a six-layer classifier. GAN, generative adversarial network.
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where λ, γ, and β are the 3 regularization parameters used to 
strike the balance of the 4 terms.

Adversarial loss is defined as follows:

( )( )

( )( )( )

2
~

2

~

1argmin max
2

         

t target

s source

adv I p tGD

I p s

L E D I a

E D G I b

 = −  

 + −  

 [2]

where G (Is) represents the transferred images generated 
by the G. The D(It), D(G(Is)) represents the classification 
results from the D, and a and b denote the label assigned 
to the targeted and generated data, respectively. More 
specifically, adversarial loss in this form was the least square 
adversarial loss proposed in LSGAN (18). Compared with 
the log loss in the regular GAN, Ladv loss performed more 
stably and generated higher quality images. 

The G can only guarantee that the generated image 
has the same distribution as the targeted image, it cannot 
guarantee the same structure; therefore, content loss was 
used to constrain the structure, as depicted in the following 
equation:

,f tcontent I I f t F
L E I I= −  [3]

where   .  represents the Frobenius norm and If represents 
the image generated by the GAN. Considering the data 
came from the source domain, and the target differed 
slightly in most areas, such as background and global 
structure, the areas with more detailed information were 

more likely to be considered. The focal loss in an object 
detection task, as described by Lin et al. (19), which led us 
to define the pixel-wise focal loss as:

( ),f tfocal I I f t F
L E W I I= −  [4]

where W denotes the pixel-wise weight assigned to the 
remaining optimized pixel, depicted as:

   
 

=
error mapW
total error

 [5]

where the error map denotes the pixel-wise error between 
the generated and target data, and the total error denotes 
a scalar calculated by the sum of the error maps. Coupled 
with Lfocal optimization, our GAN methodology focused on 
detail resulting in higher quality images.

To further improve transfer ability, we made the 
synthesized data similar not only at the pixel level but also 
at the semantic level by applying feature loss, which was 
defined as:

( ) ( ), f tI I
f tfocal I I F

L E φ φ= −  [6]

where  ( ) . φ  represents feature maps extracted by the fifth 
layer of the discriminator, D, unlike the super-resolution 
(SR) GAN that uses the pre-trained visual geometry group 
(VGG) network (20) as a feature extractor. There were 2 
reasons for selecting the D to replace the VGG network. 
Firstly, the pre-trained VGG network was trained on 
natural images that might not be able to adapt to medical 
imaging. Secondly, feature loss could also be used as a 
substitute for the original adversarial loss during training of 
the generator, according to Ouyang et al. (21).

Segmentation

The SLANT-27 (16)  was  used as  the underlying 
segmentation method in QBrain. The whole-brain 
segmentation method SLANT-27 combines medical-image 
processing (registration, harmonization, and label fusion) 
with 3D network tiles. When a new T1-weighted MRI 
image arrived, the scan was divided into 27 overlapping 
tiles. For each tile, the 3D U-net was used to predict the tile 
label. Finally, the labels of all the tiles were fused into 1 and 
the inverse affine matrix was applied to transform the mask 
to the original space. The process of image segmentation is 
illustrated in Figure 5. 

Figure 5  The flow chart to depict the automatic image 
segmentation steps. SLANT, spatially localized atlas network tiles.
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Statistical analysis

The reproducibility of measuring the whole-brain 
structural volume using SLANT-27, FS, and QBrain in 
the Interscan48 test set was compared in section 3. The 
reproducibility was measured by test-retest variability 
(TRV), as follows:

 
1 2

1 2

200%
−

= ×
+

v v
TRV

v v
 [7]

where v1 and v2 represent the volumes of a brain region 
from the first (test) and second (retest) generated 
masks, respectively. A lower TRV value indicated better 
reproducibility compared with a higher TRV value. In test-
retest statistics, the TRV of each brain tissue for each pair 
of volumes was computed, and then the mean, m, over these 

TRV values was calculated. Finally, the mean, variance 
(Var), maximum (Max), and minimum (Min) of m over all 
of the pairs were computed. The mean segmentation error 
was measured by subtracting the mean TRV of SLANT-27 
from the mean TRV of Qbrain or FS and the paired t-test 
was used for the intra-scanner test-retest performance 
comparison of SLANT-27 and FS.

Results

Test-retest experiments of different field strengths and 
scanner vendors

The reproducibility of the whole-brain structural volume 
was measured by assessing: 

(I) Intra-scanner reproducibility.
The intra-scanner test-retest segmentation 

performances of SLANT-27 and FS were first 
compared, as shown in Table 1 .  The results 
indicated that SLANT-27 was more reliable than 
FS for within-scanner reproducibility in the single 
center (mean TRV 1.30% vs. 3.06%, P<0.05).

(II) Inter-scanner reproducibility of different field 
strengths from the same vendor.

The 1.5T Avanto and the 3.0T Trio Tim MR 
scanners, both manufactured by Siemens, were the 
2 scanners used for the inter-scanner test-retest 
performance comparison of SLANT-27, FS, and 
QBrain. These results are reported in Table 2. The 
SLANT-27 demonstrated better inter-scanner 
test-retest reproducibility than FS. Furthermore, 
compared to the SLANT-27 model, the mean 
segmentation error of TRV was reduced by 1.57% 
(from 4.62% to 3.05%) using the QBrain method 
on the 3T Siemens Trio Tim scanner.

(III) Inter-scanner reproducibility of different field 
strengths and vendors.

The inter-scanner TRV of SLANT-27, FS, and 
QBrain across different field strengths and vendors 
is shown in Table 3. Among the 3 methods, QBrain 
had the best performance with a TRV <2%. In 
addition, the mean segmentation error was reduced 
by 2.01% (from 3.97% to 1.96%) on the 3T Philips 
Ingenia scanner when the transfer module (GAN) 
was added.

(IV) Inter-scanner reproducibility of different vendors 
with the same field strength. 

The inter-scanner TRV of SLANT-27, FS, and 

Table 1 The intra-scanner test-retest performance comparison of 
SLANT-27 and FS

Method Mean (%) Var (%) Max (%) Min (%)

SLANT-27 1.30 0.30 1.67 0.90

FS 3.06 0.48 4.32 2.47

SLANT, spatially localized atlas network tiles; FS, FreeSurfer; 
Var, variance; Max, maximum; Min, minimum.

Table 2 The inter-scanner test-retest performance comparison of 
SLANT-27, FS, and QBrain using 1.5T Siemens Avanto and 3T  
Siemens Trio Tim

Method Mean (%) Var (%) Max (%) Min (%)

SLANT-27 4.62 0.61 5.83 3.3

FS 6.68 0.92 8.19 5.37

QBrain 3.05 0.45 4.21 2.39

SLANT, spatially localized atlas network tiles; FS, FreeSurfer; 
Var, variance; Max, maximum; Min, minimum.

Table 3 The inter-scanner test-retest performance comparison of 
SLANT-27, FS, and QBrain using 1.5T Siemens Avanto and 3T 
Philips Ingenia 

Method Mean (%) Var (%) Max (%) Min (%)

SLANT-27 3.97 0.38 4.81 3.36

FS 6.21 0.71 7.98 4.74

QBrain 1.96 0.25 2.60 1.63

SLANT, spatially localized atlas network tiles; FS, FreeSurfer; Var, 
variance; Max, maximum; Min, minimum.
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QBrain across different vendors with the same 
field strengths is shown in Table 4. It was observed 
that the TRV value of QBrain was the lowest, at 
approximately 3% across both the Siemens and 
Philips vendors, and the mean segmentation error 
of TRV was reduced by 0.56% (from 3.52% to 
2.96%) when the GAN module was added.

Analysis by local regions

A TRV comparison between 60 different brain structures 
is shown in Figure 6. It can be seen that the overall level 
of TRV decreased significantly after the domain transfer 
module was applied to both the Trio Tim and Ingenia 
scanners. These results indicate that data from different 
domains can be transferred to similar distributions, which 
greatly improves the robustness of the segmentation model. 
Additionally, a comparison of the mean value of inter-
scanner test-retest performance of Qbrain and SLANT27 is 
shown in Figure 7. 

Discussion

In this study, we proposed a robust, automatic, whole-brain 
segmentation method, QBrain, which consists of domain 
transfer and segmentation modules. Domain transfer 
is used to transfer the data from different scanners to a 

Table 4 The inter-scanner test-retest performance comparison of 
SLANT-27, FS, and QBrain using 3T Siemens Trio Tim and 3T 
Philips Ingenia 

Method Mean (%) Var (%) Max (%) Min (%)

SLANT-27 3.52 0.46 4.25 2.70

FS 3.78 0.22 4.46 3.17

QBrain 2.96 0.24 3.27 2.56

SLANT, spatially localized atlas network tiles; FS, FreeSurfer; 
Var, variance; Max, maximum; Min, minimum.

Figure 6 The flow chart to depict the automatic image segmentation steps. SLANT, spatially localized atlas network tiles.
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Figure 7 The comparison of the mean value of inter-scanner test-retest performance of Qbrain and SLANT27, based on data from 1.5T 
Siemens Avanto and 3T Philips Ingenia. SLANT, spatially localized atlas network tiles.
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unified domain to improve the robustness of segmentation. 
Compared to the widely accepted and applied FS (9), 
QBrain obtained lower segmentation TRV values, both 
on intra-scanner and inter-scanner tests, which indicated 
that our method has better reliability and robustness. 
Additionally, QBrain improved the performance of 
SLANT-27 by image domain transfer. Compared with 3D 
CNN models (22,23), our method is less computationally 
intensive and easier to train. This is the first report of the 
TRV in structural volume across different field strengths 
and different scanners based on the GAN model.

Influence of functional loss

There are 4 loss functions employed in domain transfer 
modules, including Ladv, Lcontent, Lfeature, and Lfocal. Ladv, that are 
used to learn the distribution of 1.5T data by adversarial 
training between generators and discriminators, as well as to 
normalize the field strength of different scanners. The Lcontent 
is a basic constraint for generating structural information 
at the pixel level and can also reduce the solution space 
and accelerate convergence of the modules. When only 

Ladv and Lcontent were used, our generated results had similar 
signal distributions and structural features compared with 
the target data, and Lfeature was used to improve similarities 
at the feature level. Some detailed information, such as 
information on blood vessels, is sparsely distributed and 
cannot be made a focus because the above mentioned losses 
occur on a global scale. We, therefore, guided the model to 
focus on optimization of these regions by Lfocal, which may 
show a reduced appearance of blood vessels.

Intra-scanner reproducibility

We found that repeatability was better with Qbrain 
compared to FS in whole-brain segmentation, as well as 
local regions of the brain. There were 2 reasons identified 
for intra-scanner errors in FS (9): (I) different images affect 
structural estimates, and (II) random noise and processing 
bias lead to small changes that arbitrarily accumulate and 
create large changes in a single patient. In contrast, once 
our model was trained, all parameters were fixed and thus 
avoided processing bias. Our method also learned high-
level semantic information from deep convolution layers, 
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which resulted in intensity changes between 2 scans which 
had lesser impact on segmentation results. Therefore, our 
method was more reliable in the intra-scanner reliability 
test. Compared with previous results on the performance 
of Siemens scanners, the intra-scanner reliability of Qbrain 
(0.9–1.67%) was much smaller than that of FS (0–16.46%) 
and another work-in-progress package issued by Yan  
et al. (24) (0–9.89%). 

Inter-scanner reproducibility

Generally, we found that the variability in volumetrics was 
lower on the same scanner than between scanners for both 
SLANT-27 and FS methods, and our current result of FS is 
in line with our previous research involving multiple sclerosis 
(MS) patients (6). The QBrain method, which consists of the 
domain image transfer module, has significantly improved 
inter-scanner variability compared with FS, especially 
between the 1.5T Siemens Avanto and the 3T Philips 
Ingenia scanners (1.96–6.21%). For whole-brain volume, 
the mean rate of atrophy in normal aging ranged from 0.3% 
to 0.7% per year (25), and reaches up to 1% to 4% per year 
in AD patients (26). This shows that our QBrain framework 
has an inter-scanner variability lower than that of the annual 
atrophy rate in AD patients, and it is expected that QBrain 
will be a feasible measurement for grouping AD data that 
are followed up within 1 to 2 years across different scanners.

As shown in Tables 2,3, our segmentation module based 
on SLANT-27 was only trained on the images collected 
using the 1.5T Siemens Avanto scanner across multiple 
centers. It was difficult to achieve superior reliability 
repeatedly on the 3T scanner due to the inconsistent 
image contrast. This is a common problem, with poor 
generalizations made by CNN-based methods. Various 
scanners have different hardware and acquisition sequences 
and thus lead to differences in images. In order to convert 
the image domain to a similar distribution, we used a GAN 
to transfer all of the 3T scanner data to the 1.5T scanner 
data. The mean segmentation error of TRV of different 
field strengths from the same vendors, different field 
strengths and vendors, and the same field strengths but 
different vendors was reduced by 1.57%, 2.01%, and 0.56%, 
respectively. The inter-scanner reliability of our system was 
significantly improved.

Influence of artifacts

There were large TRV values in the third brain ventricle, 

fourth brain ventricle, and cerebrospinal fluid (CSF) after 
domain transfer. A probable reason for the artifacts is that 
CSF flow and blood vessel pulses caused signal changes in 
these areas. Therefore, the artifacts could not be converted 
correctly by our transfer module.

Limitations and future work

Although we achieved markedly stable repeatability on 
intra-scanner and inter-scanner tests, our research still had 
several limitations. First, as discussed above, the presence 
of artifacts needs to be resolved. Second, in this study, only 
3T MRI images collected from Siemens Trio Tim and 
Philips Ingenia scanners were converted by our method. 
In future, images from different 3T machine models and 
manufacturers need to be used to completely cover gaps in 
the other models. Third, our image domain transfer model 
was only trained on 34 paired 3T–1.5T images, and more 
paired data need to be collected to improve the performance 
of the presented method.

Conclusions

Herein, we have presented a new automatic segmentation 
method, QBrain, which includes a GAN network with 
new loss functions to transfer image and a SLANT-27 DL 
segmentation module to improve the reliability of within- 
and between-center brain image comparison. Our method 
could effectively minimize variability in multi-center and 
follow-up brain image segmentation studies.
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Supplementary

Table S1 MRI acquisition parameters

MR1 MR2 MR3

Manufacturer Siemens Philips Siemens

Model name Avanto Ingenia Trio Tim

Station name MRC25494 3FCD991 MRC35363

System version syngo MR B17 R6.0.531 syngo MR B15

Field strength (T) 1.5 3 3

Head coil channels 8 16 8

3D T1w Images

Voxel size, mm3 1.0×1.0×1.0 1.0×1.0×1.0 1.0×1.0×1.0

Number of slices 176 192 176

Repetition time (ms) 1900 7.07 1900

Echo time (ms) 3.37 3.19 2.96

Flip angle (°) 15 7 9

MRI, magnetic resonance imaging; T1WI, T1-weighted images.


