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Abstract: The present review summarizes the available evidence on artificial intelligence (AI) algorithms 
aimed to the segmentation of epicardial and pericardial adipose tissues on computed tomography (CT) 
images. Body composition imaging is a novel concept based on quantitative analysis of body tissues. Manual 
segmentation of medical images allows to obtain quantitative and qualitative data on several tissues including 
epicardial and pericardial fat. However, since manual segmentation requires a considerable amount of time, 
the analysis of adipose tissue compartments based on AI has been proposed as an automatic, reliable, accurate 
and fast tool. The literature research was performed on March 2021 using MEDLINE PubMed Central and 
“adipose tissue artificial intelligence”, “adipose tissue deep learning” or “adipose tissue machine learning” as 
keywords for articles search. Relevant articles concerning epicardial adipose tissue, pericardial adipose tissue 
and AI were selected. The evaluation of adipose tissue compartments can provide additional information on 
the pathogenesis and prognosis of several diseases, including cardiovascular. AI can assist physicians to obtain 
important information, possibly improving the patient’s quality of life and identifying patients at risk of 
developing variable disorders.
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Introduction

The compartments of adipose tissue surrounding the 
heart are metabolically active organs. In recent years, a 
relationship has been demonstrated between epicardial 
adipose tissue (EAT) and heart diseases including coronary 
artery disease, heart failure with preserved ejection 
fraction, and atrial fibrillation (1-3). Obesity could cause 
unbalanced adipogenesis in EAT resulting in secretion of 
proinflammatory cytokines. Furthermore, the paracrine 
activity of the adipose tissue seems to be affected by other 
changes of hormonal status such as diabetes mellitus or 
menopause (4-7).

The metabolic syndrome (MetS) comprised of obesity, 
hyperglycemia, hypertension and atherogenic dyslipidemia, 
can lead to proinflammatory state and is a risk factor 
for cardiovascular diseases (Figure 1) (8). Moreover, the 
accumulation of visceral adipose tissue associated with 
MetS, non-alcoholic fatty liver disease (NAFLD) and EAT 
has been advocated as biomarker of cardiometabolic risk 
(6,9-11).

Computed tomography (CT) and magnetic resonance 
imaging (MRI) allow for non-invasive quantification of 
adipose tissue depots, including pericardial fat (12-17). 
However, quantification of pericardial adipose tissue depots 
is rarely performed outside research setting. Indeed, while 
CT is in the literature the most validated and reproducible 
technique for fat quantification, given the higher spatial 
resolution compared to MRI (18), many practical challenges 
remain. 

When quantification is performed, manual segmentation 
of epicardial fat volume (EFV) quantification is today the 
method of choice (18). Nevertheless, this approach requires 
a laborious stepwise manual segmentation of relevant 
anatomical structures, being therefore operator-dependent 
and time-consuming, not suitable for routine clinical 
practice (18). Therefore, development of computer-assisted 
tools aimed at tissue segmentation and quantification is of 
paramount importance to improve consistency of results 
and reduce processing times (18). 

In this context, artificial intelligence (AI) solutions, 
including machine learning and deep learning, has been 
recently proposed as solution to obtain fast, automatic, and 
reliable measures of abdominal adipose tissue on CT and 
MRI (19-24). 

Machine learning is a group of techniques allowing to 
extrapolate or classify models through computer learning 
(19-24). These algorithms have the potential to offer 

robust and feasible solutions to quantify adipose tissue 
compartments of the human body, including epicardial 
and pericardial fat, possibly enhancing, in an opportunistic 
fashion, the value of images acquired for other purposes. 

The present literature review will be focused on AI 
supervised methods for epicardial and pericardial fat 
analysis using CT Images. Neither other imaging modalities 
(such as ultrasound or MRI) nor other adipose tissue 
compartments (such as paracardial adipose tissue) will be 
addressed in detail.

The aim of this paper is to provide an overview of 
the available evidence on AI algorithms proposed for 
the segmentation and quantification of epicardial and 
pericardial adipose tissues on CT images. 

We present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
dx.doi.org/10.21037/qims-21-945).

Anatomy and physiology

The adipose tissue surrounding the heart is divided into 
several compartments (Figures 2,3). EAT is the adipose tissue 
localized between the myocardium and the visceral layer 
of the pericardium. The contiguity between epicardial fat 
and myocardium is an important anatomical feature, given 
the epicardial tissue distinct properties. Within the EAT 
there is the pericoronary adipose tissue (PCAT), consisting 
of adipose tissue located in a radial distance to the external 
wall of the vessel equal to the diameter of the coronary 
vessel (25). PCAT is contiguous with the adventitial layer in 
large vessels, while adipocytes are present in vascular wall of 
small vessels and microvessels (3). The pericardial adipose 
tissue is located outside the EAT. It is lined internally by the 
visceral layer (located between the EAT and the pericardial 
adipose tissue) and externally by the parietal layer, located 
between the pericardial adipose tissue and the paracardial 
adipose tissue. Hence, from the inner to the outer layer this 
anatomy can be summarized with the following scheme: 
((((((heart) perivascular adipose tissue) EAT) [pericardial 
adipose tissue = PCAT + EAT + pericardial adipose tissue] 
pericardial sac) paracardial adipose tissue) mediastinum).

EAT covers 80% of cardiac surface, with a greater 
concentration in the atrioventricular sulci, interventricular 
sulci and around the epicardial coronary arteries (26,27). 
Epicardial adipocytes are smaller in size than adipocytes 
of the subcutaneous and visceral adipose tissue. EAT also 
contains immune, stromal, inflammatory, nodal, and nerve 
tissue cells (4,28) (Figures 2,3).

https://dx.doi.org/10.21037/qims-21-945
https://dx.doi.org/10.21037/qims-21-945
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Figure 1 Pathophysiology of hypertrophic epicardial adipocytes. In obese subjects, triglycerides accumulation in adipocytes makes them 
hypertrophic. This result in a cellular and molecular inflammatory cascade with both positive and negative feedbacks involving VEGF 
and MCP-1. The mechanism determines macrophages accumulation with release of cytokines and relative local insulin-resistance with 
acceleration of lipolysis and release of FFA and reduction of adiponectin levels, and the increase in vascularization due to the increase in 
leptin and VEGF. VEGF, vascular endothelial growth factor; TNF-α, tumor necrosis factor α; MCP-1, monocyte chemoattractant protein-1; 
IL-10, interleukin-10; IL-8, interleukin-8; IL-1β, interleukin-1β; IL-6, interleukin-6; FFA, free fatty acids.

Figure 2 Thoracic CT on axial (A), sagittal (B) and coronal (C) planes. See regions of interest (ROIs) of PCAT (light orange ROI), EAT (light 
yellow ROI), pericardial adipose tissue (green ROI) and paracardial adipose tissue (light blue ROI). CT, computed tomography; PCAT, 
pericoronary adipose tissue; EAT, epicardial adipose tissue.

There are several known physiological functions of EAT 
related to cardiac physiology. It holds a protective function 
for the heart and a support for the coronary arteries 
against the torsion caused by the arterial pulse and cardiac 
contraction (29). Moreover, EAT derives from the same 
(splanchnopleuric) mesoderm as brown adipose tissue and 
omental fat cells. 

It is also a barrier against pathogens through immune 

activity, protects against hypothermia thanks to the activity 
of adipocytes that have brown or beige characteristics, 
adipocytes typically involved in thermogenesis, and 
regulates the energy supply to the myocardium through 
lipolytic and lipogenic activities (30,31).

Furthermore, it is now known that EAT is an endocrine 
organ having a unique secrotome. In fact, it exerts a 
paracrine and vasocrine activity on the myocardium and 

A B C

Stromal capillary
angiogenesis

Tissue 
vascularity ↑

Hypertrophic
adipocytes

Leptin
VEGF

TNF-α
MCP-1

Monocyte
recruitment

Macrophages
recruitment

+
Lipolysis      ↑

Adiponectin ↓

Adipocytes
insulin-resistance

–

+

IL-10

IL-8

IL-1β

TNF-α

MCP-1

IL-6

FFA release ↑

Myocardium

+



2078 Greco et al. AI, epicardial and pericardial fat

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(3):2075-2089 | https://dx.doi.org/10.21037/qims-21-945

coronary arteries through the release of adipokines with 
vasodilator, antioxidant, antifibrotic and anti-inflammatory 
activities (11,32). Indeed, EAT and pericardial adipose 
tissue correlate with several markers of oxidative stress, 
inflammation, and vascular dysfunction, underlining the 
importance of pericardial adipose tissue segmentation in 
addition to the other compartments (33).

Taken together, these arguments underline that 
adipose tissue surrounding the heart is of anatomical and 
physiological paramount importance.

AI

Machine learning

Machine learning is based in algorithms that enable 
computers to learn and predict, possibly improving 
according to experience (19). These sophisticated 
algorithms operate on large-scale heterogeneous data sets 
with the aim of discovering helpful patterns that would 
be hard or impossible to detect even for well-trained 
individuals (34). 

Machine learning is subdivided into three categories 
according to the level of human supervision: supervised, 
unsupervised and reinforcement learning (19).

In supervised machine learning, training is supervised. 

In this category the outputs are labeled by human experts, 
while the algorithm associates the inputs to the outputs. In 
unsupervised machine learning, the computer finds hidden 
structures of data and separates it into groups. The first 
subcategory provides data labels to the algorithm, while the 
second does not (19). In reinforcement machine learning, 
interactions with the environment provide computer 
learning that receives negative or positive reinforcement 
feedback (19).

These approaches can have profound implications for 
the diagnosis and treatment of diseases (34). The collection 
of specific data such as genomic testing for personalized 
cancer therapies, high-resolution two- (2D) and three-
dimensional (3D) anatomical imaging or histological 
analyses, provide basis for future medicine based on early 
and precise diagnoses, personalized treatments and improve 
health assessment (34,35).

Artificial neural networks

Artificial neural networks are mathematical and statistical 
models that process information through elements called 
neurons connected to each other by multiple connections 
(i.e., nodes and edges), with a structure inspired by the 
biological nervous system (19). This network is made up of 
input layers, hidden layers, and an output layer. Through 

Figure 3 Coronary CT on axial plane (A) shows regions of interest (ROIs) of PCAT (light orange ROI), EAT (light yellow ROI), pericardial 
adipose tissue (green ROI) and paracardial adipose tissue (light blue ROI). Curved plane reconstructions of right coronary artery (B), left 
anterior descending artery (C) and circumflex artery (D), with highlighted perivascular adipose tissue (light orange ROI). CT, computed 
tomography; PCAT, pericoronary adipose tissue; EAT, epicardial adipose tissue.
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these three levels the information is respectively entered, 
processed, and issued (19,36). This type of network can 
be achieved by three categories of learning: supervised, 
partially supervised, or unsupervised (19).

Deep learning 

Deep learning consists of a subset of neural network 
algorithms in which there are several hidden levels. The 
different deep learning models are 1D convolutional neural 
networks (CNNs) in DL framework, such as pytorch and 
tensorflow, 2D model or 3D model. These two models are 
fully connected neural network and CNNs respectively, 
being the latter learning model the most used technique in 
medical imaging analyses.

Deep learning applies a different learning method of 
raw data than machine learning, in fact, the computational 
models of deep learning are composed by multiple 
processing layers that learn data representation with 
multiple levels of abstraction (21).

Deep learning also differs from artificial neural networks 
according to the number of hidden layers, connections, 
and ability to learn significative abstractions of the inputs. 
Indeed, artificial neural networks consist of three layers 
and are trained to gain supervised representations that 
are improved for specific assignments (37). The deep 
learning system instead receives data from an underlying 
layer and creates a representation of the observed models 
by improving a local unsupervised criterion (38). A 
characteristic of deep learning is that these layers of features 
are learned from the data using a learning procedure (39).

Methods

The literature research was carried out on March 2021 
using MEDLINE PubMed Central. Only articles written 
in English, without limits of time span, were included. 
The keywords used for articles search were: “adipose tissue 
artificial intelligence”, “adipose tissue deep learning” or 
“adipose tissue machine learning”. Relevant articles related 
to EAT, pericardial adipose tissue and AI were selected also 
from the reference list of each identified article.

The title and abstract of all the articles of potential 
interest to our topic were screened, without any specific 
exclusion criteria. After this screening we filtered the 
literature search and selected 11 appropriate original articles 
for further review.

The articles investigating EAT, pericardial adipose tissue 

together with mediastinal adipose tissue were included in 
this manuscript, focusing our analysis on the former two.

AI: epicardial and pericardial adipose tissues

In recent years, several research studies investigated the 
automatic segmentation of EAT on CT (Figures 2,3) using 
machine learning and deep learning algorithms. Most of 
these studies showed a level of evidence of 3. The major 
characteristics of studies are summarized in Tables 1,2.

A common path across studies is that AI-derived 
algorithms are often validated using the Dice similarity 
coefficient. This indicator is a statistical method that is 
used to reliably measure the similarity between two sets 
of data (Figure 4). Another indicator commonly applied is 
the accuracy, a fraction of true positive and true negative 
predicted instances among all instances (51) (Figure 4). 

One of the first studies assessing a technique for 
the segmentation of the fat surrounding the heart 
compartments was reported by Rodrigues et al. (40). They 
divided the adipose tissue surrounding the heart into two 
compartments: the EAT (internal compartment) and the 
mediastinal adipose tissue (external compartment). The 
authors proposed an intersubjective registration consisting 
of multiple steps and based on the creation of an atlas that is 
subsequently moved over any cardiac CT image with range 
of Hounsfield unit (HU) of interest. Consequently, the 
similarity score was calculated and confirmation by heuristic 
method was added to reinforce the chosen position. For 
training the algorithm, a series of reliable data was provided, 
obtained from the manual segmentation of adipose tissue 
compartments of 10 male and 10 female patients. The 
model of automatic segmentation proposed by Rodrigues  
et al. showed a mean epicardial and mediastinal adipose 
tissue quantification accuracy of 98.4% and a mean 
true positive rate of 96.2%. Furthermore, for to the 
quantification of EAT, the model demonstrated a rate of 
successful automatic segmentations of 100%, a Dice score 
of 97.9%, and a true positive rate of 98.3% (40). However, 
this study was performed with an atlas-based, and not AI-
based, method.

Rodrigues et al. proposed another method of epicardial, 
and mediastinal adipose tissue segmentation based on 
regression algorithms (41). The authors analyzed images 
according to the quantity of red pixels (i.e., epicardial 
fat), green pixels (i.e., mediastinal fat), blue pixels (i.e., 
pericardium), gray pixels (i.e., areas of interest to be 
segmented), black pixels (i.e., areas not to be segmented), 
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Table 1 Summary of CT comparative studies with proposed algorithms and results of EAT and pericardial adipose tissue compartments

Authors
AI  

category
Adipose tissue  
compartments

Algorithm Accuracy
Number of 

patients
Dice score

Level of  
evidence*

Rodrigues et al. 
[2015] (40)

Machine 
learning

EAT, mediastinal 
adipose tissue

J84Graft 99.00% 20 96.80% 3

Random Forest 98.90%

REPTree 98.90%

J84 98.90%

SimpleCart 98.90%

SMO 98.30%

RandomTree 97.50%

RBFNetwork 96.80%

Spegasos 96.80%

DecisionStump 96.80%

HyperPipes 94.80%

NaiveBayes 86.00%

Rodrigues et al. 
[2017] (41)

Machine 
learning

EAT, mediastinal 
adipose tissue

Rotation Forest + – 20 – 3

MLP Regressor 98.70%

RBF Regressor 98.60%

MLP Regressor 98.50%

SMO Regressor 98.50%

Rotation Forest + –

Random Forest 98.20%

Additive Regressor + 
Random Forest

98.10%

k-NN/IBk 98.00%

Random Forest 97.60%

M5P 96.90%

Alternating –

Model Tree 96.90%

M5 Rules 96.80%

Linear Regression 95.30%

Extra Tree 95.10%

LeastMedSq 94.90%

Elastic Net 94.90%

REP Tree 94.30%

Random Tree 93.40%

Table 1 (continued)
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Table 1 (continued)

Authors
AI  

category
Adipose tissue  
compartments

Algorithm Accuracy
Number of 

patients
Dice score

Level of  
evidence*

Priya et al.  
[2019] (42)

Machine 
learning

EAT, mediastinal 
adipose tissue, 

pericardial adipose 
tissue

Proposed  
methodology

EAT 98.5% 20 EAT 98.7% 3

Mediastinal adipose 
tissue 98.4%

Mediastinal adipose 
tissue 98.2%

Pericardial adipose 
tissue 96.4%

Pericardial adipose 
tissue 98.5%

Commandeur  
et al. [2018] (43)

Deep 
learning

EAT, thoracic  
adipose tissue

ConvNets EAT 82.3%; thoracic 
adipose tissue 90.5%

250 95.3%±0.5% ob-
tained for a threshold 

ts =53.1%±5.1%

3

Commandeur  
et al. [2019] (44)

Deep 
learning

EAT ConvNets – 70 87.30% 3

Bandekar et al. 
[2006] (45)

Machine 
learning

Pericardial adipose 
tissue

Fuzzy affinity-based 
framework

Pericardial adipose 
tissue 99.13%±0.38%

23 – 3

*, SIGN100: Scottish Intercollegiate Guidelines Network 2019. CT, computed tomography; AI, artificial intelligence; EAT, epicardial adipose 
tissue.

the quantity of scan images and the index of the slice to be 
segmented. For the prediction of mediastinal adipose tissue, 
they reported a correlation coefficient of 0.9876, calculated 
with Rotation Forest algorithm with Multilayer Perceptron 
(MLP) Regressor, with a relative absolute error of 14.4% 
(root relative squared error of 15.7%) (41).

Priya et al. proposed an accurate method of adipose 
tissue segmentation using a Fruitfly Algorithm based 
on Modified region growing algorithm applied on CT  
images (42). Ground truth images of fat depots was 
provided as input to the neural network classifier, trained 
to distinguish a fat-infested image from a non-fat one 
image. Each pixel of the image was classified as epicardial 
or mediastinal. Finally, the segmented image was used as 
a source to distinguish epicardial or mediastinal adipose 
tissue based on the interpolation between pixels. This 
segmentation methodology based on the optimal neural 
network showed excellent results presenting with a 
Dice cross-correlation of 98.7 for epicardial fat, 98.2 for 
mediastinal fat and 98.5 for pericardium (42).

Moreover, Commandeur et al. proposed a deep learning 
method for the quantification of EAT and thoracic adipose 
tissue on coronary calcium scoring CT scans based on 
CNN ConvNets (43). The segmentation of the adipose 
tissue was performed on axial slices, provided as input in a 

first network Net1. Then, the hidden convolutional unit was 
used to define the thoracic mask and differentiate pericardial 
and epicardial masks. A second Net2 network detected the 
pericardium. The epicardial mask obtained from Net1 was 
used to perform a radial sampling and modify the input CT 
slice from Cartesian coordinates to cylindrical coordinates. 
The transformed input was then supplied to Net2 which 
resulted in an output probability map of the pericardial sac. 
Finally, post-processing including HU threshold values 
(e.g., −190, −30 HU) to remove non-fat pixels and median 
filtering, provided binary images for quantification of 
adipose tissue. The authors reported a strong correlation 
between automatic and manual segmentation, with Dice 
scores of 0.924 and 0.945 for EAT and thoracic adipose 
tissue volumes, respectively (43).

Subsequently,  Commandeur et  a l .  conducted a 
multicenter study aimed to the quantification of EAT on 
non-contrast calcium-scoring CT scans using deep learning 
method from multiple cohorts, scanners, and protocols 
(n=850) (44). This deep learning model was implemented 
by using CNN with the TensorFlow framework, version 
1.10.1 (http://www.Tensorflow.org), and the Keras library, 
version 2.2.2 (https://keras.io). Using this network, the 
lower and upper limits of the heart are recognized, and the 
pericardium is segmented. The EAT is quantified through 
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Figure 4 Mathematical formulas of the Dice similarity index and accuracy.

three axial sections: the classification and segmentation 
section and the previous and subsequent sections. In 
addition, post-processing consisting of median filtering 
and the HU threshold for adipose tissue is applied. This 
study reported high correlation between deep learning 
quantification and manual segmentations of two experienced 
tracers (r=0.973 and r=0.979; P<0.001). Furthermore, a 
strong correlation was also demonstrated between deep 
learning EAT progression and manual EAT progression in 
70 patients (r=0.905; P<0.001) (44).

Fully automatic deep learning method was adopted by 
Eisenberg et al. to quantify EAT volume and attenuation 
measures (HU) from non-contrast coronary CT to 
predict major adverse cardiovascular events, considered as 
myocardial infarction, late revascularization (>180 days) and 
cardiac death (47). Interestingly, they showed a correlation 
of major adverse cardiovascular events with the increased 
EAT volumes [hazard ratio, 1.03 (95% CI: 1.01–1.04), 
P<0.01] and with decreased EAT mitigation measures 
[hazard ratio, 0.83 (95% CI: 0.72–0.96); P=0.01]. Moreover, 
EAT volume correlated with serum levels of C-reactive 
protein, D-dimer, adiponectin, myoglobin, plasminogen 
activator inhibitor-1 and myeloperoxidase (P<0.01). 
These serum biomarkers together with interleukin-6, 
endothelial cell-selective adhesion molecule and matrix 
metalloproteinase-9 showed an inverse correlation 
with EAT attenuation (P<0.05). This study robustly 
demonstrated how fully automated deep learning analysis of 
EAT volume and EAT attenuation can provide important 
clinical information in asymptomatic patients (47).

Kroll et al. examined a method for fully automatic 
quantification of epicardial and paracardial adipose tissues 
for possible use in cardiovascular risk assessment (46). 
A deep learning network was used for quantification of 
adipose tissue from coronary CT in 966 patients with 
intermediate Framingham risk scores. The deep learning 
architecture used was an evolution of the system described 
by Koitka et al. (52). The body was segmented into semantic 
regions using a multi-resolution U-Net 3D network. HU 
thresholds ranging from −190 to −30 and −29 to −150 were 

used to segment adipose tissue (subcutaneous adipose tissue, 
visceral adipose tissue, intermuscular adipose tissue, EAT 
and paracardial adipose tissue, respectively) and muscle 
tissue. The Dice score on the test set showed the following 
values: subcutaneous tissue, 0.97; muscle, 0.96; thoracic 
cavity, 0.98; mediastinum, 0.90 and pericardium, 0.96. The 
results of this study showed no correlation between the 
volume and density of EAT and paracardial adipose tissue 
with the coronary artery calcium score. EAT and pericardial 
adipose tissue volume and attenuation were not significantly 
correlated with Agatston score: EAT volume r=0.19, EAT 
attenuation r=−0.09, pericardial adipose tissue volume 
r=0.25 and pericardial adipose tissue attenuation r=−0.14. 
Because EAT and pericardial adipose tissue did not show a 
significant correlation when compared with coronary artery 
calcium, these parameters should not be used as a surrogate 
marker for coronary artery calcium. 

No cut-off  scores  were identi f ied in EAT and 
pericardial adipose tissue features for high-risk coronary 
artery disease (46).

Bandekar et al. presented another method for the 
automatic quantification and classification of pericardial 
adipose tissue (45). The study performed on 23 subjects 
was divided into two phases: training phase and deployment 
phase. Using a training dataset in the first phase, object-
specific distributions (fat, non-fat, background classes) 
were estimated. The second phase consisted of multiple 
steps mainly to remove artifacts, automatically detect the 
body contour to process data within the contour, segment 
and label the different organs/tissues. The results of this 
study were compared with manual segmentation and 
showed a mean accuracy for pericardial adipose tissue of 
99.13%±0.38%, a mean true negative rate of 99.28%±0.33% 
and a mean true positive rate of 85.63%±7.42% (45).

Oikonomou et al. analyzed the radiomic profile of the 
perivascular adipose tissue using coronary CT through a 
machine learning-derived radiotranscriptomic signature (48).  
The authors performed a fundamental work composed by 
three different analyses:
 Study 1: in this study, 167 patients performed 

DICE similarity
coefficient

=
2 * area of overlap

Total area of ROls

Accuracy =
True positive + true negative

True positive + true negative + false positive + false negative



2084 Greco et al. AI, epicardial and pericardial fat

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(3):2075-2089 | https://dx.doi.org/10.21037/qims-21-945

coronary CT and underwent cardiac surgery. 
Adipose tissue biopsies were performed during 
surgery to look for a relationship between 
the expression of genes that characterized 
inflammation, fibrosis,  and vascularity and 
radiotranscriptomic evaluation. Gene expression 
was evaluated by tumor necrosis factor α (TNF-α) 
for inflammation, COL1A1 for fibrosis and 
endothelial-marker platelet and endothelial cell 
adhesion marker CD31 (PECAM1) for vascularity.

 Study 2: then, a case-control study was designed 
to distinguish the perivascular adipose tissue 
of individuals with increased risk for major 
adverse cardiac events and compare it with 
radiotranscriptomic signature of inflammation, 
fibrosis, and vascularity. The groups consisted of 
patients with a major adverse cardiac event within 
5 years and patients who had no cardiac events in 
the same period. The radiomic signature of high-
risk perivascular adipose tissue [fat radiomic profile 
(FRP)] was trained and validated by scans randomly 
divided into training/internal validation (80%) and 
an external validation set (20%), to discriminate 
high-risk cases from low-risk cases. Consequently, 
FRP was explored in 1,575 patients to verify if it 
could add value in cardiac risk prediction beyond 
traditional risk factors.

 Study 3: finally, a prospective evaluation was 
performed to assess the ability of FRP to monitor 

perivascular changes related to acute myocardial 
infarction. Forty-four patients with coronary CT 
performed 96 hours before and 6 months after 
the ischemic event were evaluated. A total of 843 
radiomic features were calculated for each adipose 
tissue segmentation using the Slicer Radiomics 
extension which incorporates the Pyradiomics 
library into 3D Slicer (v.4.9.0-2017-12-18 r26813).

The results of the three studies are summarized below:
 Study 1: the fat attenuation index (FAI) was a 

performing metric for the evaluation of adipose 
tissue inflammation. The radiomic plot showed 
a comparable or greater performance than FAI 
in detecting fibrosis and vascularity, but not 
inflammation, suggesting that adipose tissue 
phenotyping constitutes a non-invasive model for 
detecting fibrosis and microvascular remodeling of 
the adipose tissue (Figure 5).

 Study 2: radiomic phenotyping of perivascular 
adipose tissue produced 1,686 radiomic features 
(843 features around each vessel). The stability 
analysis identified 1,391 features with an intra-class 
correlation coefficient of 0.9. In the case-control 
evaluation the univariable receiver operating 
characteristic (ROC) analysis highlighted a total 
of 22, 86 and 241 of the 1,391 stable radiomic 
characteristics discriminating cases with major 
adverse cardiac events from non-major adverse 
cardiac events (P<0.001, P<0.01, and P<0.05, 

Figure 5 Comparison of nested linear regression models with relative gene expression as the dependent variable and clinical risk factors, FAI 
and radiomic (texture) phenotype.

No imaging
(clinical factors)

FAl
(fat attenuation index)

Radiomic (texture)
phenotype

TNF-α
(inflammation)

P<0.001

P=0.35

COL1A1
(fibrosis)

P<0.001

P=0.005

CD31
(vascularity)

P=0.016

P=0.015
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respectively). Moreover, FRP showed association 
with the adjusted risk of major adverse cardiac 
events [per 0.01 increments: adjusted hazard ratio 
(HR) 1.12 (95% CI: 1.08–1.15), P<0.001].

 Study 3: higher FRP (i.e., adverse perivascular 
adipose tissue remodeling) values were found in 44 
acute myocardial infarction patients undergoing 
coronary CT within 96 hours of admission 
compared to 44 matched controls undergoing 
coronary CT. Dynamic changes in perivascular 
FAI around the right coronary artery were seen at  
6 months. Furthermore, in a subclass of 10 patients 
with ST elevation myocardial infarction these 
changes were pronounced in the region adjacent 
to the culprit lesion (50). These studies applied 
an atlas-based segmentation and not AI-based 
segmentation.

Recently, Lin et al. evaluated the association of MetS 
with CT-derived cardiometabolic biomarker (NAFLD and 
EAT) with long-term risk of major adverse cardiovascular 
events in asymptomatic subjects (49). Volumetry and 
attenuation of EAT were measured using a fully automated 
deep learning algorithm included into research software 
(QFAT v2.0, CSMC, Los Angeles, CA, USA). The final 
population consisted of 2,068 participants. Subjects with 
MetS had a higher prevalence of NAFLD (26.0% vs. 9.9%), 
a greater amount of EAT (114.1 vs. 73.7 cm3), and low 
attenuation values of EAT (−76.9 vs. −73.4 HU, all P<0.001) 
compared to subjects without MetS. At 14±3 years, major 
adverse cardiovascular events occurred in 10.8% of subjects. 
Multivariable Cox analysis highlighted that NAFLD 
was predictive for major adverse cardiovascular events 
independent of EAT measures, coronary artery calcium 
score and MetS [HR 1.78 (95% CI: 1.21–2.61), P=0.003]. 
The addition of the EAT volume significantly improved the 
reclassification for major adverse cardiovascular events (22% 
over atherosclerotic cardiovascular disease risk score; 17% 
over atherosclerotic cardiovascular disease risk score plus 
coronary artery calcium score) (50).

Lastly, Tamarappoo et al. proposed a machine learning 
model integrating quantitative CT measures, clinical risk 
factors, and circulating biomarkers to provide a better 
long-term prediction of cardiac events than current risk 
assessment. As in the study by Lin et al., EAT was quantified 
by non-contrast CT using a fully automated deep learning 
algorithm (QFAT version 2.0, CSMC, Los Angeles, CA). 
The results of this study demonstrated a statistically 
significant difference between calcium artery score, EAT 

volume and EAT attenuation between patients without 
and with cardiac events (P<0.0001, P<0.0001 and P=0.002 
respectively) (50).

Taken together, studies on the topic underline that 
investigating adipose tissue surrounding the heart with 
AI-based methods can be a robust and reliable approach, 
offering novel metrics that should be further tested to 
understand whether they can contribute to improve the 
current cardiovascular risk-assessment, follow-up, and 
treatments monitoring. 

AI and body composition on cardiovascular 
imaging: perspectives

Non-invasive cardiac imaging using CT and MR has 
significantly evolved in the last decade, delivering 
anatomical and functional information at increasing 
superior levels. This is at least partially due to technological 
advances pairing advanced imaging methods with software 
solutions to extract more information from acquired images. 
As such, AI has already led to the introduction of potential 
new biomarkers like perivascular fat infiltration (48). This 
shows the potential of software techniques to extract from 
every CT or MRI scan “hidden” data regarding tissue 
characteristics that can be measured, including muscle mass 
and density, visceral and subcutaneous fat, liver fat, and 
vascular calcifications (53,54). Moreover, advanced analysis 
of medical images might provide insights into the interplay 
between functional phenotypes and genetic fingerprints 
in health and disease. In this respect AI solutions, such 
as machine learning and deep learning, can be helpful 
for researchers and physicians to improve classic disease 
definitions, genomic discovery, deep phenotyping, predict 
outcomes more precisely, and enhance our understanding 
of genetic and environmental basis of several disorders, 
including cardiovascular, with a potential positive impact on 
patient-tailored drug development (55).

There is growing interest in applying AI solutions in the 
context of opportunistic use of imaging data, to make this 
application feasible, fast, reproducible, and reliable across 
patients. It is likely that soon the value of epicardial and 
pericardial fat analysis on CT images will be empowered by 
AI, possibly becoming a clinical routine approach.

Conclusions

AI is a revolutionary innovation allowing for quantitative 
and qualitative analysis of EAT and pericardial adipose 
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tissue. These algorithms enable researchers and physicians 
to obtain important data at minimal or no additional 
cost to the healthcare system and almost no additional 
workload to physicians. The current literature showed that 
investigating adipose tissue surrounding the heart with 
AI-based methods can be a feasible, robust and reliable 
approach to obtain novel metrics that will be used in clinical 
practice. Information including quantitative and qualitative 
data of EAT and pericardial adipose tissue can have an 
impact on cardiovascular disorders, possibly enhancing 
risk stratification, pathogenesis understanding, prediction 
of clinical outcomes and overall morbidity and mortality. 
Application of AI to cardiovascular images might help to 
prevent future adverse events, and support predictive and 
precision medicine strategies to improve patients’ quality of 
life.
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