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Introduction

In clinical practice, ventricular tachycardia (VT) is usually 
treated with antiarrhythmic drugs and catheter ablation. 
However, drug therapy has a relatively low rate of overall 
effectiveness and may cause new arrhythmia. Catheter 
ablation has an approximately 50% recurrence rate for 
VT patients with non-ischemic cardiomyopathy 1 year 
postoperatively (1). In the recent years, non-invasive 
stereotactic body radiotherapy (SBRT) has been used to 
treat arrhythmia, and several studies have shown significant 
reductions in VT episodes with few serious toxicities after a 
6-week blanking period (2). However, the persistence of the 
treatment effect has varied across studies; thus, a scalable 
workflow of image-guided radiotherapy techniques must be 
created to improve the accuracy of the approach (3). 

This case report describes the SBRT treatment 
of a patient with VT who had undergone ineffective 
radiofrequency ablations. The primary purpose of this 
case report is to propose a method for accurate movement 
evaluation and tracking of the arrhythmia target through 
the registration and fusion of multimodal images.

Case presentation

A 54-year-old man was admitted to the hospital in 2013 
for repeated palpitations and syncope. He was diagnosed 
with VT and cardiogenic syncope caused by dilated 
cardiomyopathy. A cardiac resynchronization therapy-
defibrillator (CRT-D) was implanted to prevent sudden 
cardiac death. However, recurrent episodes of VT forced 
him to undergo catheter radiofrequency ablations twice in 
2018; both of which failed. The patient’s most recent visit 
for abnormal CRT-D discharge revealed that he had a VT 
burden of 37 events per day with an anti-tachycardia pacing 
(ATP) frequency of 30 sequences per month and a shock 
frequency of three events per month. According to the 
New York Heart Association classification, he had class IV 
heart failure with a left ventricular ejection fraction (LVEF) 
of 32%. The invasive electroanatomic mapping (EAM) 
showed that the patient had an epicardial VT substrate 
located at the root of the left anterior descending artery. 
Considering the high risk of coronary artery damage with 
epicardial ablation, the attending cardiologist performed 
a third endocardial catheter ablation, which was also 
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unsuccessful. As a result, the patient was referred for SBRT. 
All procedures performed in this study were in accordance 
with the ethical standards of the Ethics Committee of West 
China Hospital of Sichuan University and with the Helsinki 
Declaration (as revised in 2013). Written informed consent 
was obtained from the patient for publication of this case 
report and accompanying images. A copy of the written 
consent is available for review by the editorial office of this 
journal. The timeline of his clinical course is summarized in 
Table 1.

During simulation and treatment, the patient was 
immobilized in a vacuum bag in the supine position 
with his arms raised above his head. A large-aperture 
computed tomography (CT) simulator (Revolution CT, 
GE Healthcare, Boston, MA, USA) with 128 rows was 
used for patient simulation. Two scan protocols were 
applied: (I) free-breathing respiratory four-dimensional CT 
(r4DCT) images of single respiratory cycles were obtained 
and reconstructed into 10 phases (from 0 to 90%) at equal 
time intervals with the average intensity projection of the 
10 phases calculated as the planning CT (pCT) with a 
thickness of 2.5 mm; (II) exhale breath-hold coronary CT 
angiography (CCTA) was implemented and reconstructed 
at a thickness of 2.5 mm to effectively reduce the artifacts 
caused by heartbeats and accurately locate the gross target 
volume (GTV) of the arrhythmia. The two series of images 
were imported into the commercial MIM Maestro software 
(Version 6.8, MIM Software Inc., Cleveland, OH, USA). 
The cardiologists, who were specialty trained in SBRT, 
referred to previous EAM results and located the VT origin 
around the base of the anterior wall of the left ventricle, 
between segments 1 and 2, based on the 17-segment 

model of the American Society of Echocardiography (4); 
subsequently, we delineated the corresponding contour 
in the CCTA images as shown in Figure 1. To evaluate 
respiratory motion using r4DCT with heart motion 
artifacts, the physicists attempted to register the CCTA with 
10 r4DCT phases. The automatic rigid registration results 
shown in Figure 2 demonstrate a high degree of overlap 
between the CCTA and r4DCT-50% (the end-expiratory 
phase) images, which rendered manual adjustment almost 
unnecessary by referring to structures such as the sternum, 
ribs, diaphragm, and heart. Thus, the GTV was transferred 
from the CCTA to the r4DCT-50% images.

Using a deformable image registration algorithm in MIM, 
the GTV of the other r4DCT phases was generated from 
the r4DCT-50% results. After review and modification by 
the cardiologist, all 10 GTVs were transferred to the pCT 
and merged to create the internal target volume (ITV), as 
shown in Figure 3. Taking setup and machine errors into 
consideration, the ITV was expanded with a margin of 3 mm 
to generate a planning target volume (PTV) of 74.7 mL (2);  
the position of the PTV relative to the heart is shown in 
Figure 4. In addition, the organs at risk (OARs)—including 
the coronary artery, heart (excluding PTV), esophagus, 
bronchus, lungs, spinal cord, stomach, and liver—were 
delineated on pCT by the oncologists. The targets and 
OARs were then imported into the Eclipse treatment 
planning system (Version 13.5, Varian Medical System Inc., 
Palo Alto, CA, USA). 

The PTV was treated with a prescription radiation 
dose of 25 Gy delivered in a single fraction by an Edge 
linear accelerator (Varian Medical Systems) using 6-MV 
flattening filter beams. The two beams—one from 270° 

Table 1 Timeline

Index date Event

2013 Diagnosed as VT and implanted CRT-D

2018 1st catheter ablation failed

2018 2nd catheter ablation failed

2019 Replacement of CRT-D battery

2021 3rd catheter ablation failed

2021 Received stereotactic body radiotherapy

After 6-week blanking period Significant improvement of VT

After 6-month post-ablation period No recurrences of VT and complications

VT, ventricular tachycardia; CRT-D, cardiac resynchronization therapy-defibrillator.
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Figure 1 GTV delineated based on EAM result (A) and CCTA images (B). GTV, gross target volume, red line in (B); EAM, electroanatomic 
mapping; CCTA, coronary CT angiography.

A B

to 150° clockwise and the other from 150° to 270° 
counterclockwise—were designed using the stereotactic 
radiosurgery volumetric modulated arc technique. Following 
reverse optimization and calculation of the dose distribution 
using the analytical anisotropic algorithm, the plan was 
evaluated by a senior physicist, oncologist, and cardiologist. 
The dose distribution, dose volume histogram, and several 
crucial dose parameters are shown in Figure 4. Using 
an SRS MapCHECK (Sun Nuclear Corp., Melbourne, 
FL, USA), further dose verification was performed by 
comparing the measurement and calculation doses through 
gamma analysis. The gamma passing rate under an absolute 
dose criterion of 2% global dose difference and 2 mm 
distance-to-agreement was 99.1% (3).

After the plan was authorized for treatment application, 
an initial patient setup was carried out by aligning an 
isocenter laser with the crosshairs on the vacuum bag. We 
then obtained a cone beam CT (CBCT) image, registered 
the CBCT image with the pCT image by referring to the 
heart edge within the PTV range, spine, and sternum, and 
corrected the setup error (Figure 5). The corrected CBCT 
images were used to generate the patient’s body surface and 
a region of interest (ROI) covering the PTV was selected 
to be the reference for optical surface imaging (OSI). 
During treatment, the OSI results were interlocked with 
beam delivery of the linear accelerator to monitor real-
time surface movements in the vertical, longitudinal, and 
lateral directions as well as yaw, roll, and pitch rotations. 
When the motion amplitude in a certain direction exceeded 
a threshold of 3 mm, the linear accelerator paused the beam 

delivery until the motion amplitude returned to a stable 
state within the threshold, at which point the beam delivery 
was resumed. As shown in Figure 6, over an 8.75-min 
course of beam delivery, the patient underwent a single VT 
episode that produced significant changes in longitudinal 
movement.

Following SBRT, the patient was closely monitored in 
the coronary heart disease intensive care unit for 24 hours 
and was then followed for 6 months. To ensure patient 
safety, myoglobin, creatine kinase MB, cardiac troponin T, 
and pro-brain natriuretic peptide levels were assessed on 
day 2 and week 6 after SBRT with the results indicating that 
no myocardial damage has occurred. Following a 6-week 
blanking period, the number of incessant VT episodes 
decreased from 37 to 2 events per day (as measured by a 
24-hour Holter monitor), which represented a 94.59% 
reduction in the VT burden, and the LVEF increased from 
32% to 41%. According to the CRT-D pretreatment and 
post-treatment records, the ATP frequency decreased from 
30 sequences per month to none, and the number of shocks 
decreased from three per month to none, corresponding to 
100% reduction for each event. The patient did not develop 
any radiotherapy complications during the 6 months of 
follow-up. 

Discussion

SBRT shows marked potential for use in the noninvasive 
treatment of patients with VT who have undergone 
repeated,  unsuccessful  radiofrequency ablat ions. 
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Figure 2 Fusion series (A) of CCTA (B) and r4DCT-50% (C) images: the red lines represent the GTV. CCTA, coronary CT angiography; 
r4DCT-50%, phase 50% of respiratory four-dimensional CT; GTV, gross target volume.
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Although the factors affecting the outcome of SBRT are 
unclear, accurate movement evaluation and tracking of 
the arrhythmia target volume are the focus of our case 
presentation, which will certainly have positive effects. 
As shown in the flowchart in Figure 7, real-time image-
guided SBRT treatment in a patient with refractory VT was 
completed, and the results indicate that this method was 
safe and highly effective in the short-term.

Primarily, we believe that the precise integration of 
EAM with CT simulation to accurately locate the target 

volume and movement range of the VT substrate is critical 
to the success of SBRT. Therefore, it is necessary to rely 
on an experienced cardiologist to determine the origin of 
the VT based on EAM against the reference anatomy and 
to delineate it on CCTA images as the GTV, for which a 
respiratory movement range can be generated on r4DCT 
images. Several studies have reported the registration and 
fusion workflow of EAM and CT images, providing an 
objective reference for cardiologists (5,6). 

For immobilization, many centers use vacuum bags with 
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Figure 3 Motion evaluation of GTV from 10 phases on pCT: the red line represents the GTV obtained from r4DCT-50%, the blue lines 
represent the GTV obtained from other phases, and the yellow line represents the ITV. GTV, gross target volume; pCT, planning CT; 
r4DCT-50%, phase 50% of respiratory four-dimensional CT; ITV, internal target volume.

Figure 4 PTV position and dose evaluation of the treatment plan: PTV position (A), dose distribution (B), dose volume histogram (C), dose 
parameters (D). PTV, planning target volume.
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Figure 5 Registration of CBCT and pCT images: the green image pertains to CBCT, the red image pertains to pCT, and the red line 
represents PTV. CBCT, cone beam CT; pCT, planning CT; PTV, planning target volume.

Figure 6 Results of body surface tracking during treatment (A) and statistical analysis (B). 
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negative pressure membranes or abdominal-pressure plates, 
which represent a significant challenge to patients. Another 
option might be to use a vacuum bag alone and expose the 
patient’s body surface for OSI to enable the monitoring 
of surface movement in real time (7). To account for the 
movement of the GTV, which is affected by heart rhythm 

and respiratory motion, we collected CCTA and r4DCT 
sequences and used them to reconstruct pCT and image-
guided reference images. Furthermore, it is convenient to 
perform registration and fusion for CT images obtained 
within the same coordinate system. Gating techniques are 
applied to ensure the accuracy of beam delivery; to achieve 
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Figure 7 Overall workflow of image-guided stereotactic arrhythmia radiotherapy. EAM, electroanatomic mapping; CCTA, coronary CT 
angiography; r4DCT, respiratory four-dimensional CT; pCT, planning CT; GTV, gross target volume; PTV, planning target volume; OSI, 
optical surface imaging; CBCT, cone beam CT.

this goal in our study, a ROI on the patient’s body surface 
was selected as a surrogate for the PTV, and real-time 
OSI was performed to interlock beam delivery with the 
surrogate movements. 

There are several limitations to the use of SBRT in 
VT treatment. Although several study results have shown 
significant improvement in cardiac function with no VT 
recurrence in the short-term, long-term follow-up results 
and research on the mechanism by which high-energy rays 
eliminate the arrhythmia are lacking. Furthermore, despite 
individual cases having reported PTV maximum doses 
exceeding 30 Gy and different fractional patterns such as 
24 Gy/3 fractions, the most widely used prescription is a 
single-fraction of 25 Gy (8-11). In terms of protecting the 
OARs from radiation, SBRT used for arrhythmia treatment 
is implemented as single-fraction high-dose radiotherapy for 
which there is no uniform reference regarding the relative 
biological effectiveness. Long-term follow-up studies have 
reported a strong correlation between coronary artery 
damage and death due to heart disease in patients receiving 
thoracic radiotherapy; however, excessive protection of the 

coronary arteries can lead to reduced dose coverage. In our 
case, the PTV partially overlapped with a coronary artery. 
To avoid insufficient PTV radiation dose, we ensured the 
uniformity of the dose distribution and prevented the 
hotspot from the coronary artery range, and no coronary 
artery damage occurred during short-term follow-up. 
Therefore, clinicians should make decisions based on the 
patient’s condition, especially whether to deliver a sufficient 
dose to the target volume or to strictly constraint the OAR 
dose. Additionally, the relative biological effectiveness and 
OAR dose limitations will need to be verified in future 
clinical trials. 

Despite the existence of outstanding questions regarding 
SBRT in arrhythmia treatment, our encouraging initial-
stage results indicate that the proposed treatment is quite 
promising. However, this clinically significant outcome 
should be further assessed in long-term follow-up studies 
for effectiveness and complications. The next step will be 
to conduct a multicenter clinical trial to refine protocols 
for patient selection, treatment planning, and the delivery 
of SBRT. The exact mechanism of radiotherapy in the 
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treatment of arrhythmia also needs to be studied, which will 
require collaboration among cardiologists, oncologists, and 
physicists and will hopefully promote the development of 
new approaches.
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