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Background: Computed tomography (CT) is widely used in medical diagnoses due to its ability to non-
invasively detect the internal structures of the human body. However, CT scans with normal radiation doses 
can cause irreversible damage to patients. The radiation exposure is reduced with low-dose CT (LDCT), 
although considerable speckle noise and streak artifacts in CT images and even structural deformation may 
result, significantly undermining its diagnostic capability. 
Methods: This paper proposes a multistage network framework which gradually divides the entire process 
into 2-staged sub-networks to complete the task of image reconstruction. Specifically, a dilated residual 
convolutional neural network (DRCNN) was used to denoise the LDCT image. Then, the learned context 
information was combined with the channel attention subnet, which retains local information, to preserve 
the structural details and features of the image and textural information. To obtain recognizable characteristic 
details, we introduced a novel self-calibration module (SCM) between the 2 stages to reweight the local 
features, which realizes the complementation of information at different stages while refining feature 
information. In addition, we also designed an autoencoder neural network, using a self-supervised learning 
scheme to train a perceptual loss neural network specifically for CT images. 
Results: We evaluated the diagnostic quality of the results and performed ablation experiments on the loss 
function and network structure modules to verify each module’s effectiveness in the network. Our proposed 
network architecture obtained high peak signal-to-noise ratio (PSNR), structural similarity index measure 
(SSIM), and visual information fidelity (VIF) values in terms of quantitative evaluation. In the analysis of 
qualitative results, our network structure maintained a better balance between eliminating image noise and 
preserving image details. Experimental results showed that our proposed network structure obtained better 
metrics and visual evaluation.
Conclusions: This study proposed a new LDCT image reconstruction method by combining autoencoder 
perceptual loss networks with multistage convolutional neural networks (MSCNN). Experimental results 
showed that the newly proposed method has performance than other methods.
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Introduction

Computed tomography (CT) technology is widely used 
in medical imaging. Its high accuracy and noninvasive 
characteristics are increasingly being used to detect 
abnormalities inside the body. Detection with CT has been 
an essential means of diagnosing cancer (especially lung 
nodules) and detecting internal injuries and other diseases 
in the past few decades. Compared with other diagnostic 
methods, it can easily distinguish lung nodules smaller 
than 30 mm, making CT an indispensable cancer screening 
device. Although X-ray CT has many benefits, there 
are concerns that a large amount of X-ray radiation will 
inevitably cause damage to the body. A CT scan’s radiation 
dose is equivalent to dozens of times the amount of standard 
X-ray irradiation. Studies have shown that in a chest X-ray 
exposure, the radiation dose received by a person is identical 
to the dose of natural radiation exposure received during 
daily life over 10 days. However, in a chest CT scan, the 
amount of radiation exposure is equivalent to the dose of 
natural radiation received during daily life over 2 years (1).  
Studies have found that infants who have undergone 
multiple head CT scans are 3 times more likely to develop 
leukemia than those who have not undergone CT scans (2). 
Considering these risks, CT scans with reduced radiation 
doses have become a particular interest for researchers.

Generally speaking, there are 2 different methods to 
reduce the risk of radiation: one approach is to reduce the 
X-ray tube’s voltage or current to reduce the number of 
X-rays emitted; another technique is to minimize the path 
of X-rays. However, by reducing the X-ray tube’s voltage or 
current to minimize the X-ray flow, a considerable reduction 
in the number of photons will render the reconstructed 
CT image full of noise. Reducing the number of samples 
will cause many artifacts in the reconstructed image. Both 
methods will significantly reduce image quality. Therefore, 
ensuring the quality of CT images under the premise of 
reducing the radiation dose has become an important topic 
for researchers. There are 3 main ways to research low-
dose CT (LDCT) image denoising: sinogram domain 
filtering before reconstruction, the iterative reconstruction 
(IR) method, and postreconstruction CT image processing 
technology (3).

Before reconstruction, the sinogram domain filtering 
method’s primary purpose is to filter out noise from the raw 
data of the low-dose X-ray beam’s CT. Typical scenarios 
include bilateral filtering (4), structural adaptive filtering (5),  
and penalized, weighted least-squares algorithm (6). The 
commonality of these methods is the combination of 
physical characteristics and photon statistical characteristics 
for denoising. Other classic forms, such as a nonlinear 
statistical filter (7), are mainly used to improve the 
denoising process filter. However, these algorithms are 
overly dependent on the suppliers of CT equipment. 
Moreover, these methods also require raw data that many 
commercial CT scanners cannot obtain. Sinogram filtering 
algorithms are often limited in practical applications.

One of the earliest methods proposed in CT imaging was 
the IR method. In recent years, with the rapid development 
of graphics processing units (GPUs), this type of approach 
has been reused by researchers in image reconstruction. 
The IR technology regards the LDCT image denoising 
process as the inverse problem solving the optimal solution. 
First, the regular term is designed, the objective function 
is optimized, and the iterative process stops until a better 
signal-to-noise ratio (SNR) is obtained. IR based methods, 
such as total variation (TV) (8), non-local means (NLM) (9),  
and Markov random field (MRF) prior (10), dictionary 
learning (11), and other techniques (12,13). Although the 
CT image reconstructed using the IR method is of high 
quality, it relies on the supplier’s projection data. The 
implementation of the algorithm needs to be integrated 
with the scanner. The algorithm has many iterations, and 
the reconstruction process is prolonged, computational cost 
is high, and various factors limit its clinical application.

Unlike the sinusoidal domain filtering and IR methods, 
the image space denoising algorithm does not require 
projection data. This type of method directly reconstructs 
the CT image. Compared with the IR method, its 
reconstruction speed is breakneck and does not require the 
supplier to provide raw data. It can be easily integrated into 
the workflow of the CT equipment. The super-resolution 
processing of raw images inspires this type of algorithm, 
including NLM filtering methods (14), dictionary learning 
methods (15), block matching algorithms (16), and diffusion 
filters (17). Although this method is more straightforward 
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in the algorithm implementation process than the above 2 
methods, the reconstructed LDCT image’s noise is often 
unevenly distributed and too complex to be processed by 
these methods.

In recent years, in image processing, deep learning 
(DL) methods have achieved exciting results. Using the 
representative algorithm of DL-convolutional neural 
network (CNN), it is possible to achieve very high efficiency 
in medical image synthesis (18), medical imaging (19), lesion 
detection (20), and other fields (21). The combination of 
GPUs’ high computing power and batch normalization (22)  
and residual learning (23) make it possible to train deep 
networks. In the field of LDCT images, the introduction 
of DL algorithms into the reconstruction process was first 
proposed by Chen et al. (24), who introduced the famous 
ultra-resolution CNN (25) for LDCT image recovery 
and improved noise removal performance using 3-tier 
convolutional networks. They then proposed a residual 
encoder-decoder CNN (RED-CNN) (26), which had 
an excellent denoising effect and achieved a high peak 
signal-to-noise ratio (PSNR). With the emergence of 
generative adversarial networks (GAN), Yang et al. (27) 
used Wasserstein distance instead of Jensen-Shannon (JS) 
divergence. They introduced the visual geometry group 
(VGG) loss function based on mean squared error (MSE) 
loss, which overcame the loss of gradient and retained 
the details of LDCT. Chi et al. (28) improved the GAN 
network of U-net as a generator combined with multistage 
differentials and designed multiple loss functions to 
optimize the denoising network. Ma et al. (29) used a GAN 
network combined with mixed loss function for LDCT 
noise learning. Shan et al. (30) compared modular CNN 
with typical iterative rebuild methods from 3 well-known 
vendors and showed competitive LDCT rebuild results. 
So far, the innovative network structure based on DL has 
achieved a better denoising effect and significantly reduced 
the algorithm’s computational complexity. Zhou et al. (31) 
used the expansion residual density network for magnetic 
resonance imaging (MRI) image recovery and frequency 
domain recovery. Expanding convolution in the image 
domain has a sizeable sensory field that better captures 
correlations between anatomical regions and synthesizes 
lost anatomical information in the event of high signal 
distortion. Inspired by the successful computer vision 
application, Huang et al. (32) introduced the attention 
mechanism into the cycle-consistent generative adversarial 
network’s (CycleGAN) generator for LDCT denoise and 
achieved satisfactory results. In addition, Ataei et al. (33)  

cascaded 2 identical neural networks to recreate fine 
structural details in low-contrast areas by minimizing 
perceived loss. However, VGG feature extractors are 
trained for natural image classification. If you migrate to 
CT images, you often generate features unrelated to CT 
image denoising and lose important details (34). Therefore, 
VGG loss is not the best-perceived loss in the field of CT 
imaging. Recently, in the field of natural image restoration, 
Zamir et al. (35) have innovatively proposed a multistage 
progressive image recovery architecture that restores clean 
images at each stage using a lightweight subnet. This 
method avoids using the same network structure at each 
stage, produces a fantastic denoising effect, and verifies the 
effectiveness of the multistage network framework.

Although DL has contributed to LDCT image 
reconstruction, areas worthy of further research include 
how to effectively design the depth model, fully extract 
the feature information of the image, remove the image 
noise while effectively retaining the structural features of 
the lesion, and restore the detailed content of the image. 
Therefore, we introduced the multistage convolutional 
neural network (MSCNN) architecture into the LDCT 
imaging process and designed a network structure designed 
explicitly for CT imaging. This paper considers a complex 
balance between removing image noise, preserving the 
image’s structural details and texture information, and 
improving image contrast. The uniqueness of our method 
can be summarized as follows:

(I) We introduced mult i s tage  CNN network 
architecture to LDCT imaging. Due to its 
multistage nature, our network architecture breaks 
down challenging LDCT denoising tasks into 2 
subtasks and thus maintains a complex balance 
between image denoising and preservation of detail.

(II) We introduced a self-calibration module (SCM) for 
progressive learning. Inserting a supervised SCM 
between the 2 stages establishes an extended range of 
spatial and inter-channel correlations, thus avoiding 
useless information interference and generating 
more differentiated feature representations.

(III) We have proposed an autoencoder neural network, 
which can enhance the expressive ability of the 
entire network. The normal-dose CT (NDCT) 
image is trained into manifold features through the 
self-encoding network structure and the encoder 
part of the self-encoding network is used to train 
the perceptual loss function of the multistage 
network to extract the features more effectively.
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The remainder of this paper is organized as follows. 
Section Methods introduces the overall framework and 
presents our proposed network structure and loss function 
modules. Section Results introduces the details of the 
experiment. First, ablation experiments were performed on 
each module of the network structure, and then qualitative 
and quantitative comparisons with several advanced 
methods were carried out. Section Discussion draws 
conclusions and outlines our next research direction.

We present the following article in accordance with the 
Materials Design Analysis Reporting (MDAR) checklist 
(available at https://dx.doi.org/10.21037/qims-21-465).

Methods 

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). Assuming 
that z∈RH×W represents the LDCT image, and x∈RH×W 
represents the corresponding NDCT image, the goal of 
the denoising process is to find the function (f) that maps 
LDCT to NDCT:

 :f z x→ . [1]

The denoising process we propose is not to directly 
remove the noise in LDCT but to gradually synthesize an 

image close to NDCT through a progressive MSCNN. The 
first stage of our proposal was to extract feature information 
from LDCT images, then refine the extracted features 
through the SCM, and pass them to the next stage. During 
the second stage, we introduced channel attention subnets, 
modelled the dependencies of each channel to improve the 
network’s presentation capabilities, and adjusted the features 
channel by channel, retaining the detail-rich features. 
In addition, based on the VGG perception loss, a self-
encoding perception loss was also proposed to optimize the 
denoising model. Next, we detailed the network structure of 
the algorithm and the innovative modules presented in the 
network structure.

Network structure

The aim of LDCT image denoising is to generate CT 
images with better quality, less noise, and precise texture 
details. To achieve this goal, we must design a successful 
network structure. The overall process of the multistage 
network architecture is shown in Figure 1. Section A is 
composed of 2-stage sub-networks. The first stage is 
based on the dilated residual CNN sub-network, which 
uses LDCT images as input. The subnetwork learns rich 
context information in the receptive field and performs 
initial denoising on the input LDCT image. Since image 

Figure 1 Flowchart of MSCNN network: the first stage uses dilated residual convolution to extract multiscale context features and perform 
initial denoising, the second stage of the subnetwork concatenated the original LDCT image features and the image after the initial 
denoising characteristic and introduced the channel attention subnet. A supervised self-calibration module is added between the 2 stages, 
which learns to refine the features of one stage before passing it to the next stage. The pink and blue dotted arrows indicate the cross-level 
feature fusion mechanism. MSCNN, multistage convolutional neural network; LDCT, low-dose computed tomography.
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denoising is a position-sensitive task, it requires pixel-to-
pixel correspondence from input to output. Therefore, 
the second stage of the subnetwork concatenated the 
original LDCT image features and the image after the 
initial denoising characteristic and introduced the channel 
attention subnet. It is hoped that the dependency of 
each channel can be modelled to improve the network’s 
presentation ability, and the features can be adjusted 
channel by channel to preserve the detail-rich features. 
It is worth noting that instead of simply cascading sub-
networks in multiple stages, we added a SCM between the 
2 stages, establishing long-range spatial and inter-channel 
correlations to avoid useless information interference while 
generating more differentiated feature representations. In 
Section B, we used the NDCT image and the denoised CT 
image as input. The encoder network of the autoencoder 
trained by the self-supervised method learns compression 
coding features, which are used as the perceptual loss of the 
entire network structure.

Dilated residual convolutional neural network (DRCNN)

Under normal circumstances, the classic method of 
increasing the receptive field includes adopting a pooling 
layer in the network structure to perform the down-
sampling process, design a larger filter, and stack more 
convolutional layers. Although the downsampling process 
using the pooling layer is widely used in classification tasks 
and has achieved good results, it is not recommended to 
use the pooling layer in the field of natural image super-
resolution and medical image denoising. The main reason is 
that using the pooling layer to perform the downsampling 
process will result in the loss of structural details, which 
are essential for medical images. Even if the corresponding 
upsampling method (such as transposed convolution) is 
applied, these structural details cannot be wholly restored. 
Designing a larger filter and stacking more convolutional 
layers will consume memory resources and reduce the 

algorithm’s efficiency. Dilated convolution can achieve the 
purpose of rapidly increasing the receptive field by using 
only a tiny part of the network weight. We generally define 
one-dimensional (1D) dilated convolution based on the 
following mathematical Eq. [2]:

 ( ) ( ) ( )1
,f

k
y i x i r k kω

=
= +∑  [2]

where x(i) represents the input of dilated convolution, 
and y(i) represents the output of dilated convolution. ω 
represents the weight vector of the filter with length f, and r 
represents the expansion rate.

The receptive field of the L-th convolution with a filter 
f×f and an expansion rate of r can be expressed through the 
following mathematical Eq. [3]:

 ( )1 1L LRF RF f r−= + −  [3]

The total number of weights required by the N-layer 
convolutional network with a filter of f×f can be expressed 
through the following Eq. [4]:

 ( )2 2 2 22WeightM n f c n f N n f c= × × + × × − + × ×  [4]

among them, n represents the number of filters in each 
convolution layer, and c represents the convolutional 
channels. Table 1 lists the number of convolutional layers, 
the number of weights required to obtain the same 
receptive field under the same filter, and the input and 
output channels. The comparative results show that the 
dilated convolution can obtain a larger receptive field with 
only a small number of layers and weights.

To better demonstrate the denoising performance of 
dilated convolution, we designed a CNN with asymmetric 
dilation rate as a module of the entire LDCT denoising 
network structure. To obtain more image features, we added 
identity mapping to the output of the shallow convolution 
and the input of the deep convolution to optimize the entire 

Table 1 Number of convolutional layers and number of weights that need to be trained to obtain RF =13 for filters of different sizes

Filter size Dilation rate Number of layers needed for RF=13 Number of weights

3×3 r=1 6 148608

5×5 r=1 3 105600

7×7 r=1 2 6272

3×3 r=3 2 1152

RF, receptive field. The filters in each layer are n=64, and the number of channels c=1.
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network’s performance. The overall structure is shown in 
Figure 2. The network structure contains 7 convolutional 
layers with symmetric expansion rates, and the expansion 
rates are set to 1, 2, 3, 4, 3, 2, and 1. When the expansion 
ratio is set to 1, the expansion convolution is equivalent 
to ordinary convolution. The convolution kernel of each 
convolution layer is 3×3, and the filters in the first to sixth 
convolution layers are 64; the last layer of the convolution 
filter is set to 1. The batch normalization layer was added 
after the second to sixth layer convolution. The activation 
functions are all Leaky Rectified Linear Unit (LeakyReLU), 
and the step size in all convolution layers is set to 1. In this 
paper, to fully use the input image’s detailed information, 
we added an asymmetrical residual structure to improve the 
network’s performance. As shown in Figure 2, the output 
images of the first, second, and third layers are the same as 
those of the first layer. The input images of the fifth, sixth, 
and seventh layers are connected. These skip connections 
transfer the CT image’s low-level features to high-level 
ones, mainly since the initial input image contains many 
features (grey features, texture features, and shape features).

Attention mechanism

Attention mechanism can refine the perceptual information 
while retaining the context information and has been 
successfully applied to advanced tasks such as image 
classification (36,37), segmentation (38,39), and detection 
(37,40). In recent years, image denoise (41,42), ultra-
resolution (43,44), image deblur (45,46), and other low-
level tasks have also shown excellent results. Among them, 
the self-attention network can fully demonstrate the 
global dependency of each word (47) or image (40) in a 
sentence using multiplication between matrices. Squeeze 
and excitation networks can capture dependencies between 
channels by compressing global spatial information into 

channel descriptors (36). Zhang et al. (43) proposed a 
residual in the network, which focuses on learning high-
frequency information through jump connections and 
adjusts channel characteristics adaptively, considering the 
dependence between channels. Zamir et al. (35), under 
the supervision and prediction of local ground truth, 
generated attention graphs to suppress the characteristics 
of less information. Under the weight of channel attention, 
the details of the original image were retained, indicating 
the effectiveness of the attention mechanism in image 
restoration. Song et al. (48) put forward multiple self-similar 
networks, using the relationship between non-local features 
and explained the effectiveness of the attention mechanism 
in CT image denoising tasks. Therefore, this section 
proposes 2 different types of attention structures embedded 
in the network structure we offer.

SCM 
When we added the SCM module, we focused on 
improving CNN’s basic convolutional feature conversion 
process without adjusting the entire network model 
architecture, thereby enhancing the expression of the 
output features. We split a standard convolution into 4 small 
convolutions, adaptively establishing long-range spatial and 
inter-channel correlations around each point at each spatial 
location without increasing the amount of computation, 
while somewhat avoiding interference with some useless 
information about unrelated areas of global information, 
so that it can explicitly combine richer information to help 
CNN generate more differentiated representations.

As shown in Figure 3, first divided the input x∈RC×H×W 
evenly along the channel direction to obtain 2 identical 
mappings 

 
2

1 2,
C H W

x x R
× ×

∈ . The dimension of the convolution 
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Figure 2 Schematic diagram of the proposed DRCNN architecture. DRCNN, dilated residual convolution neural network.
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Figure 3 Schematic diagram of the proposed SCM. SCM, self-calibration module.
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used K2, K3, and K4 to self-calibrate x1 and to obtain the 
output Y1. To effectively collect each spatial location’s rich 
context information, convolution feature conversion was 
performed in 2 different scale spaces: the feature map in the 
original scale space and the downsampled latent space with 
smaller resolution (used for self-calibration). Considering 
that the downsampling part had a larger receptive field, we 
used the feature map in the latent space to transform the 
feature information to guide the feature transformation of 
the original feature space step by step. In the second path, 
we used K1 to perform a simple convolution operation on 
x2 to preserve the original spatial information and obtain 
the output result Y1. Finally, the 2 path results Y1 and Y2 
were connected in series to achieve the final output Y. The 
specific calculation process is as follows:

 ( )1down rF AvgPool x=   [5]

 ( ) ( )( ){ }1 4 3 1 2 1up downY x F F xϕ ϕ σ ϕ = ⋅ +    [6]

 ( )2 1 2Y xϕ=   [7]

among them, φ1, φ2, φ3, and φ4 respectively represent 4 
convolution operations, Fdown refers to the downsampling 

process, this process mainly for the average pooling 
operation on the input x1, where the filter is 4×4, the 
stride size is 4, and the r size is 4. The Fup describes the 
upsampling process and performs bilinear interpolation on 
the downsampling result, and σ is the sigmoid function.

Channel attention module (CAM)
Traditional CNN-based approaches often treat feature 
diagrams equally across channels, resulting in a lack of 
rational use of advanced and low-level feature information. 
To make full use of the characteristic information of each 
channel, we adopted the channel attention mechanism, with 
the aim of improving the network’s presentation ability by 
modelling the dependence of each channel and adjusting 
the features channel by channel, while retaining detailed 
features.

We introduced the native resolution subnet (NRS) in 
the second stage in Figure 1. The subnet contains multiple 
native resolution blocks (NRB); each NRB contains multiple 
CAMs. As shown in Figure 4, assuming that the input of the 
CAM is an H×W image, and the number of channels is C, 
to obtain the weight vector of the channel, a global average 
pooling operation was adopted for the input information. 
After pooling, 2 1×1 convolutional layers were first used to 
compress the channels, and then they were restored to fuse 
the information between the channels. Finally, the 1×1×C 
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vector was converted into a weight vector through the 
sigmoid function. This process can be described through 
the following equation:

 ( )( )( )up downs f F F G zδ=  [8]

where z represents input data, G represents global average 
pooling, Fdown represents the channel with a convolution 
layer of 1×1 downsampling operation, Fup represents 
the channel with a convolution layer of 1×1 upsampling 
operation, δ represents the Parametric Rectified Linear 
Unit (PReLU), and f represents the sigmoid activation 
function.

Objective function

Perceptual loss of autoencoding training
In previous work (33), the most commonly used perceptual 
loss for studying the structure of image denoising network 
has been several convolutional layers of VGG-19, neural 
training on the raw image data set ImageNet (https://
image-net.org/), and the output of the 16th convolutional 
layer, which is as follows:

 
( ) ( ) ( )( ) ( )

2

,
1

VGG x z F
L G E VGG G z VGG x

whd
 = −  

 [9]

where VGG() represents the feature map obtained from the 
VGG network, G(z) represents the denoising result of the 
LDCT image, x represents the NDCT image, and w, h, and 
d represent the width, height, and depth of the feature map, 
respectively.

Since CT images are usually a mixture of geometric 
shapes, textures, and non-uniformly distributed noise, 
the feature extraction of CT images is more complex 
and challenging than that of natural images. A potential 
problem of using VGG loss is that the VGG feature 

extractor is trained for natural image classification. If the 
transfer learns CT images, it often generates features 
unrelated to CT image denoising and even loses important 
details (34). Therefore, VGG loss is not the best perceptual 
loss function for LDCT denoising. However, the main 
challenge of training perceptual networks in specific 
domains is that CT datasets are usually unlabeled, making it 
impossible to apply supervised learning to train new neural 
networks from scratch or transfer existing DL models. 

We designed a self-encoder network consisting of 
encoder networks and a decoder network to solve this 
complex problem. The network from the input CT images 
of normal dose can be processed through the encoder to 
learn compression coding. Then, it is reconstructed into the 
original input image through the decoder, and the whole 
training process is carried out in a self-supervised training 
method. The perceptual loss used in section B of Figure 1 
only uses the encoder part of our autoencoder network. The 
decoder part is only used to train the entire autoencoder 
network. In the next section, we introduce the various 
components of the autoencoder network in detail.

As shown in Figure 5, four different types of blocks: the 
residual block, the downsampling block, the upsampling 
block, and the final block are the autoencoder network’s 
core blocks. The downsampling block (Figure 4B) uses 
stride-size convolution to reduce the feature map’s 
dimensionality to obtain better computational efficiency. 
Compared with the max-pooling layer, stride-size 
convolution selects features for downsampling. The residual 
block (Figure 4A) contains residual connections, which 
integrate low-dimensional features into the calculation 
process of high-dimensional features. This design shows 
better performance for deep neural networks. The 
upsampling module (Figure 4C) converts the feature map 
to its original dimensions to generate the final output. We 
used the nearest neighbor interpolation upsampling layer 

Figure 4 Diagram of the CAM in the proposed NRS in the second stage in Figure 1. CAM, channel attention module; NRS, native 
resolution subnet.

C
onv

C
onv

C
onv

C
onv

P
R

eLU

P
R

eLU

G
A

P

GAP Global average pooling Element-wise sum Element-wise product Sigmoid function

https://image-net.org/
https://image-net.org/


1937Quantitative Imaging in Medicine and Surgery, Vol 12, No 3 March 2022

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(3):1929-1957 | https://dx.doi.org/10.21037/qims-21-465

and then used a convolutional layer for upsampling. We 
chose this design to replace the deconvolution layer to avoid 
the ‘checkerboard’ effect. The padding of all convolutional 
layers in the encoder and decoder blocks was reflection 
padding. By using this approach, better results can be 
provided at the edges of the generated image.

The detailed content of the self-encoder network is shown 
in Figure 6. The encoder network contains 3 down-sampling 

blocks and 4 residual blocks, with 64, 128, 256, 256, 256, 
256, and 256 filters, respectively. The decoder network 
contains 4 residual blocks, 2 upsampling blocks, and a final 
block, where the filters are 256, 256, 256, 256, 128, 64, and 1, 
respectively. The convolution kernel, step size, and padding 
number of the first downsampling block in the encoder are 
7, 1, and 3, respectively. The convolution kernel, step size, 
and padding number of the second and third downsampling 

Figure 5 Basic building blocks of encoder and decoder: (A) residual block, (B) downsampling block, (C) upsampling block, and (D) final 
block.

Figure 6 Proposed autoencoder network; the pink module represents the downsampling block, the blue module represents the residual 
block, the green module represents the upsampling block, and the purple module represents the final block. NDCT, normal-dose computed 
tomography.
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blocks are 4, 2, and 1. The residual block’s convolution 
kernel, step size, and padding number are all 3, 1, and 1. The 
decoder’s upsampling block’s convolution kernel, step size, 
and padding number are 5, 1, and 2, respectively. The final 
block’s convolution kernel, step size, and padding number 
are 7, 1, and 3, respectively. The autoencoder network uses 
the MSE objective function to constrain the original input 
image and the generated image.

After the self-encoder network training was completed, 
we extracted the output of the encoder part as the learned 
feature and applied it to the perceptual loss function:

 
( ) ( ) ( )( ) ( )

2

,
1

AE x z F
L G E G z x

whd
φ φ = −  

 [10]

where Φ represents the encoder part of the self-encoding 
network, G(z) represents the denoising result of the LDCT 
image, x represents the NDCT image, and w, h, and d 
represent the width, height, and depth of the feature map, 
respectively.

Loss of structural restoration
Generally, in the field of image denoising, the most 
commonly used indicators to evaluate image quality are 
PSNR and structural similarity index measure (SSIM) (49). 
The higher the scores of these 2 indicators, the better the 
denoising effect and the richer the detailed information 
retained. Therefore, to improve the PSNR value, we 
compared the L1 and L2 loss functions more fully. The L1 
loss function, also called the mean absolute error (MAE) (50),  
and the L2 loss, also called the MSE loss (51), are both 
based on the pixel average measurement method but 
have different effects in denoising. The L2 loss focuses 
on penalizing relatively enormous pixel differences and 
tolerates relatively minor pixel differences. Based on this, 
in our denoising network, we used the L1 loss function and 
expressed it through the following mathematical formula:

 ( ) ( )1 1 1

1 N

i
L G G z x

N =
= −∑  [11]

where N represents the number of pixels, G(z) represents 
the denoising result of the LDCT image, and x represents 
the NDCT image.

Medical CT images of different dose levels have a 
strong feature correlation. The SSIM considers the 
perceived quality and texture information of the image from 
brightness and contrast. In the process of medical diagnosis, 
the SSIM is more in line with human visual observation 
than PSNR and MSE. Therefore, we introduced the classic 

SSIM and defined it according to the following formula: 
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2 2 2 2
1 2

2 2
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where μ represents the average value of the 2 images 
compared, and σ represents the 2 images’ standard 
deviation. The C1=(K1L)2 and C2=(K2L)2 formulae are 
constants to eliminate numerical singularities, where L 
represents the maximum pixel value of the image, and k1 
and k2 are constants. To obtain richer detailed structure 
and texture information in the image, we anticipated that 
the larger the value of SSIM, the better. In many cases, 
the gradient descent method was used to minimize the 
parameters. Therefore, we re-expressed the SSIM loss 
function using the following formula:

 ( ) ( )1

1, 1 ,N
SSIM i ii

L x y SSIM x y
N =

= −∑  [13]

If only the L1 loss is used in the structural restoration 
loss, the generated denoised image will be too smooth; 
similarly, if just the SSIM-based loss is used, the overall 
denoising effect will also be unsatisfactory. To balance 
noise reduction and structure maintenance, we combined 
2 loss functions and gave them different weights. Finally, 
the structure recovery loss was expressed according to the 
following mathematical formula:

 ( )1 1SR SSIML L Lµ µ= + −  [14]

Total loss function
We combined the different loss items introduced above into 
a mixed loss function to guide our entire denoising network. 
Our overall loss function includes the perceptual loss and 
structure recovery loss of self-encoding training. The 
general objective function formula is defined as follows:

 
1total AE SRL L Lλ= +  [15]

Results

In this section, we verify the effectiveness of our proposed 
algorithm through experiments. First, we introduced the 
data set used in the experiment and the parameter settings 
required for the training process. Secondly, we performed 
ablation experiments on each module of the network 
structure to verify its effectiveness. Finally, we carried out 
the method proposed by ourselves and the most advanced 
method. The comparison verified the effectiveness of our 



1939Quantitative Imaging in Medicine and Surgery, Vol 12, No 3 March 2022

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(3):1929-1957 | https://dx.doi.org/10.21037/qims-21-465

overall network structure.

Experimental datasets

The primary purpose of our proposed network structure is 
to denoise LDCT. Therefore, our datasets used an actual 
clinical data set provided by the Mayo Clinic (Rochester, 
MN, USA). The image data of this dataset is made of the 
American Association of Physicists in Medicine (AAPM) 
LDCT game held in 2016. It contains 2,378 pairs of 
quarter- and normal-dose abdominal CT images of 10 
patients. Our experiment divided the data set into 2 
experimental parts. We trained and validated 8 patients and 
tested the remaining 2 patients.

We chose the simulated quarter-dose CT image for 
practical training in the training phase and the NDCT 
image was used as the training target value. Considering 
the limited number of CT images that could meet the 
requirements of our experiment, we also adopted the 
overlapping patch strategy, which not only finds spatial 
interconnection between patches but also significantly 
accelerates the convergence of the learning model (52). 
In terms of data preprocessing, the original LDCT and 
NDCT images were 512×512 pixels; we randomly divided 
the entire CT image into 20 overlapping 64×64 images of 
patches, resulting in 36,480 pairs of patches. The test set 
was a full-size image from both cases. To prevent overfitting 
caused by the complexity of the model, we took the “5-
fold cross-validation” to train the network, and the data set 
was randomly divided into 5 copies, each training selected 
one of the data sets as a validation set, the remainder of the 
data set as a training set. To maintain rigor, in subsequent 
benchmark experiments, we used the same number of image 
patches for training. The parameter settings of the training 

process followed the parameter values mentioned in the 
original text for the entire experimental procedure. As 
shown in Figure 7, the CT Hounsfield unit (HU) scale was 
normalized, and their pixels value was scaled between 0 and 
1 as the input to the network.

Parameter setting

The MSCNN network uses the adaptive moment 
estimation (ADAM) (53) optimizer training.  The 
hyperparameter selection learning rate of the ADAM 
optimizer is α=1.0×e−4, and the exponential decay rates are 
settings β1=0.9 and β2=0.999. We set the learning rate of all 
convolutional layers in the network to 3×10−4, attenuated 
0.5% after each epoch, and set the total epochs to 60. 

Parameter selection plays a vitally important role in the 
performance of the algorithm. For the 2 hyperparameters λ 
and µ involved in the objective function, this paper reports 
experiments on the Mayo data set. First, the parameter 
values reported in the literature (50) were used as the 
references, and the values of λ and µ were adjusted to train 
the network. The test results’ average PSNR and SSIM 
values vary with the values of λ and µ, as shown in Table 2.  
It can be seen from the table that with the increase of λ 
and µ, the PSNR and SSIM values increase first and then 
decrease once λ=10 and µ=0.84 are reached, so that the test 
results achieve the best average PSNR and SSIM values. 
Therefore, the parameters were set to λ=10 and µ=0.84 in 
this experiment.

The second stage NRS in the network contains three 
NRBs, and each NRB uses 8 CABs. The proposed 
algorithm is written in Python on the Pytorch platform 
and implemented on an Intel Xeon Silver 4210R central 
processing unit (CPU), 64 GB RAM (Intel, Santa Clara, 

Figure 7 Scales of the CT HU are normalized, and their pixel values are normalized to [0, 1]. CT, computed tomography; HU, Hounsfield 
unit.
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CA, USA), and 2 GPU cards (NVIDIA RTX A5000, 
NVIDIA, Santa Clara, CA, USA) with 48 GB memory to 
speed up the training process, which lasts for 10 h.

Ablation study of proposed methods

We conducted ablation experiments on each key module 
of the proposed network structure to verify each module’s 
performance.

Different loss functions lead to different denoising 
results
Previous studies have proposed various valuable and classic 
loss functions to study the mapping between low- and high-
dose CT images. Therefore, this article also discusses the 
influence of different loss functions on the denoising effect. 
We discussed other loss functions on the denoising effect: 
L1, LSSIM, LVGG, and LAE. To show the effectiveness of the 
autoencoding perceptual loss, we verified the effectiveness 

Table 2 Comparison of different quantitative results of different hyperparameters (mean ± SD)

(λ, μ) PSNR SSIM VIF

(8, 0.76) 29.8392±0.1105 0.8538±0.0079 0.2329±0.0021

(8, 0.8) 29.8491±0.1069 0.8536±0.0080 0.2376±0.0018

(8, 0.84) 29.8419±0.0907 0.8544±0.0064 0.2435±0.0020

(8, 0.88) 29.8579±0.1008 0.8635±0.0075 0.2446±0.0025

(8, 0.92) 29.8695±0.1079 0.8679±0.0072 0.2487±0.0022

(9, 0.76) 29.8694±0.1050 0.8736±0.0063 0.2505±0.0024

(9, 0.8) 29.8732±0.0887 0.8725±0.0051 0.2536±0.0018

(9, 0.84) 29.8831±0.0993 0.8794±0.0096 0.2583±0.0026

(9, 0.88) 29.8837±0.0981 0.8875±0.0091 0.2616±0.0031

(9, 0.92) 29.8924±0.0916 0.8934±0.0058 0.2648±0.0027

(10, 0.76) 29.9036±0.0853 0.8976±0.0060 0.2676±0.0020

(10, 0.8) 29.9039±0.0882 0.8989±0.0043 0.2749±0.0019

(10, 0.84) 29.9170±0.0709 0.9096±0.0041 0.2755±0.0016

(10, 0.88) 29.9062±0.0713 0.9098±0.0038 0.2789±0.0012

(10, 0.92) 29.8986±0.0705 0.8967±0.0037 0.2727±0.0023

(11, 0.76) 29.8887±0.0868 0.8913±0.0076 0.2645±0.0029

(11, 0.8) 29.8759±0.0946 0.8855±0.0073 0.2642±0.0017

(11, 0.84) 29.8662±0.0859 0.8776±0.0055 0.2579±0.0019

(11, 0.88) 29.8581±0.0929 0.8738±0.0064 0.2536±0.0026

(11, 0.92) 29.8566±0.0976 0.8652±0.0042 0.2466±0.0028

(12, 0.76) 29.8523±0.1072 0.8561±0.0081 0.2468±0.0032

(12, 0.8) 29.8471±0.1093 0.8533±0.0059 0.2430±0.0018

(12, 0.84) 29.8496±0.1104 0.8509±0.0066 0.2359±0.0030

(12, 0.88) 29.8438±0.1041 0.8498±0.0062 0.2329±0.0021

(12, 0.92) 29.8368±0.1097 0.8412±0.0071 0.2318±0.0027

PSNR, the peak signal-to-noise ratio; SSIM, structural similarity; VIF, visual information fidelity. (λ, μ), the two hyperparameters involved in 
the objective function.
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of the loss under the CNN network architecture and the 
MSCNN network architecture. For the CNN network 
architecture, we combined the CNN network CNN-LAE 
with autoencoding perceptual loss proposed in this article, 
CNN-L1 with L1 loss, CNN-LSSIM with LSSIM loss, and 
the CNN network with VGG perceptual loss CNN-LVGG 
was the comparator. We compared MSCNN-LAE with the 
autoencoding perceptual loss for the MSCNN network 
architecture, MSCNN-L1 with L1 loss, MSCNN-LSSIM with 
LSSIM loss, and MSCNN-LVGG with VGG perceptual loss. 
We experimented with different network structures and 
compared the relationship between convergence and epoch. 

The relationship between the average loss value of all the 
above neural networks and the epoch during the training 
process and measured by L1 loss and VGG loss is shown in 
Figure 8. In Figure 8A, the relationship between the average 
L1 loss value and 8 different network structures epochs is 
shown. Our proposed MSCNN-LAE network is better than 
other networks based on MSCNN, but also MSCNN’s 
network converges faster and achieves the lower average L1 
loss value. Since the pure CNN structure is relatively simple, 
all CNNs that have not undergone multistage training can 
converge quickly. The CNN-L1 uses L1 loss as the objective 
function; CNN-L1 obtains the lowest error value in the 
L1 loss metric. The entire convergence curve decreases 
speedily and then converges smoothly, and the convergence 
speed is also the fastest. However, the excessive smoothness 
of the whole CNN-L1 convergence curve is problematic. 
The convergence curve of CNN-LSSIM shows a trend of 

first declining and then rising. The MSCNN-LSSIM also 
shows a similar floating trend with CNN-LSSIM in terms of 
L1. This shows that the LSSIM-based method and the mean-
based method have different emphases in minimizing the 
perceptual similarity between the real and the generated 
NDCT image.

The relationship between the VGG loss and 8 different 
network structures epochs is shown in Figure 8B. We 
documented that our proposed MSCNN-LAE network has 
the fastest convergence speed by comparing the MSCNN-
based network. The VGG loss of MSCNN-LAE is very 
close to the VGG loss of MSCNN-LVGG, and MSCNN-
LVGG obtains a lower VGG loss value mainly because the 
MSCNN-LVGG network takes VGG loss as its objective 
function. The CNN-LVGG takes VGG loss as the inherent 
training objective function; CNN-LVGG has the fastest 
convergence speed in VGG loss measurement and the 
lowest loss value. However, a lower VGG loss value does 
not mean that the algorithm has received a better denoising 
effect. Subsequent experimental results showed that the 
noise generated by the VGG-based network structure will 
weaken its advantages. Moreover, Table 3 also provides 
a comparison of the quantitative effects of different loss 
functions. By comparing CNN-LVGG and CNN-LAE, the 
self-encoding perceptual loss further improves the PSNR 
and SSIM. In the comparison of results based on the 
multistage network architecture, similar results were also 
obtained, supporting the effectiveness of the self-encoding 
perceptual loss in the network structure.

Figure 8 Relationship between the convergence of different network structures and epoch: (A) L1 loss convergence; (B) VGG loss 
convergence. VGG, visual geometry group; CNN-L1, convolution neural network with L1 loss; CNN-LSSIM, convolution neural network 
with LSSIM loss; CNN-LVGG, convolution neural network with LVGG loss; CNN-LAE, convolution neural network with LAE loss; MSCNN-L1, 
multistage convolution neural network with L1 loss; MSCNN-LSSIM, multistage convolution neural network with LSSIM loss; MSCNN-LVGG, 
multistage convolution neural network with LVGG loss; MSCNN-LAE, multistage convolution neural network with LAE loss.
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Effectiveness of DRCNN
To verify the effectiveness of the DRCNN in the network 
structure, we replaced the DRCNN in MSCNN with 
regular CNN, compared it with MSCNN, and labelled 
them as RMSCNN-L1 and MSCNN-L1 for convenience. 
As shown in Figure 9—the first rows of Figure 9B,9C—the 
denoised image of RMSCNN-L1 is too smooth, and there 
are more structural distortions. In the region of interest 
(ROI) area indicated by the enlarged rectangular frame, it 
can be observed that the CNN-based method has jagged 
marks on the boundary of the white area indicated by the 
yellow arrow. Our proposed MSCNN-L1 is more effective 
in maintaining edge features. As shown in the red ellipses 
in Figure 9F,9G, RMSCNN-L1 blurs the overall structure 
details and causes part of the structure to be lost; in contrast, 
our MSCNN-L1 method restored the details better. Table 3 
also shows the quantitative results of denoising. The results 

show that the PSNR and SSIM of MSCNN-L1 are superior 
to RMSCNN-L1.

Effectiveness of the SCM
The SCM is an attention mechanism. To demonstrate 
the importance of SCM, we compared MSCNN with 
the MSCNN network framework without SCM, as 
shown in Figure 10. These network structures are trained 
through L1 loss, and they are labelled NMSCNN-L1 and 
MSCNN-L1, respectively. The ROI area of the denoised 
effect of 2 network structures is shown in Figure 10D,10E. 
Comparing the location indicated by the blue arrow 
with NMSCNN-L1 without a SCM, MSCNN-L1 avoids 
some waxy artefacts and makes the organ surface look 
smoother. By comparing the area indicated by the red 
arrow, MSCNN-L1 also produces a sharper edge structure 
than NMSCNN-L1 without a SCM. The residual effect is 
shown in Figure 10A,10B, where it can be observed that the 
SCM we proposed avoids more noise, indicating that the 
denoised image generated by the MSCNN-L1 network is 
closer to the NDCT image. Furthermore, Table 3 also gives 
the quantitative results of denoising, and the results show 
that the PSNR and SSIM of MSCNN-L1 are better than 
NMSCNN-L1. We verified the importance of the SCM in 
CT imaging through ablation experiments.

Effectiveness of multistage network structure
To verify the effectiveness of a multi-stage network, we 
compared multi-stage network MSCNN and single-
stage network, as shown in Figure 11. As can be seen from 
Figure 11D,11E, the MSCNN-LVGG network trained 
based on VGG perceptual loss eliminates more fringe 
artifacts and produces clearer and finer structural texture 
information. As shown in Figure 11A,11B, the denoised 
image generated by the MSCNN-LVGG network is more 
explicit, which demonstrates that the denoised image 
generated by MSCNN-LVGG is closer to the ground truth. 
The quantitative results in Table 3 also show that the 
MSCNN-LVGG network achieved higher PSNR and SSIM 
than the Stage1-LVGG network. We verified the importance 
of a multistage network structure in CT imaging through 
ablation experiments. 

Effectiveness of self-encoding perceptual loss
To verify our proposed self-encoding perceptual loss 
effectiveness, we visualized the feature map between the 
self-encoder and the traditional ImageNet trained VGG. 
For VGG, we used the VGG-19 network. Its architecture 

Table 3 Comparison of quantitative results of different network 
structures (mean ± SD)

Method PSNR SSIM

LDCT 21.3792±0.0729 0.6746±0.0032

CNN-L1 27.1561±0.0718 0.7739±0.0043

CNN-LSSIM 26.7653±0.0807 0.7814±0.0051

CNN-LVGG 24.6706±0.0793 0.6905±0.0048

CNN-LAE 25.0175±0.0761 0.7248±0.0045

STAGE1-LVGG 27.2858±0.0892 0.7752±0.0063

MSCNN-L1 27.5239±0.1087 0.7773±0.0040

RMSCNN-L1 27.4364±0.1025 0.7787±0.0044

NMSCNN-L1 27.3536±0.0894 0.7769±0.0049

MSCNN-LSSIM 26.9459±0.0955 0.7841±0.0062

MSCNN-LVGG 27.4661±0.0929 0.7792±0.0057

MSCNN-LAE 27.5462±0.0730 0.7866±0.0050

PSNR, the peak signal-to-noise ratio; SSIM, structural similarity; 
LDCT, low-dose CT; CNN-L1, convolution neural network with 
L1 loss; CNN-LSSIM, convolution neural network with LSSIM loss; 
CNN-LVGG, convolution neural network with LVGG loss; CNN-LAE, 
convolution neural network with LAE loss; Stage1-LVGG, stage1 
network structure in Figure 1 with visual geometry group (VGG) 
loss; MSCNN-L1, multistage convolution neural network with 
L1 loss; RMSCNN-L1, multistage convolution neural network 
based on the regular convolution neural network with L1 loss; 
NMSCNN-L1, multistage convolution neural network none of 
self-calibration module with L1 loss; MSCNN-LSSIM, multistage 
convolution neural network with LSSIM loss; MSCNN-LVGG,  
mult istage convolut ion neural network with LVGG loss;  
MSCNN-LAE, multistage convolution neural network with LAE loss.
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Figure 9 Comparison of the denoising CT images generated by the RMSCNN-L1 and the MSCNN-L1: (A) LDCT image, (B) denoised 
image generated by the RMSCNN-L1, (C) denoised image generated by the MSCNN-L1, (D) NDCT image, (E) ROI of LDCT image, (F) 
ROI of RMSCNN-L1, (G) ROI of MSCNN-L1, and (H) ROI of NDCT. The red rectangle and the red ellipse represent the reconstruction 
area we are concerned with. The yellow arrow represents the structural recovery area of concern. CT, computed tomography; RMSCNN-L1, 
multistage convolution neural network based on the regular convolution neural network with L1 loss; MSCNN-L1, multistage convolution 
neural network with L1 loss; LDCT, low-dose CT image; NDCT, normal dose CT image; ROI, region of interest.

contains 16 convolutional layers and 3 fully connected 
layers. We chose the output of the 16th layer as the extracted 
features. For our proposed self-supervised autoencoder, 
we selected the output of the encoder part as the extracted 
feature. We extracted 64 feature maps with the same spatial 
size as the input for the 2 methods and compared them 
visually, as shown in Figure 12. The qualitative result graph 
shows that the feature map extracted by the self-encoding 
network is more evident in contour and texture than the 
feature map extracted by the VGG network. At the same 
time, in Table 3, the quantitative comparison results of 
CNN-LVGG, CNN-LAE, MSCNN-LVGG, and MSCNN-LAE 
are also presented, proving the effectiveness of self-encoding 
perceptual loss in the network structure.

Qualitative comparison of denoising results

We selected 2 patients’ CT images from the test set, and 

their denoising effects were described in detail, including 
some anatomical information of the lesion structure. 
To show the performance of the algorithm, we not only 
compared the traditional classic denoising algorithm block-
matching and 3D filtering (BM3D) (54) but also compared 
several latest denoising algorithms, including the CNN-
based network structure RED-CNN (26), GAN-based 
network structure Wasserstein generative adversarial 
network with visual geometry group perceptual loss 
(WGAN-VGG) (27), least squares generative adversarial 
network with a hybrid loss function (LSGAN-LHybrid) (29),  
cycle-consistent generative adversarial network with 
attention (CAGAN) (32), and dilated residual learning 
(DRL) based on cascade network (33). The qualitative 
comparison results of 2 abdominal CT images are shown in 
Figure 13 and Figure 15. To more clearly evaluate the image 
denoising effect of different denoising network models, 
we also marked the ROI in the resulting image. This area 
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was enlarged and compared, as shown in Figures 14,16, 
respectively. It is worth noting that all models’ denoising 
tasks were focused on image content restoration and image 
denoising.

The LDCT image and the corresponding NDCT 
image are shown in Figure 13A,13H, which clearly display 
the substantial image differences. The red rectangle in 
Figure 13H marks the lesion and/or metastasis in the 
image. The red rectangular area in Figure 15H shows low-
density liver lesions. In the ROI area of NDCT shown in  
Figures 14H,16H, these lesions can be observed; contrastingly, 
as can be seen in Figures 14A,16A, compared with NDCT, 
the initial LDCT image is severely degraded, and the 
critical structural features for clinical diagnosis are blurred. 
All the network structures in the figure show different 
degrees of denoising effects. Although the BM3D algorithm 
suppresses the noise to a certain extent, in denoised images  

Figures 13B,15B can be seen, some block and grid artifacts 
are present in the entire denoised image, and some edges and 
small structures are blurred. The RED-CNN method is a 
denoising method based on the mean value. The process is 
based on the mean value and can effectively remove noise, but 
its shortcoming is that it easily blurs the reconstructed image. 
It can be observed from Figure 13C that although RED-CNN 
significantly suppresses more noise, it obscures much essential 
structural information in the hilar area. In the enlarged ROI 
of Figures 14C,16C, although RED-CNN can make the image 
look less noisy, it transitions and obfuscates some anatomical 
structure information. There is a big gap in the precision of 
RED-CNN compared with the original NDCT. 

In the advanced denoising method based on the GAN 
network, the images produced by the WGAN-VGG 
algorithm in Figures 13D,15D show better visual effects and 
structural detail preservation. However, the area near the 

Figure 10 Comparison of denoising CT images produced by NMSCNN-L1 and MSCNN-L1: (A) Resi.NMSCNN-L1 denoising image, 
(B) Resi.MSCNN-L1 denoising image, (C) NDCT image, (D) ROI of NMSCNN-L1, (E) ROI of MSCNN-L1, and (F) ROI of NDCT. 
The red rectangle represents the area of image reconstruction we are interested in; Blue and red arrows are used to indicate image recovery 
details. CT, computed tomography; NMSCNN-L1, multistage convolution neural network none of self-calibration module with L1 
loss; MSCNN-L1, multistage convolution neural network with L1 loss; Resi.NMSCNN-L1, residual image between NDCT image and 
NMSCNN-L1 denoising image; Resi.MSCNN-L1, residual image between the NDCT image and the MSCNN-L1 denoising image; 
NDCT, normal dose CT image; ROI, region of interest.
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red circle in Figure 14D and the red arrow in Figure 16D 
show that the algorithm may severely distort the structural 
information of the original image. The main reason is 
that because the VGG loss is based on a pretrained CNN 
network of ImageNet, the detailed features of natural 
images are entirely different from those of CT images. 
Although pixel-based measurement methods have good 
noise reduction performance, the content is blurred to a 
certain extent, resulting in the loss of structural details. 
The method based on perceptual loss can preserve texture 
and structure better than the method based on the mean 
value. Compared with WGAN-VGG, LSGAN-LHybrid, and 
CAGAN, as shown by the red circles in Figures 14,16, our 
proposed MSCNN can show portal vein metastasis more 
clearly and better preserve portal vein information. 

In the cascade-based network, we compared the most 
advanced DRL algorithm. We know that Figures 13F,15F 
generated by the DRL algorithm are too smooth, the 

structure is not clear, and the texture is not apparent. A 
better visual effect in image details and more structural 
components similar to NDCT images in human perception 
evaluation is shown in Figure 15G. Based on a comparison 
of the positions indicated by the 2 blue arrows in  
Figure 14F,14G. Figure 14F looks more or less blurred 
and sometimes even disappears, while Figure 14G remains 
visible. Compared with all the previous methods, the 
noise reduction advantage of the MSCNN method is 
undeniable, especially in the dark background area in the 
green ellipse in Figure 14B-14G. The 2 blue arrows in  
Figure 14B-14G indicate that some detailed structures 
are lost in all denoised images. These details are almost 
smoothed into the background area by all denoising 
methods, especially in BM3D, RED-CNN, and DRL; the 
MSCNN method yields the least detailed information. 
By comparing the low-density liver lesions in the CT 
image of the abdomen in Figure 16, although all methods 

Figure 11 Comparison of the denoising CT image generated by Stage1-LVGG and MSCNN-LVGG: (A) Resi.Stage1-LVGG denoising image, (B) 
Resi.MSCNN-LVGG denoising image, (C) NDCT image, (D) ROI of Stage1-LVGG, (E) ROI of MSCNN-LVGG, and (F) ROI of NDCT. Red 
rectangles, red circles and red ellipses represent the areas of image reconstruction we are concerned with. CT, computed tomography; Stage1-
LVGG, stage1 network structure in Figure 1 with visual geometry group loss; MSCNN-LVGG, multistage convolution neural network with visual 
geometry group loss; Resi.Stage1-LVGG, residual image between the NDCT image and the Stage1-LVGG denoising image; Resi.MSCNN-LVGG, 
residual image between NDCT image and MSCNN-LVGG denoising image; NDCT, normal dose CT image; ROI, region of interest.
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Figure 12 Schematic diagram of the feature map generation process based on the VGG and self-encoding networks: the top row is the input 
image, the middle is the VGG network and the self-encoding network, the bottom is the feature map extracted from the image, the left 
column of the bottom row is the feature map extracted by the VGG network, and the right column is the feature map extracted by the self-
encoding network. VGG, visual geometry group.

have grey-black shadows, MSCNN has more conspicuous 
shadow areas, which are beneficial for disease diagnosis. In 
summary, our proposed MSCNN network achieves a better 
balance between noise reduction and structural protection, 
resulting in better image quality.

Quantitative analysis

To quantitatively analyze the reconstruction results of 
different algorithms, 3 objective evaluation indexes, namely 
PSNR, SSIM, and visual information fidelity (VIF), were 
used in this paper to evaluate the quality of denoising 
images quantitatively. The PSNR is an evaluation index 
for evaluating image quality based on the error between 
corresponding pixels. The greater the PSNR value, the 
greater the ratio between (I) the detailed information that 
needs to be retained and (II) the noise information that 
needs to be suppressed in the generated image; that is, the 
more complete the valuable information of the image is 
retained, the better the denoising effect of the generated 
image. The SSIM measures image similarity from 3 aspects: 
brightness, contrast, and structure. The more significant 

the SSIM value, the better the visual effect of the generated 
image. The VIF is a measure of the fidelity of an image’s 
visual information as defined by Sheikh et al. (55). The larger 
the VIF value, the better the quality of the generated image. 

As shown in Figure 17, RED-CNN achieved higher PSNR 
and SSIM. Since the nature of the PSNR is to regress to the 
mean, the regression optimization algorithm based on the 
norm has a higher PSNR value than other feature-based 
models. However, although RED-CNN gets a good score on 
the image quality measurement, it can still visually evaluate the 
image content in the case of excessive smoothness. Therefore, 
these indicators may not be comprehensive enough to assess 
image quality and indicate diagnostic performance. 

Although WGAN-VGG, LSGAN-LHybrid, and CAGAN 
obtain lower PSNR and SSIM values, they can provide 
better visual quality and better statistical properties. The 
low scores of WGAN-VGG, LSGAN-LHybrid, and CAGAN 
may be due to the loss of subtle structural information 
or noise features affecting diagnostic accuracy. The DRL 
also obtained higher PSNR and VIF scores due to the 
cascaded network-based and MSE loss effectiveness. 
Both PSNR and SSIM pay more attention to pixel-level 

VGG network Autoencoder network
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Figure 13 Results of abdominal CT scans from the test set using different methods: (A) LDCT, (B) BM3D, (C) RED-CNN, (D) WGAN-
VGG, (E) LSGAN-LHybrid, (F) DRL, (G) CAGAN, (H) MSCNN, and (I) NDCT, the red rectangular frame represents the enlarged area of 
Figure 14. CT, computed tomography; LDCT, low-dose CT; BM3D, block-matching and 3D filtering; RED-CNN, residual encoder-decoder 
convolutional neural network with L2 loss; WGAN-VGG, Wasserstein generative adversarial network with visual geometry group perceptual 
loss; LSGAN-LHybrid, least squares generative adversarial network with a hybrid loss function; DRL, dilated residual learning; CAGAN, cycle-
consistent generative adversarial network with attention; MSCNN, multistage convolution neural network; NDCT, normal-dose CT image.
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similarity, and VIF uses natural statistical models to pay 
more attention to the characteristics of the human visual 
system. We conclude that MSCNN has obtained the best 
scores of all indicators compared with the above algorithm. 
The quantitative analysis results show that the MSCNN 
network architecture proposed in this paper can improve 
the denoising performance.

Visual assessments

To verify the algorithm’s effectiveness regarding clinical 
images, we invited 3 radiologists to evaluate 20 sets of 
images visually. These 20 groups of images were randomly 
selected from the data set. Each group of images included 
an LDCT image and 7 images generated by 7 different 
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Figure 14 Enlarged part of the ROI marked by the red rectangle in Figure 13. (A) LDCT, (B) BM3D, (C) RED-CNN, (D) WGAN-VGG, 
(E) LSGAN-LHybrid, (F) DRL, (G) CAGAN, (H) MSCNN, and (I) NDCT, the red circle indicates structural deformation, and the green and 
blue arrows indicate two organizational structures. LDCT, low-dose computed tomography; BM3D, block-matching and 3D filtering; RED-
CNN, residual encoder-decoder convolutional neural network with L2 loss; WGAN-VGG, Wasserstein generative adversarial network 
with visual geometry group perceptual loss; LSGAN-LHybrid, leasts squares generative adversarial network with a hybrid loss function; DRL, 
dilated residual learning; CAGAN, cycle-consistent generative adversarial network with attention; MSCNN, multistage convolution neural 
network; NDCT, normal-dose CT image; ROI, region of interest.
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denoising algorithms. A corresponding NDCT image was 
used as the reference object. The 3 radiologists used 4 
indicators, noise suppression (NS), artifact reduction (AR), 
detail restoration (DR), and comprehensive quality (CQ) to 
evaluate the image quality after denoising. The evaluation 
score ranged from 1 to 5 points, with 1 representing 
‘bad’ and 5 representing ‘excellent’. Each radiologist 

independently evaluated the final score. The CQ score 
of each algorithm was the average score based on the 3 
evaluation criteria. The final score was expressed as the 
average of the 3 radiologists’ scores and standard deviations. 
Table 4 lists the quantitative results of the final evaluation.

Consistent with our expectations, the LDCT images 
were severely damaged due to the decreased radiation dose, 
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Figure 15 Results of abdominal CT scans from the test set using different methods: (A) LDCT, (B) BM3D, (C) RED-CNN, (D) WGAN-
VGG, (E) LSGAN-LHybrid, (F) DRL, (G) CAGAN, (H) MSCNN, and (I) NDCT, the red rectangular frame represents the enlarged area 
of Figure 16. CT, computed tomography; LDCT, low-dose CT; BM3D, block-matching and 3D filtering; RED-CNN, residual encoder-
decoder convolutional neural network with L2 loss; WGAN-VGG, Wasserstein generative adversarial network with visual geometry group 
perceptual loss; LSGAN-LHybrid, least squares generative adversarial network with a hybrid loss function; DRL, dilated residual learning; 
CAGAN, cycle-consistent generative adversarial network with attention; MSCNN, multistage convolution neural network; NDCT, normal-
dose CT image. 
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and their final evaluation score was the lowest. In this study, 
all denoising models improved their scores to a certain 
extent. In Table 4 we can observe that RED-CNN had the 
highest score on the NS index, but it lost more detailed 
information. This shows that methods based on the MSE 
loss function can generally obtain better noise reduction 

performance but are not good at detail recovery. The 
network based on perceptual loss achieved better scores in 
DR and artifact removal. The WGAN-VGG, CAGAN, 
and our proposed MSCNN network all maintained detailed 
information very well, but the noise reduction effect of the 
MSCNN network was better. This evaluation result also 
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Figure 16 Enlarged part of the ROI marked by the red rectangle in Figure 15: (A) LDCT, (B) BM3D, (C) RED-CNN, (D) WGAN-VGG, (E) 
LSGAN-LHybrid, (F) DRL, (G) CAGAN, (H) MSCNN, and (I) NDCT. The red arrow indicates structural deformation. LDCT, low-dose 
computed tomography; BM3D, block-matching and 3D filtering; RED-CNN, residual encoder-decoder convolutional neural network with 
L2 loss; WGAN-VGG, Wasserstein generative adversarial network with visual geometry group perceptual loss; LSGAN-LHybrid, least squares 
generative adversarial network with a hybrid loss function; DRL, dilated residual learning; CAGAN, cycle-consistent generative adversarial 
network with attention; MSCNN, multistage convolution neural network; NDCT, normal-dose CT image; ROI, region of interest.
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confirmed our experimental results. The MSCNN achieved 
the best balance between image noise reduction, improved 
perception quality, and structural DR with self-calibration 
and auto-encoding modules. It also had the best overall 
effect on diagnosis.
Discussion

This study’s primary purpose was to denoise LDCT images 
so that denoised CT images could get as close as possible 
to normal dose CT images. To this end, we introduced 
the multistage progressive network architecture proposed 
by Zamir et al. (35) into the LDCT imaging process. We 
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Figure 17 Comparison of quantitative results of image processing on the test set with different methods: the three metrics are PSNR, 
SSIM, and VIF. PSNR, peak signal-to-noise ratio; SSIM, structural similarity; VIF, visual information fidelity; LDCT, low-dose computed 
tomography; BM3D, block-matching and 3D filtering; RED-CNN, residual encoder-decoder CNN with L2 loss; WGAN-VGG, 
Wasserstein generative adversarial network with convolutional neural network perceptual loss; LSGAN-LHybrid, least squares generative 
adversarial network with a hybrid loss function; DRL, dilated residual learning; CAGAN, cycle-consistent generative adversarial network 
with attention; MSCNN, multistage convolution neural network.

Table 4 Diagnosis of quality assessment scores of different algorithm results (mean ± SD)

Method Noise suppression Artefact reduction Detail restoration Comprehensive quality

LDCT 1.18±0.15 1.06±0.13 1.03±0.11 1.15±0.09

BM3D 3.15±0.16 2.77±0.19 3.12±0.18 3.03±0.16

RED-CNN 3.72±0.18 3.23±0.28 3.12±0.14 3.27±0.22

WGAN-VGG 3.31±0.11 3.51±0.16 3.38±0.19 3.45±0.18

LSGAN-LHYBRID 3.39±0.10 3.46±0.30 3.29±0.27 3.43±0.20

DRL 3.60±0.23 3.28±0.15 3.31±0.13 3.39±0.17

CAGAN 3.43±0.14 3.42±0.22 3.56±0.16 3.50±0.15

MSCNN 3.41±0.17 3.65±0.27 3.79±0.12 3.61±0.25

LDCT, low-dose CT; BM3D, block-matching and 3D filtering; RED-CNN, residual encoder-decoder convolutional neural network (CNN) 
with L2 loss; WGAN-VGG, Wasserstein generative adversarial network with visual geometry group perceptual loss; LSGAN-LHybrid, least 
squares generative adversarial network with a hybrid loss function; DRL, dilated residual learning; CAGAN, cycle-consistent generative 
adversarial network with attention; MSCNN, multistage convolution neural network.

designed a multistage, attention module-driven, end-to-end 
training-based network structure designed explicitly for CT 
imaging.

First of all, we carefully compared the natural image 
denoising method of the literature (35) with our LDCT 
denoising method, which can be explained as follows:

(I) First, the crucial difference between natural and 
medical images in the imaging process needs to be 
considered. Noise distributions in natural images 
are often modelled as mixed Poisson and Gaussian 

distributions, while noise distributions in CT 
imaging are closer to Poisson distributions. Natural 
images belong to multichannel color images, while 
medical images are single-channel grayscale images. 
The fine structure of background tissue with very 
high similarity in sequence CT images is vital for 
medical images, but more attention should be given 
to valuable ROI of natural images.

(II) For the input data of the network structure, we 
put forward an input strategy applicable to the 
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CT image. Since CT images are single-channel 
grayscale images, the training database may not 
contain many valid images. One of the most 
common experimental strategies in LDCT noise 
removal tasks is to generate overlapping patches (32),  
which better represent the local characteristics 
of the image and increase the number of training 
samples (56). Considering the limited number 
of CT images that could meet the requirements 
of our experiment, we additionally adopted 
the overlapping patch strategy, which not only 
considers spatial interconnection between patches 
but also significantly accelerates the convergence 
of the learning model (52). In terms of data 
preprocessing, the original LDCT and NDCT 
images were 512×512 pixels, and our denoising 
model randomly divided the entire CT image into 
20 overlapping 64×64 image patches for training.

(III) It has been proposed in the literature (35) that 
under the supervision and prediction of local 
ground truth, an attention graph be generated to 
suppress the characteristics of the current stage 
with less information, and that only valuable 
features be allowed to propagate to the next stage. 
On the basis of this, we added SCMs to improve 
CNNs’ basic convolutional feature conversion 
process without adjusting the entire network model 
architecture and to adaptively establish long-range 
spatial and inter-channel correlations around each 
point at each space location without increasing 
the amount of computation. Moreover, explicitly 
combining richer information can help CNNs 
to generate more differentiated representations. 
This type of structural design is mainly because of 
the high correlation between human tissues and 
medical images, and the important information is 
also included in the structure with fewer features. 
This leads to the ability to distinguish areas with 
fewer features and those with more features in the 
global information without introducing additional 
parameters and model complexity.

(IV) Traditional CNN-based approaches often treat 
feature diagrams equally across channels and lack 
the rational use of advanced and low-level feature 
information. It has been reported (35) that several 
channel attention modules can be applied to the 
original image of the input, thus maintaining the 
fine details from the input image to the output 

image. We referred to this design and applied it 
in the LDCT denoising process by modelling 
the dependence of each channel to improve the 
network’s presentation ability and adjusting the 
features channel by channel, thus retaining the 
detail-rich features.

(V) To verify the validity of the proposed algorithm, 
we compared the network framework presented in 
the literature (35). In the course of experimental 
comparison, due to the differences between the 
natural and grayscale images, we improved the 
multistage progressive restoration network (MPR-
Net) proposed in the literature (35). First, we 
changed the input convolution layer for the first, 
second, and third stages of the MPR-Net in the 
literature (35) to 1 for the input channel size. 
Second, we added a convolution layer of 1×1 before 
the output results of the first and second stages to 
guarantee that the output channel size was also 
1. Finally, using the same experimental setup and 
training strategy, we trained and validated MPR-
Net and our proposed MSCNN. Experimental 
comparisons were made on the test set, the 
qualitative results are shown in Figures 18,19, and 
the quantitative results are shown in Figure 20.

(VI) The qualitative comparison results of the 2 
abdominal CT images are shown in Figures 18,19. 
The details of the denoising images generated by 
the 2 algorithms can be seen in the figure. The 
LDCT images and the corresponding NDCT 
images are shown in Figure 18A,18D, and there is a 
significant difference between the 2 image types. It 
can be observed from Figures 18B,19B that although 
the MPR-Net algorithm inhibits more noise to 
some extent, it transitions to smooth out some 
anatomical information, resulting in significant 
stripe and mesh artifacts throughout the denoising 
image, and causing some edges and small structures 
to blur, which still leaves a large gap compared to 
the original NDCT. Comparing Figures 18C,19C 
shows better visual effects in image detail and more 
structural information similar to NDCT images 
for human perception assessment. The quantitative 
results in Figure 20 also show that MSCNN 
achieves high PSNR and SSIM values. The reason 
may be that the network structure and parameter 
settings of the MPR-Net algorithm are designed 
for natural images, the training process is more 
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Figure 18 Results of abdominal CT scans from the test set using different methods: (A) LDCT, (B) MPR-Net, (C) MSCNN, and (D) 
NDCT. CT, computed tomography; LDCT, low-dose CT; MPR-Net, multistage progressive restoration network; MSCNN, multistage 
convolution neural network; NDCT, normal-dose CT image.

Figure 19 Results of abdominal CT scans from the test set using different methods: (A) LDCT, (B) MPR-Net, (C) MSCNN, and (D) 
NDCT. CT, computed tomography; LDCT, low-dose CT; MPR-Net, multistage progressive restoration network; MSCNN, multistage 
convolution neural network; NDCT, normal-dose CT image.

Figure 20 Comparison of quantitative results of image processing on the test set with different methods: the 2 metrics are PSNR and 
SSIM. PSNR, the peak signal-to-noise ratio; SSIM, structural similarity; MPR-Net, multistage progressive restoration network; MSCNN, 
multistage convolution neural network.
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inclined to learn the characteristic information 
of natural images, and the experimental effect on 
grayscale images is not good.

As the CT images of the same site and homomorphism 
are very similar, and subtle changes in background tissue 
with very high similarity may represent lesions, all the 
information in a medical image, including small texture 
information, has a potential use. Our proposed MSCNN 
strikes a better balance between image noise reduction, 
improved perceived quality, and structural DR.

To verify the effectiveness of the proposed algorithm, 
we compared it with traditional denoising methods and DL 
denoising methods in recent years. 

Since the noise in LDCT images is mainly Poisson 
noise, it is challenging to model non-uniformly distributed 
noise in the image domain accurately. However, BM3D (54)  
is suitable for specific noise distribution modelling methods, 
but is not ideal for CT image data. However, the DL 
method represented by a CNN has a strong knowledge 
expression ability and is suitable for various complex 
functions. In the qualitative and quantitative comparison 
of the experimental process, we also showed that the DL-
based methods RED-CNN (26), WGAN-VGG (27), 
LSGAN-LHybrid (29), CAGAN (32), DRL (33), and our 
proposed MSCNN are superior to those based on the 
traditional denoising method BM3D. The DL-based 
methods show superior performance in removing noise and 
restoring details. Therefore, the conventional denoising 
method cannot achieve a better denoising effect compared 
with other DL denoising methods.

Both DRL (33) and our proposed MSCNN are based 
on multistage denoising methods. The primary purpose of 
the multistage denoising method is to gradually generate 
denoised images by progressively adopting a lighter 
subnetwork at each stage and decompose complex denoising 
tasks into simpler subtasks. Our experiments demonstrated 
that this design method is effective. Still, compared with our 
proposed MSCNN, because the DRL algorithm uses the 
same subnetwork at each stage, it has obtained suboptimal 
performance for each evaluation index. 

The loss function has an important influence on the 
denoising process of LDCT images. When we only 
used the mean-based loss function for training, although 
we could obtain better PSNR and SSIM, in qualitative 
comparisons, the images generated by these methods are 
too smooth to satisfy the visual requirements of the human 
visual system. When we used the feature-based method for 
training, it retained more structural details than the mean-

based method. However, the perceptual loss of pretraining 
VGG based on ImageNet may produce irrelevant features, 
resulting in content distortion. Therefore, we proposed the 
self-encoding perceptual loss based on VGG, combined the 
best characteristics of L1 and SSIM, and used the hybrid 
loss function to optimize the image quality of LDCT.

Although our proposed method improves the denoising 
of LDCT images, it still has certain limitations. First, 
compared with the corresponding NDCT image, the 
generated image still contains subtle structural deformations, 
and some structural differences are not completely matched. 
In addition, medical images are usually 3D images, but we 
only studied 2D slices, ignoring the spatial information 
between slices. We plan to build a 3D model to fully utilize 
spatial information between different CT slices in future 
research. In addition, we will study the quality evaluation 
system and evaluation indicators specifically for CT images 
to evaluate CT images more rigorously.

Conclusions

Our work mainly proposes an end-to-end training-
based CT image reconstruction algorithm. We suggest 
emphasizing the image’s details and restoring the LDCT 
image structure to improve diagnostic performance.

The main achievements of this paper were as follows: 
(I) We proposed a MSCNN architecture to suppress 
noise and preserve details. The first stage performs initial 
noise reduction on LDCT images. The second stage 
introduces the channel attention subnet and models the 
dependencies of the channel to the improved network’s 
presentation. Hereby, the features that cannot be adjusted 
channel by channel lead to the loss of detail-rich features. 
(II) A self-calibration mechanism was introduced between 
the 2 stages, with long-range spatial and inter-channel 
correlations to avoid using information and processing 
more than the selected features. (III) A self-supervised 
learning scheme was used to train the autoencoder network 
to solve the ill-posed problem of CT image feature 
extraction. Finally, experimental validation was carried out 
on the clinical dataset provided by the National Institutes 
of Health-American Association of Physics in Medicine-
Mayo Challenge 2016. The results showed that the 
methods we proposed could effectively enhance the noise 
removal capability of traditional CNN and obtain better 
results.

In future research work, we intend to collect clinical data 
from several partner hospitals for experimental validation. 
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Furthermore, we will also consider the design of different 
network structures based on the GAN architecture to 
evaluate its impact on radiological characteristics.
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