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Background: A coronary artery calcium (CAC) score can provide supplementary information for 
predicting the risk of cardiovascular disease (CVD). Although CAC is clinically measured with non-contrast 
cardiac computed tomography (CT), coronary CT angiography (CCTA) may also be used, allowing for 
the simultaneous evaluation of coronary artery vessels and calcified plaques. This study proposes a method 
for the automated quantification of the Agatston CAC score from CCTA and compares our method’s 
performance with that of non-contrast cardiac CT.
Methods: Sixty-two patients were selected from a clinical registry and divided into four CAC categories. 
They underwent both non-contrast cardiac CT and CCTA. The Agatston CAC score derived from non-
contrast cardiac CT (standard Agatston CAC score) was used as the reference standard. Calcifications were 
automatically identified and quantified using different thresholds after a deep learning-based coronary artery 
segmentation model pretrained on CCTA images. Comparisons were made between the standard Agatston 
CAC score and the CCTA-based Agatston CAC score (CCTA-CAC score) on a per-patient and per-vessel 
basis. Spearman’s rank-order correlation coefficient (R) and intra-class correlation (ICC) values were used to 
calculate the correlation between the two methods.
Results: After comparison, the optimal lower threshold in CCTA-CAC score calculations was found to be 
650 Hounsfield units (HU). Using this threshold on a per-patient basis, the automatically computed CCTA-
CAC score showed a high correlation (R =0.959; P<0.01) and ICC (R =0.8219; P<0.01) with the standard 
Agatston CAC score. On a per-vessel basis, the standard Agatston CAC score was also highly correlated with 
the CCTA-CAC score (R =0.889; P<0.01 and ICC =0.717; P<0.01). Of the 62 patients enrolled, 47 (76%) 
were classified into the same cardiovascular risk category using the CCTA-CAC score quantification method 
as when the standard Agatston CAC score was used. Agreement within the CAC categories was also good 
(kappa =0.7560). 
Conclusions: Fully automated quantification of the Agatston CAC score on CCTA images is feasible 
and shows a high correlation with the reference standard. This method could simplify the quantification 
procedure and has the potential to reduce the radiation dose and save time by eliminating the non-contrast 
cardiac CT stage. 
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Introduction

Cardiovascular diseases (CVDs) are a large contributor to 
the global mortality rate. A total of 17.9 million people die 
from CVDs every year (1). The coronary artery calcium 
(CAC) score serves as a reliable diagnostic tool for CVD 
and is recommended by several guidelines (2-4) for risk 
assessment. A high CAC score reflects an increased relative 
risk for cardiovascular events (5). CAC is a representative 
marker of the overall coronary sclerosis burden (6). The 
amount of CAC is commonly detected on a non-contrast 
cardiac computed tomography (CT) scan and quantified 
according to the Agatston scoring method (7,8). The 
Agatston CAC score has been shown to have prognostic 
value for cardiovascular events, regardless of age, race, or 
sex (9-13). However, to assess the severity and degree of 
coronary artery stenosis, coronary CT angiography (CCTA) 
must be performed (14). Compared with invasive coronary 
angiography, CCTA can more accurately assess coronary 
artery stenosis (15-17). Moreover, it can provide accurate 
visualization of the coronary vessel wall and facilitate the 
analysis of coronary plaque constitution.

Since CCTA can distinguish calcified plaques, it is 
plausible that it can be used to identify CAC and calculate 
the Agatston CAC score. Because non-contrast CT scans 
and CCTA are performed separately and both contribute to 
radiation exposure (18), it would be beneficial to determine 
whether the Agatston CAC score can be quantified from 
CCTA scans alone. Previous studies, in which specific 
Hounsfield unit (HU) thresholds (19-22) and deep learning 
algorithms (23-25) were applied, have evaluated the 
potential to quantify CAC from CCTA datasets. Both the 
HU threshold-based method and deep learning algorithms 
directly detected potential calcified plaques. However, 
false-positive areas were sometimes detected outside the 
coronary artery, such as calcification on the aorta, which led 
to inaccurate calculation of Agatston CAC scores and CVD 
risk categorization. Given these inaccuracies, a precise CAC 
score quantification method warrants investigation.

The present study had three main aims: (I) to propose 
a method for full automatic detection and quantification 
of CAC on CCTA scans and quantification of Agatston 
CAC score; (II) to compare the derived CCTA-CAC score 
with the standard Agatston CAC score and evaluate the 

correlation between them; and (III) to define the optimal 
threshold for CCTA-CAC calculation. 

We present the following article in accordance with the 
STARD reporting checklist (available at https://dx.doi.
org/10.21037/qims-21-775).

Methods

Study design

This retrospective study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). There were 
two patient datasets, one for coronary artery segmentation 
and one for CAC calculation. 

Patients for coronary artery segmentation

A coronary artery segmentation algorithm was trained and 
tested on 134 CCTA scans collected between 1 August, 2014 
and 30 March, 2019 at three Chinese medical centers: the 
Beijing Anzhen Hospital, Capital Medical University (n=90); 
the Sir Run Run Shaw Hospital, Zhejiang University School 
of Medicine (n=28); and the General Hospital of Eastern 
Theater Command (n=16). Ground truth was achieved 
through manual segmentation by a clinical expert. The 
study population comprised 80 males and 54 females, whose 
ages ranged from 41 to 80 years (mean age: 60.6±8.8 years).  
The requirement for informed patient consent was waived 
by the ethics committees of the three medical centers. This 
multicenter dataset was independent from the dataset used 
for calculation of the Agatston CAC score. 

In this study, a deep-learning approach was used for 
the segmentation of coronary arteries. Training (n=94) 
and testing (n=40) datasets were used for the pretrained 
segmentation model. There were no standard Agatston 
CAC scores included in this dataset, so we did not use this 
dataset for quantification of the CCTA-CAC score.

Patients for CAC quantification 

The Independent Ethics Committee of the Anzhen Hospital 
approved this retrospective study. Seventy-five patients 
from Anzhen Hospital who had CVD symptoms, such as 
chest pain, underwent non-contrast cardiac CT followed by 
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CCTA between 26 December, 2017 and 25 January, 2019. 
Patients with a history of percutaneous coronary intervention 
(n=4), obvious artifacts (n=5), or who underwent coronary 
artery bypass graft (CABG) surgery (n=2), were excluded, as 
were those with poor quality scans from which the coronary 
artery could not be segmented (n=2). The resulting cohort 
consisted of 22 women (mean age: 64.0±7.52 years) and  
40 men (mean age: 60.0±8.1 years).

Imaging for coronary artery segmentation

The CCTA scans for coronary artery segmentation were 
performed on four different CT scanners: a 256-detector row 
CT scanner (Revolution CT, GE Healthcare, Milwaukee, 
WI, USA), a 320-detector row CT scanner (Aquilion 
One; Toshiba, Otawara, Japan), and two dual-source CT 
scanners with ≥ 64-detector rows (Somatom Definition 
Flash/Force; Siemens, Forchheim, Germany), which all met 
the requirements set out in the Society of Cardiovascular 
Computed Tomography (SCCT) guidelines (26). For all 
CCTA scans, sublingual nitroglycerin (0.5 mg per dose; 
nitroglycerin spray, Jingwei Pharmacy, Jinan, China) was 
administered to all patients 5 min before scanning. Beta-
blockers were not administered to any of the patients. 
Similar to a previous study (27), the CCTA data were 
acquired after the injection of 50–60 mL of contrast agent 
(350 mg iodine/mL, Omnipaque, GE Healthcare; or 370 mg  
iodine/mL, Ultravist, Bayer Schering Pharma, Berlin, 
Germany) at a rate of 4.5–5 mL/s followed by a saline bolus 
chaser IV injection of 30–35 mL at a rate of 5 mL/s. The 
tube voltage of the CCTA scan was 80–110 kV, depending 
on the CT scanner. Furthermore, three modes were utilized 
for data acquisition. Prospective electrocardiogram (ECG)—
triggered axial-mode single heartbeat acquisition was used 
on the scanners with a wide Z-axis coverage, and prospective 
ECG-gated high-pitch single heartbeat helical acquisition or 
multiple heartbeat axial-mode acquisition was performed on 
the dual-source CT platforms. A bolus tracking technique 
was used for scan triggering CCTA acquisition. The 
gantry rotation time was in the range of 0.28–0.35 s per 
rotation, depending on the CT scanner. Axial images were 
reconstructed with a slice thickness of 0.5, 0.6, or 0.625 mm. 

Imaging for CAC quantification

The CCTA scans for CAC calculation were all performed 
on a 256-detector row CT scanner (Revolution CT, GE 
Healthcare). The CCTA data were acquired after the 

injection of 50–60 mL of contrast agent (350 mg iodine/mL,  
Omnipaque, GE Healthcare) at a rate of 4.5–5 mL/s, 
followed by a saline bolus chaser IV injection of 30–35 mL 
at a rate of 5 mL/s. Prospective ECG-gated CCTA was used 
as the CCTA examination protocol. The scanning range 
was set from the tracheal bifurcation to the diaphragm. The 
scan parameters for CCTA were as follows: 256×0.625 mm 
collimation, 0.28 s rotation time, 512×512 pixel matrix. 
The tube voltage was 100 kV, and the Smart mA (GE’s 
proprietary name for the more general automatic exposure 
control term) was applied. The slice thickness was 0.625 mm. 
In the study group, images were reconstructed using the 
state-of-the-art adaptive statistical iterative reconstruction 
(ASiR)-V algorithm with a weight of 50% (50% ASiR-V).

Non-contrast cardiac CT was performed before the 
CCTA examination. Prospective ECG-triggered CT 
acquisition was used for the non-contrast CT. Scan 
parameters were obtained as follows: the tube voltage was 
100 kV, and the Smart mA was applied. The pixel matrix 
size was 512×512. The slice thickness for the Agatston 
CAC score quantification was 2.5 mm. Regarding the CAC 
quantification method, we first obtained the coronary artery 
segmentation on CCTA images with a slice thickness of 
0.625 mm. We then reconstructed both the original image 
and the segmentation label to 0.5×0.5×2.5 mm for further 
comparison with the non-contrast CT images.

Quantification of the standard Agatston CAC score on 
non-contrast CT scans

The collected scans were transferred from the CT 
equipment to a workstation (AW 15.0, General Electric, 
Boston, MA, USA) to determine the CAC score using 
the dedicated postprocessing software “Smartscore”. The 
standard Agatston CAC score was calculated using the 
Agatston method (7). A threshold of 130 HU was applied 
for the non-contrast CT scans. Calcification was defined as 
more than two adjacent pixels with values of >130 HU. An 
Agatston CAC score was calculated for the right coronary 
artery (RCA), left main and left circumflex arteries (LMCx), 
and left anterior descending (LAD) artery, and this score 
was used as the reference standard. Assessment of the 
standard Agatston CAC score was carried out automatically, 
without consideration of any clinical information.

Quantification of CCTA-CAC score on CCTA scans

An end-to-end detection and quantification CCTA-CAC 
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score method was developed. Models were created using 
Nvidia Corporation’s deep learning GPU training system. 
Training and testing were both done on a 2 Intel(R) Xeon 
Sliver 4110 2.1 GHz, 16 GB processor equipped with an 
Nvidia Tesla V100 graphic card on a Windows Server 2016 
Standard 64 bits operating system. The flow diagram for 
this process is shown in Figure 1. The quantification method 
was created as described below.

A pretrained dense V-net fully convolutional neural 
network (28) created from the 134 multicenter CCTA scans 
was used for coronary artery segmentation. Subsequently, 
the main coronary branches (RCA, LMCx, and LAD) 
were identified. The diversity of the data ensured good 
generalization of the model, and cases were categorized into 
two groups: the training set (n=94) and the test set (n=40). 
This quantification method was validated using data from 
all the patients in the CAC dataset (n=62). 

The proposed architecture (Figure 2) used a fully 
convolutional neural network based on convolutional units. 

Figure 1 Flow diagram of our quantification of Agatston CAC 
scores from CCTA scans. The first stage was deep learning-
based coronary artery segmentation. Then, a fixed threshold was 
applied to detect and quantify calcium plaque. Finally, the CAC 
scores were obtained. CCTA, coronary computed tomography 
angiography; CAC, coronary artery calcium. 

Figure 2 The architecture of coronary artery segmentation. The schematic illustrates the coronary artery segmentation process with dataset 
preparation, pre- and postprocessing to optimize the segmentation results, network architecture, training progress, and test progress. 
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The architectural design can be understood in terms of 
the following five key features: batch-wise spatial dropout, 
dense feature stacks (DFSs), V-network down-sampling 
and up-sampling, dilated convolutions, and an explicit 
spatial prior. We computed 1003 feature maps using a 
strided convolution. Then, a cascade of DFSs and strided 
convolutions generated activation maps at three resolutions. 
A convolution unit was applied at each resolution, reducing 
the number of features. After bilinear up-sampling back to 
1003, the maps were concatenated, and a final convolution 
generated the likelihood logits, which were subsequently 
added to the up-sampled spatial before the segmentation 
logit was generated. The input was a volume of interest 
(VOI) (200×200×200). The segmentation result was given 
in the output (200×200×200) of the dense V-net. Table 1 
lists the detailed parameters for the dense V-net. Individual 
components, such as input, output, kernel, stride, and 
subunits of each layer, are given. 

In the preprocessing stage, image quality control was 
conducted, and improvements such as median filtering and 
Laplacian enhancement were applied to reduce unwanted 
noise. During the training stage, data augmentation was 
realized by flipping and rotating the VOI of the vessel 
region. The network was trained using the Adam optimizer 
algorithm, with a learning rate of 0.001 and mini-batch 
size 6 for 10,000 iterations. Because of the limited number 
of available annotated datasets, a 5-fold cross-validation 

approach was employed. The trained model which had the 
best performance (i.e., with the highest Dice score) for the 
test dataset was kept. Training each instance of the network 
took approximately 6 h. In the postprocessing stage, region 
growing (29) and two-threshold refinement (30) were used 
for further optimization of the segmentation results. The 
network loss function was based on the concept of the 
similarity between the output image and the ground-truth 
image. Thus, the Dice similarity coefficient was chosen as 
a loss function for the network. The Dice values for the 
training (n=94) and testing (n=40) images were 0.92 and 
0.90, respectively. 

The CCTA-CAC score was automatically detected and 
quantified using different thresholds. The total CCTA-
CAC score was calculated using the following formula, 
defined as Eq. [1]:

 ( )score valueCCTA CAC CT area α− = × ×∑ 	 [1]

There were some similarities between our quantification 
method and the standard Agatston CAC score quantification (7).  
The selected thresholds for calcified plaque were 450, 500, 
550, 600, 650, 700, 750, and 800. For each slice, all pixels 
with a CT value ≥ threshold were displayed. A region of 
interest marker was placed around all lesions detected in 
the coronary artery. The weight coefficient α in Eq. [1] is 
related to the threshold value.

Table 1 Detailed parameters for Dense VNet 

Layer Input Output Kernel Stride Subunits m*n

Feature 200³×1 100³×24 5³ 2

DFS 1 100³×24 100³×20 3³ 1 5×4

Skip 1 100³×20 100³×12 3³ 1

Down 1–2 100³×20 50³×24 3³ 2

DFS 2 50³×24 50³×80 3³ 1 10×8

Skip 2 50³×80 50³×24 3³ 1

Up 2 50³×24 100³×24

Down 2–3 50³×80 25³×24 3³ 2

DFS 3 25³×24 25³×160 3³ 1 10×16

Skip 3 25³×24 25³×24 3³ 1

Up 3 25³×24 72³×24

Up prior 20³×1 100³×1

DFS, dense feature stack.
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The following formula was defined as Eq. [2]:

 [ )
[ )
[ )
[ )

   , 1001
   100, 2002

   200, 300  3
   300,  4

value

value

value

value

when CT in threshold threshold
when CT in threshold threshold

when CT in threshold threshold
when CT in threshold

α

 +
 + + =  

+ + 
 + ∞  	

[2]
For Eq. [2], the thresholds ranged from 450 to 800. 

The higher the CT value, the larger the weight coefficient 
α. For instance, if 650 HU was chosen as the threshold, α 
was determined based on the CT value in the following 
manner: 1=650 to 749, 2=750 to 849, 3=850 to 949, and 
4≥50 HU. A score for each region of interest was calculated 
by multiplying the CT value score by the area. The total 
CCTA-CAC score was calculated using each of these 
scores for all slices. An example of the automatic CAC 
assessment on CCTA is given in Figure 3. Calcification was 
automatically identified according to the thresholds after 
coronary artery segmentation without consideration of 
clinical information or the reference standard.

Statistical analysis

Categorical variables were presented as absolute numbers 
and percentages. Continuous variables were expressed as 
means ± standard deviation (SD) or median [interquartile 
range (IQR)]. A comparison was made between the 
standard Agatston CAC score and the CCTA-CAC score. 
The non-parametric Spearman’s correlation and intra-class 
correlation (ICC) were used to evaluate the correlation 
and consistency between the two methods. An ICC of less 
than 0.4 indicated poor correlation; an ICC of 0.4 to 0.75 
indicated fair to good correlation; and an ICC of more 
than 0.75 indicated excellent correlation (31). Thereafter, 
Bland-Altman analysis was applied to assess the limits of 
agreement between the methods. A two-tailed P value 
<0.05 indicated statistical significance. Also, the scores were 
divided into four risk categories (0, 0–99, 100–399, and 
≥400), and the agreement between the two methods was 
calculated. Statistical analyses were performed using Python 
(version 3.5.6).

Figure 3 Example patients. Example patients for coronary artery segmentation and CAC quantification results. A 77-year-old female 
patient with calcium lesions in the RCA (green), LAD (pink), and LMCx (blue). (A) Illustrates the CAC on the non-contrast CT scan (red 
plaque). (B) Illustrates the CAC on the CCTA scan (green plaque). (C) Illustrates the total coronary segmentation results. The white plaque 
on the coronary artery tree represents calcium. The table below shows the standard Agatston CAC score on non-contrast CT scans and 
CCTA-CAC score on CCTA scans. Radiation dose comparisons are also shown in the table. RCA, right coronary artery; LAD, left anterior 
descending; LMCx, left main and left circumflex arteries; CCTA, coronary computed tomography angiography; CAC, coronary artery 
calcium; CT, computed tomography; CCTA-CAC score, CCTA Agatston CAC score. 

A B C

Vessel score RCA LAD LMCx Total

Standard Agatston 176.6 68.9 329.9 575.4

CCTA-CAC 205.4 87.0 292.4 584.9

Dose report CTDIvol (mGy)

Non-contrast CT 1.40

CCTA 14.27
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Results

Patient population

In this study, the CAC cohort comprised 62 patients 
with a mean age of 61.4±8.1 years and a body mass index 
(BMI) of 25.6±3.1 kg/m2. There were 40 male patients and  
22 female patients. Non-contrast cardiac CT was performed 
at the time of the CCTA examination without any clinical 
interventions. Based on the standard Agatston CAC score, 
12 patients were in calcification category 0, 22 patients 
were in calcification category 1 to 99, 22 patients were in 
calcification category 100 to 399, and 6 patients were in 
calcification category >400. The baseline characteristics of 
the testing patients are shown in Table 2. 

Coronary artery segmentation and CCTA-CAC 
quantification results

The proposed pretrained deep learning-based coronary 

artery segmentation network was used to segment the 
LAD, LMCx, and RCA in our dataset. The CCTA-CAC 
score was automatically quantified according to different 
thresholds. The total analysis time was 11 s per case on an 
Nvidia Tesla V100 graphic card.

Correlation between the standard Agatston CAC and 
CCTA-CAC scores

A normality evaluation of the datasets was performed first, 
and the results are shown in Table 3. The median CCTA-
CAC score from CCTA scans [45.8 (IQR, 55.0–67.0)] was 
lower than the standard Agatston CAC score from non-
contrast CT scans [69 (IQR, 60.5–67.5)]. Spearman’s 
correlation and ICC were used to calculate the correlation 
between the standard Agatston CAC and CCTA-CAC 
scores. The results are displayed on a per-patient basis in 
Table 4 and on a per-vessel basis in Table 5. Considering 
the Spearman’s correlation and ICC values, 650 HU was 
chosen as the optimal lower threshold for calculating the 
CCTA-CAC score. On a per-patient basis, the Spearman’s 
correlation (R =0.959; P<0.001) and ICC (ICC =0.822; 
P<0.001) values indicated an almost perfect correlation. 
The Spearman’s correlation (R =0.889; P<0.001) and ICC 
(ICC =0.717; P<0.001) values also showed good correlation 
on a per-vessel basis.

Figure 4 displays the regression lines for the correlation 

Table 2 Demographic and clinical characteristics of all datasets

Characteristic Value

Clinical data (n=62)

Age, mean ± SD (years) 61.4±8.1

Male 40 (65%)

Female 22 (35%)

BMI, mean ± SD (kg/m2) 25.6±3.1

Obesity (BMI ≥30 kg/m2) 6 (9%)

Family history of CAD 17 (27%)

Angina pectoris 9 (15%)

Myocardial infarction 4 (6%)

Current smoking 30 (48%)

Current drinking 17 (27%)

High pressure 36 (58%)

Hyperlipidemia 33 (53%)

Data for coronary artery segmentation (n=134)

Age, mean ± SD (years) 60.6±8.8

BMI, mean ± SD (kg/m2) 25.2±3.0

Male number 80 (60%)

Female number 54 (40%)

BMI, body mass index; CAD, coronary artery disease; SD,  
standard deviation.

Table 3 Normality evaluation of the standard Agatston CAC scores 
and CCTA-CAC scores with arbitrarily selected thresholds on a 
per-patient and per-vessel basis

CCTA threshold (HU)
Per-patient  
normality ρ 

Per-vessel  
normality ρ

450 6.956e-11 2.540e-36

500 4.715e-13 2.383e-35

550 1.429e-16 2.243e-33

600 1.455e-18 2.989e-39

650 2.865e-22 6.345e-45

700 1.149e-22 1.154e-45

750 3.580e-23 2.119e-46

800 1.794e-23 4.381e-47

Standard-Agatston 1.879e-23 3.379e-60

CAC, coronary artery calcium; CCTA-CAC score, CCTA  
Agatston CAC score; CCTA, coronary computed tomography 
angiography. 
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of the various scores based on their averages, including 
the slope and 95% prediction interval. Figure 4A presents 
the full-range scatter plot. Figure 4B presents a magnified 
view of standard Agatston CAC scores up to 1,000. Bland-
Altman analysis of the standard Agatston CAC score as 
assessed by CCTA-CAC score (650 HU threshold) is shown 
in Figure 5.

Agreement between score risk categories

The agreement between the two methods within the 
standard Agatston CAC score risk categories is shown 

in Table 6. The underlined numbers indicate points of 
agreement between standard Agatston CAC scores and 
CCTA-CAC scores (650 HU threshold). The proposed 
CCTA-CAC score quantification method classified 47 of 62 
patients (76%) into the same cardiovascular risk category 
as did the standard Agatston CAC score, and 15 patients 
shifted to a lower category. Four (6.5%) CAC scores  
of 0.2, 1, 2.5, and 6.4 were miscalculated to zero. Importantly, 
all 12 patients in category 0 stayed in the same category after 
being given a CAC score from their CCTA scans. Overall, 
the agreement between the standard Agatston CAC score 
risk categories was good (kappa =0.756).

Table 4 Spearman’s correlation and ICC values between  
CCTA-CAC scores with arbitrarily selected thresholds and  
standard-Agatston scores on a per-patient basis

CCTA threshold (HU) Spearman’s ρ ICC

450 0.644 (P<0.01) 0.316 (P<0.01)

500 0.792 (P<0.01) 0.589 (P<0.01)

550 0.857 (P<0.01) 0.850 (P<0.01)

600 0.897 (P<0.01) 0.862 (P<0.01)

650 0.959 (P<0.01) 0.822 (P<0.01)

700 0.961 (P<0.01) 0.574 (P<0.01)

750 0.958 (P<0.01) 0.468 (P<0.01)

800 0.954 (P<0.01) 0.245 (P=0.03)

ICC, intra-class correlation; CCTA-CAC score, CCTA Agatston 
CAC score; CCTA, coronary computed tomography angiography;  
CAC, coronary artery calcium. 

Table 5  Spearman’s correlation and ICC values between  
CCTA-CAC scores with arbitrarily selected thresholds and  
standard-Agatston scores on a per-vessel basis

CCTA threshold (HU) Spearman’s ρ ICC

450 0.606 (P<0.01) 0.240 (P<0.01)

500 0.750 (P<0.01) 0.489 (P<0.01)

550 0.815 (P<0.01) 0.750 (P<0.01)

600 0.845 (P<0.01) 0.767 (P<0.01)

650 0.889 (P<0.01) 0.717 (P<0.01)

700 0.883 (P<0.01) 0.489 (P<0.01)

750 0.883 (P<0.01) 0.396 (P<0.01)

800 0.876 (P<0.01) 0.207 (P=0.03)

ICC, intra-class correlation; CCTA-CAC score, CCTA Agatston 
CAC score; CCTA, coronary computed tomography angiography;  
CAC, coronary artery calcium.

Figure 4 Regression and correlation between the non-contrast CT Agatston CAC score and the CCTA-CAC score (threshold 650 HU). (A) 
Presents the full range scatter plot. (B) A magnified view of the standard Agatston CAC score up to 1,000. Using the appropriate formula, we 
were able to better observe the correlations between the two sets of data and understand the trend of changes between them. CCTA-CAC 
score, CCTA-Agatston CAC score; CAC, coronary artery calcium; CCTA, coronary computed tomography angiography; CT, computed 
tomography. 
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Table 6 CAC score risk category agreement between CCTA-CAC scores and standard Agatston scores

Category
Standard-Agatston score

Total
0 1–99 100–399 ≥400

CCTA-CAC score (650 HU)

0 12* 4 0 0 16

0–99 0 18* 10 0 28

100–399 0 0 12* 1 13

≥400 0 0 0 5* 5

Total 12 22 22 6 62

Same 12* 18* 12* 5* 47*

Shift up 0 0 0 0 0

Shift down 0 4 10 1 15

*, the numbers indicate agreement between both methods. CAC, coronary artery calcium; CCTA-CAC score, CCTA Agatston CAC score; 
CCTA, coronary computed tomography angiography. 

Figure 5 The Bland-Altman analysis of the Agatston CAC scores as assessed with CCTA-CAC scores (threshold 650 HU). (A) The full-
range scatter plot. (B) A magnified view of the standard Agatston CAC score up to 1,000; 95% CI of mean difference, 95% CI of limits of 
agreement, and the regression line of difference are included. CCTA-CAC score, CCTA-Agatston CAC score; CCTA, coronary computed 
tomography angiography; CAC, coronary artery calcium; CI, confidence interval. 

Discussion

In this study, an automated method for the quantification 
of a CAC score from CCTA was presented and compared 
with the standard Agatston CAC score from non-contrast 
CT. The overall processing time of our method was 
approximately 11 s per case on an Nvidia Tesla V100 GPU. 
This study shows that a CAC score can be obtained from 
CCTA scans, and that it is strongly correlated with the 
Agatston CAC score from non-contrast CT, both on a per-
patient basis (R =0.959, P<0.01; ICC =0.822, P<0.01) and 
a per-vessel basis (R =0.889, P<0.01; ICC =0.717, P<0.01). 
Of the patients, 76% were classified in the same CAC risk 

category when the CCTA-CAC score was used.
The main challenge in quantifying Agatston CAC scores 

is designing an accurate method to differentiate between 
calcified plaque and coronary artery luminal contrast from 
CCTA scans. Despite the need for manual segmentation 
of CAC from CCTA scans, there are methods for the 
automated quantification of CAC scores using fixed or 
patient-specific HU thresholds. Due to the effects of 
contrast agents, it is natural to increase the HU threshold. 
Previous studies have indicated that the HU threshold 
for calcification quantification is dependent on CT scan 
protocols and the luminal contrast intensity (21,32). Glodny 
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et al. (19) used 600 HU as the calcification detection 
threshold and observed an excellent correlation. 

As threshold definitions have proved inadequate for some 
patients, patient-specific HU threshold strategies have been 
proposed. Mylonas et al. (20) set aortic attenuation +2 SD as 
the lower threshold for calcification detection and observed 
an excellent correlation, with 83% of their patients being 
classified into the same CAC risk category. Bischoff  
et al. (22) used 150% of the mean attenuation (HU) in the 
ascending aorta as the calcification detection threshold, and 
90% of their patients were classified into the same CAC 
risk category. However, although these methods achieved 
excellent correlation with the standard Agatston CAC score 
from non-contrast CT scans, they both required semi-
automated segmentation for coronary arteries.

In this study, we used a pretrained dense V-Net 
fully convolutional neural network for coronary artery 
segmentation. The accurate visualization of the coronary 
artery vessel wall provided a good premise for our final 
CAC quantification. Previous deep learning methods, such 
as pairs of ConvNets (Convolutional neural networks) (33),  
have directly identified calcified plaques without requiring 
coronary artery extraction. However, annotation of calcified 
lesions from CCTA images required a certain degree of 
clinical experience. Another problem was false positives 
caused by, for example, calcified lymph nodes or calcified 
lesions in the aorta, which had a similar intensity and 
shape as calcification plaques in the coronary arteries. 
False positives were less likely using our method, since we 
performed coronary artery segmentation first and extracted 
calcified plaques from the segmentation result.

The prognostic significance of the CAC score has been 
extensively investigated (34). One of the most important 
purposes of the CAC score is to determine the overall 
coronary atherosclerosis burden. It is also useful for the risk 
classification of patients and clinical decision-making. In our 
study, good agreement was observed between the standard 
Agatston CAC and CCTA-CAC risk categories. Besides the 
clinical significance of CAC scores, the prognostic value of 
CAC progression has also been established (35).

Like previous methods for CAC quantification from CCTA 
(22-24), our method might have the potential to reduce 
radiation exposure resulting from separate non-contrast 
and CCTA images. The radiation doses from CAC scoring 
with a multi-detector row CT scanner were 1.5–5.2 mSv 
for male patients and 1.8–6.2 mSv for female patients (36).  
We used 100 kV, Smart mA technology, and ASiR-V 
reconstruction (37) simultaneously to achieve the goal of 

significantly reducing the radiation dose without affecting 
the quantification of the CAC score, as demonstrated as 
demonstrated in Vonder et al. (38). One previous study (39) 
evaluated the effects of different iterative reconstruction 
algorithms on the CAC score using a reduced radiation dose 
protocol and proved the clinical feasibility of such a protocol. 
One of the main drawbacks of using CT equipment is the 
high exposure to radiation, which has been linked to the risk 
of tumors (40). Therefore, it should not be overlooked that 
omitting the need for non-contrast CT would also reduce 
the total radiation dosage. We hoped that while obtaining 
the anatomical structure to analyze stenosis from the CCTA 
scans, we might also analyze the calcified plaque, which 
greatly affects the prognosis of the patient. Agatston CAC 
score quantification from CCTA scans is an important part 
of coronary artery disease (CAD)—related assessments. A 
fully automated analysis could increase workflow efficiency 
and aid clinicians in dealing with the increasing number of 
acquisitions to be processed and evaluated.

There were several limitations to this study. First, we 
found an overall underestimation of the calcium score from 
CCTA images when analyzing the agreement with the 
Agatston CAC score: our proposed method underestimated 
the scores of 24% of the patients. Considering the 
Spearman’s correlation and ICC values, we chose 650 HU  
as the optimal lower threshold for CCTA-CAC score 
calculation, as its efficacy was superior to that of other 
thresholds. While using lower thresholds may have led to 
more false-positive areas and a severe overestimation of the 
calcification severity, using a fixed threshold of 650 HU 
might have reduced the calcification areas per slice. Lower 
density calcium, which is associated with a higher risk of 
future cardiovascular events, was ignored at 650 HU (41),  
which was a possible reason for the underestimations. 
Another reason was the acquisition parameters of the CCTA 
and non-contrast CT, which resulted in a difference in CT 
values between the two modalities. The underestimation 
of calcification was therefore inevitable. In future, more 
external data will be used for verification. 

Furthermore, few patients with severe calcification 
were included in the study (only 5 patients had a standard 
Agatston score of ≥400). Another weakness of this study was 
the fact that the evaluation was performed on good-quality 
images which did not contain artifacts, unusual lesions, or 
abnormalities. Also, the dataset was small. For this research, 
we were committed to obtaining plaque information on 
the premise of accurate coronary artery segmentation. 
We combined a deep learning method and conventional 
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threshold method to establish a whole-process, automated, 
fast method for CAC quantification. We plan to evaluate 
our method using a larger number of multicenter datasets 
in the future. We intend to develop a more advanced self-
adaptive calcification detection and quantification method 
to contrast attenuation. For the small amounts of coronary 
calcification that might be overlooked by the method 
proposed herein, we are now testing a deep learning-based 
extraction method while maintaining vessel segmentation 
as a prerequisite. In future, we will divide data into different 
groups according to calcification severity and image quality

Conclusions

In conclusion, we proposed an automated method for 
calcification quantification on CCTA, and it shows excellent 
correlation with standard Agatston CAC scores from non-
contrast CT. Further development of this method might 
have the potential to reduce radiation exposure from 
separate non-contrast CT and CCTA images. We hope that 
it will be possible to automatically obtain the anatomical 
structure and analyze stenosis and plaque from CCTA scans 
in CAD-related assessments. A fully automated analysis 
could increase workflow efficiency and help clinicians deal 
with the increasing number of acquisitions to be processed 
and evaluated.
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