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Clinical experience of tensor-valued diffusion encoding for 
microstructure imaging by diffusional variance decomposition in 
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Background: Diffusion-weighted imaging plays a key role in magnetic resonance imaging (MRI) of breast 
tumors. However, it remains unclear how to interpret single diffusion encoding with respect to its link 
with tissue microstructure. The purpose of this retrospective cross-sectional study was to use tensor-valued 
diffusion encoding to investigate the underlying microstructure of invasive ductal carcinoma (IDC) and 
evaluate its potential value in a clinical setting.
Methods: We retrospectively reviewed biopsy-proven breast cancer patients who underwent preoperative 
breast MRI examination from July 2020 to March 2021. We reviewed the MRI of 29 patients with 30 IDCs, 
including analysis by diffusional variance decomposition enabled by tensor-valued diffusion encoding. The 
diffusion parameters of mean diffusivity (MD), total mean kurtosis (MKT), anisotropic mean kurtosis (MKA), 
isotropic mean kurtosis (MKI), macroscopic fractional anisotropy (FA), and microscopic fractional anisotropy 
(μFA) were estimated. The parameter differences were compared between IDC and normal fibroglandular 
breast tissue (FGBT), as well as the association between the diffusion parameters and histopathologic items.
Results: The mean value of MD in IDCs was significantly lower than that of normal FGBT (1.07±0.27 vs. 
1.34±0.29, P<0.001); however, MKT, MKA, MKI, FA, and μFA were significantly higher (P<0.005). Among all 
the diffusion parameters, MKI was positively correlated with the tumor size on both MRI and pathological 
specimen (rs=0.38, P<0.05 vs. rs=0.54, P<0.01), whereas MKT had a positive correlation with the tumor size 
in the pathological specimen only (rs=0.47, P<0.02). In addition, the lymph node (LN) metastasis group had 
significantly higher MKT, MKA, and μFA compared to the metastasis negative group (P<0.05).
Conclusions: Tensor-valued diffusion encoding enables a useful non-invasive method for characterizing 
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Introduction

Magnetic resonance imaging (MRI) is widely used for 
evaluating breast cancer because of its non-invasive nature 
and excellent soft tissue contrast (1-4). Particularly, single 
diffusion encoding along a single direction per shot has 
been incorporated as a key imaging technique into routine 
breast MRI examination to complement dynamic contrast-
enhanced (DCE) MRI, since single diffusion encoding 
can produce contrast in tissues without using gadolinium 
contrast medium injections and images can be acquired 
rapidly (5-8). 

Single diffusion encoding is a well-known, non-invasive 
functional MRI technique based on quantitative measure 
of water diffusion in tissues to provide apparent diffusion 
coefficient (ADC) which reflects tissue microstructure and 
tumor cellularity of the breast for lesion characterization; 
however, previous studies reported inconsistent ADC values 
with large variability (9-16). One possible explanation for 
this issue is that the ADC is an average metric that does not 
capture heterogeneity within individual voxels, meaning 
that it cannot distinguish variable tumor cellularity, extent 
of infiltration, and unavoidable overlap between tumorous 
and non-tumorous tissues (17-20). Therefore, there have 
been attempts to apply fitting the models of diffusion-tensor 
invariants based on the diffusion-weighted imaging—such 
as diffusion tensor imaging (DTI) and diffusion kurtosis 
imaging (DKI)—to the evaluation of breast tumors (21-25). 

Recently, there has been an increasing effort to 
understand the relation between diffusion parameters 
and tissue heterogeneity by considering the ‘kurtosis of 
the diffusion propagator’ or ‘variance of the distribution 
of diffusivities’ in systems that contain multiple Gaussian 
components (25). For example, the mean kurtosis (MK) 
from DKI can quantify the total non-Gaussianity, which 
may be caused by tissue heterogeneity (26), but it cannot 
distinguish the specific source of the kurtosis or estimate the 
microscopic diffusion anisotropy. Recently, tensor-valued 

diffusion encoding (27), also known as multidimensional 
diffusion encoding (28), has been made possible at a wide 
range of clinical MRI systems by efficient experimental 
design (29). The term ‘tensor-valued’ indicates that 
diffusion encoding is applied along multiple directions per 
signal acquisition (27,28), unlike single diffusion encoding 
where diffusion encoding is applied along one direction 
at a time. Q-space trajectory imaging (QTI) is an analysis 
method that uses data encoded by multiple b-values and 
b-tensor shapes, to decompose the total diffusional variance 
into two components (27,30,31), namely the ‘anisotropic 
variance’ caused by microscopic diffusion anisotropy related 
to eccentric cells and tissue structures (30,32,33), and the 
‘isotropic variance’ caused by heterogeneous isotropic 
diffusivity due to variable cell density or tissue mixtures (30).

To the best of our knowledge, only one recent study has 
introduced the clinical potential of tensor-valued diffusion 
sequence in limited number of study patients with breast 
cancers (34). In the present study, we aimed to investigate 
the clinical utility of the tensor-valued diffusion sequence by 
assessing the microstructural detail of breast cancers in a larger 
number of homogeneous study patients and in a different 
scanning environment. Also, we present the following article 
in accordance with the STROBE reporting checklist (available 
at https://dx.doi.org/10.21037/qims-21-870).

Methods 

Study population 

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The study was approved 
by Institutional Review Board of Gyeongsang National 
University Changwon Hospital (No.: GNUCH 2021-
06-013, retrospectively registered on June 30, 2021), and 
individual consent for this retrospective analysis was waived.

We searched picture archiving and communication 
system reports and retrospectively reviewed biopsy-

breast cancers with information on tissue microstructures. Particularly, µFA could be a potential imaging 
biomarker for evaluating breast cancers prior to surgery or chemotherapy.
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proven breast cancer patients who underwent preoperative 
breast MRI examination from July 2020 to March 2021 
at Gyeongsang National University Changwon Hospital 
(GNUCH). We found 37 female patients with 39 breast 
cancers. Of them, we excluded 3 patients with invasive 
lobular carcinomas and 6 patients with ductal carcinoma in 
situ, because the number of patients was too small to provide 
appropriate characteristics on MRI. The final analysis 
included 29 female patients with 30 breast cancers that were 
pathologically proven as invasive ductal carcinoma (IDC) 
(mean age, 49±10 years; interval 39–72 years), and one 
patient had synchronous bilateral breast cancer (Figure 1). 
Among the 30 lesions, 26 lesions were surgically removed at 
GNUCH. We also reviewed prognostic cancer stages based 
on histopathological reports according to the 8th edition of 
the American Joint Committee on Cancer (AJCC) and the 
histologic grade with the Nottingham modification of the 
Scarff-Bloom-Richardson Grading System (35,36).

MRI acquisition 

Breast MRI was performed using the 3T system (Signa™ 
Architect; GE Healthcare, Waukesha, WI, USA) with an 
8-channel breast coil in prone position. The examination 
included two morphological sequences: a 3D Dixon-based 
fat-suppressed T2-weighted sequence with repetition 
time (TR) =2,000 ms, echo time (TE) =90 ms, axial slices 
at resolution =0.7×0.7×1.2 mm3, and an acquisition time 
of 3 min; and a DCE 3D T1-weighted sequence with 
high temporal and spatial resolution using a dual-echo 
3D spoiled gradient echo sequence with Dixon fat-water 
separation with TR =5.0 ms, TE =1.7 ms, flip angle =10 
degrees, resolution =0.7×0.7×0.6 mm3, and an acquisition 
time of 8 min.

The examination also included single diffusion encoding 
to acquire data for the regular ADC analysis, and tensor-
valued diffusion encoding intended for QTI analysis. The 
single diffusion encoding was a spin-echo sequence with 
echo-planar readout with b-values 0 and 1,500 s/mm2,  
TR =2,970 ms, TE =82 ms, number of excitations =6, 
number of slices of each b-value =40, axial slices at 
resolution =1.3×1.3×5.0 mm3, and an acquisition time 
of 3:27 min. Tensor-valued diffusion encoding was 
performed by a prototype pulse sequence which is named 
multidimensional diffusion provided by the vendor. It used 
gradient waveforms optimized for the MRI hardware, 
including compensation for concomitant gradients (37,38). 
Two waveforms were used to yield linear and spherical 
b-tensor encoding (LTE and STE) at three b-values 100, 
1,000, and 2,000 s/mm2, where the LTE was directed along 
[4 10 15] directions and the STE was repeated [6 10 10] 
times for each b-value, respectively. We used TR =9,370 ms,  
TE =120 ms, resolution =4.3×4.3×5.0 mm3 with a total 
acquisition time of 9:47 min. The two waveforms are 
depicted in Figure 2. Detailed technical information on the 
tensor-valued diffusion sequence, sampling scheme, and 
gradient waveforms are available at https://github.com/
filip-szczepankiewicz/fwf_seq_resources. In addition, the 
following GitHub repository also contains auxiliary routines 
for setup of acquisition protocols and image visualization: 
https://github.com/markus-nilsson/md-dmri. 

Image processing and analysis

Motion correction and eddy-current correction were not 
performed, but data was inspected visually to exclude any 
data with gross errors. At the stage of the visual inspection, 
there was no patient to exclude due to gross error. We 

Figure 1 Flow chart for patients’ inclusion and exclusion. MRI, magnetic resonance imaging; IDC, invasive ductal carcinoma.

39 biopsy-proven breast cancers in 37 
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performed QTI according to the method described in 
Westin et al. (27). We adopted the parameter nomenclature 
in Szczepankiewicz et al. (30), including the mean diffusivity 
(MD), the anisotropic and isotropic mean kurtosis (MKA 
and MKI), and total mean kurtosis (MKT = MKA + MKI), as 
well as the fractional anisotropy (FA), which is equivalent to 
FA from DTI, and microscopic fractional anisotropy (µFA) 
which reflects the diffusion anisotropy without the effects 
of orientation dispersion. These parameters are similar to 
the ones employed by Naranjo et al. (34), however, they are 
derived from a cumulant expansion signal representation 
rather than an inverse Laplace transform. The main benefit 
of this is that the fitting is markedly faster and robust to 
the signal sampling scheme; however, it does not allow 
estimation of specific compartment signal fractions. The 
parameter estimation was performed using the open-source 
toolbox for multidimensional diffusion MRI (39,40). 

The analysis was performed in MATLAB (R2019a, The 
Mathworks, Natick, MA, USA), and detail information 
for data analysis using MATLAB software is available at 
https://github.com/markus-nilsson/md-dmri. The regions-
of-interest (ROIs) of the tumor were manually drawn on 
S0 maps calculated by QTI parameters, and the DCE 
findings were used to confirm the delineation of the tumor. 
All ROIs were delineated by one breast radiologist with  
6 years of experience in breast MRI. Note that we avoided 
the inclusion of peritumoral edema, intratumoral necrosis, 
and normal breast parenchymal tissue. The mean values 
for each QTI parameter across all voxels in the ROI were 
calculated for each tumor. The same values were also 
calculated for normal fibroglandular breast tissue (FGBT) 
at the contralateral healthy breast. 

Histopathological analysis

A  b o a r d - c e r t i f i e d  p a t h o l o g i s t  w i t h  7  y e a r s  o f 
experience retrospectively reviewed the results of the 
immunohistochemical analysis of the hematoxylin-and-
eosin-stained surgical specimens. These results were used 
to evaluate tumor size, grade, and pathologic type; estrogen 
receptor, progesterone receptor, c-erb-B2, and Ki-67 
expression; and axillary lymph node (LN) metastasis, which 
was assessed through fine needle aspiration biopsy, sentinel 
LN biopsy, or axillary LN dissection. We used a cutoff value 
of 14% classify the participants into low Ki-67 expression 
and high Ki-67 expression groups according to the St Gallen 
International Expert Consensus (41). We also classified the 
patients into groups based on hormonal receptors, c-erb-B2 
expression (negative or positive), histologic grade (1, 2, or 3), 
and AJCC prognostic stage (1, 2, or 3).

Statistical analysis 

The distribution of the data was tested using the 
Kolmogorov-Smirnov test. For parameters with a non-
normal distribution, the Mann-Whitney U-test was used to 
compare diffusion metrics between the IDC and FGBT and 
those between the IDC subgroups, and the Kruskal-Wallis 
test was used to compare diffusion metrics among the 
subgroups according to the AJCC prognostic cancer stage 
and IDC histologic grade. Cohen’s d effect sizes (ES) were 
calculated to determine the standardized mean differences 
between the groups (42,43). We analyzed inter-method 
reliability for tumor size measurement between breast MRI 
and pathological examination using intraclass correlation 

Figure 2 Schematic gradient waveforms producing linear and spherical tensor encodings used for obtaining tensor-valued diffusion images. 
EPI, echo-planar imaging.

Spherical b-tensor Linear b-tensor

30

0

–30

g,
 m

T/
m

EPI

0              30             60             90            120
Time, ms

30

0

–30

EPI

0              30             60             90            120
Time, ms



2006 Cho et al. Microstructure imaging in patients with breast cancer

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(3):2002-2017 | https://dx.doi.org/10.21037/qims-21-870

coefficient (ICC) analysis. Spearman’s correlation analysis 
was also used to evaluate the correlations between the 
diffusion metrics and tumor size. All statistical analyses were 
conducted using SPSS, version 24.0 (IBM Corp., Armonk, 
NY, USA), and P<0.05 was considered significant. 

Results

Clinicopathological characteristics of patients and tumors 

We have summarized the clinicopathological characteristics 
of the 30 IDC patients in Table 1. The mean tumor size was 
28±23 mm on DCE T1-weighted MRI (range, 7–87 mm) and 
25±16 mm on pathological examination (range, 10–54 mm).  
Additionally, we observed good reliability between the 
tumor size measured on MRI and that on pathological 
examination (ICC =0.80, 95% confidence interval: 0.54–
0.91, P<0.001).

QTI parameters in IDC and normal FGBT

The QTI parameters and ADC value obtained from ROI 
analysis of IDC and normal FGBT are summarized in  
Table 2, and a representative example of diffusion parameter 
maps obtained through postprocessing is depicted in  
Figures 3-5. All diffusion parameters showed significant 
differences between IDCs and normal FGBT. The MD 
and the mean ADC of IDC were significantly lower than 
those of normal FGBT (P<0.001, respectively), and there 
was a strong correlation between the MD and the mean 
ADC of IDC (rs=0.75, P<0.001). However, all other QTI 
parameters, including MKT, MKA, MKI, FA, and µFA, were 
significantly higher in IDC than in normal FGBT (ES 
range, 0.4–2.2, all P<0.05). Among the parameters, MKT 
showed a higher difference in mean value than MD between 
IDC and FGBT, and, there was a greater elevation of MKT, 
which consisted of a high MKA and low MKI, in IDC than in 
FGBT. On qualitative histopathological review, IDC tended 
to have a higher cell density and lower cell density variance 
with eccentric growth and replacement along the radiating 
ducts and lobular structures with segmental distribution 
than FGBT (Figures 3K,3L,4K,4L,5K,5L). Additionally, 

Table 1 Characteristics of the 30 invasive ductal carcinomas

Variables Total (n=30)

Age at diagnosis (year) 49±10

Amount of fibroglandular tissue

Almost entirely fatty 1

Scattered fibroglandular tissue 10

Heterogeneous fibroglandular tissue 12

Extreme fibroglandular tissue 7

Background parenchymal enhancement

Minimal enhancement 15

Mild enhancement 7

Moderate enhancement 5

Marked enhancement 3

Tumor size on MRI (mm)†

≤10 4

>10–20 14

>20–40 8

>40 4

AJCC prognostic cancer stage‡

Stage I 18

Stage II 3

Stage III 5

Lesion type

Mass 25

Non-mass enhancement 5

Hormonal subtypes

Luminal type 25

C-erb-B2 positive type 3

Triple negative type 2
†, tumor size defined as longest diameter on dynamic  
contrast-enhanced images; ‡, pathologic cancer stage was 
determined only in the 26 patients underwent surgery at  
Gyeongsang National University Changwon Hospital. MRI,  
magnetic resonance imaging; AJCC, American Joint Committee 
on Cancer. 
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the largest ES between IDC and FGBT was seen for µFA 
(Table 2), which suggests that it outperforms conventional 
diffusion parameters in distinguishing the two tissue types. 

Correlation between QTI parameters and 
clinicopathological characteristics of IDC

Table 3 demonstrates the correlation between tumor size 
and diffusion parameters. MKI was positively correlated 
with tumor size, both on MRI and pathological examination 
(rs=0.38, P=0.04 vs. rs=0.54, P=0.005, respectively), whereas 
MKT and ADC only demonstrated moderate correlations 
with the tumor size on pathological examination (rs=0.46, 
P=0.02 vs. rs=−0.48, P=0.02).

Table 4 demonstrates the comparison of diffusion 
parameters in IDC according to prognostic factors. IDCs 
with LN metastasis showed significantly higher MKT, 
MKA, and µFA than those without LN metastasis (ES: 
0.99, 0.96, and 0.81, respectively). Although no significant 
difference was seen in any diffusion parameter between the 
groups according to hormonal receptor, c-erb-B2, and Ki-
67 expression, the positive c-erb-B2 expression group had 
a higher µFA, with a large ES, than the negative c-erb-B2 
expression group (ES: 0.83, P=0.23). According to the 
histologic grades, QTI parameters—MD, MKT, MKA, MKI, 
FA, and μFA—showed no significant differences among the 
grade 1, grade 2, and grade 3 groups. Furthermore, there 
were no significant differences in the six QTI parameters 
among the AJCC stage 1, stage 2, and stage 3 groups.

Discussion

In this study on patients with pathologically proven IDC, 
we observed that IDC had a significantly lower mean value 

of MD than normal FGBT. Furthermore, the mean values 
of QTI parameters were significantly higher in IDC than 
in normal FGBT. The mean MKA was significantly higher 
than the mean MKI in IDC, which contributed to a high 
MKT. Among all QTI parameters, µFA had the largest ES 
for differentiating IDC from FGBT. Additionally, IDCs 
with LN metastasis had higher MKT, MKA, and µFA than 
those without LN metastasis.

In real-world practice, single diffusion encoding 
plays a key role in differentiating between benign and 
malignant lesions on breast MRI by using ADC as a 
common biomarker to indicate the average cell density 
in each imaging voxel (44). However, single diffusion 
encoding cannot provide detailed information on tumor 
microstructure. Therefore, DTI is performed with 
conventional breast MRI, and this enables the estimation of 
MD and FA, which is used to determine whether a breast 
lesion is benign or malignant (44-46). Furthermore, MK 
can be estimated using DKI. MK can provide information 
on non-Gaussian diffusion, which may be related to 
microstructural tissue heterogeneity (26,47,48). Also, MK 
has been found to improve the accuracy of differentiation 
of breast lesions and have a higher diagnostic potential 
than ADC (49,50). However, the interpretation of MK 
could not be linked to the two components of diffusional 
variance, which decreased the specificity. To overcome this 
limitation, tensor-valued diffusion encoding, i.e., b-tensors 
with different shapes, may be used, as it provides detailed 
microstructural information by decomposing MK into its 
anisotropic and isotropic components (30,31). 

In the current study, the MD values in IDC were 
significantly lower than those in FGBT, which is consistent 
with the results of previous studies that have demonstrated 
a negative correlation of MD with tissue cellularity (44). 

Table 2 Summary of QTI parameters in IDCs and normal FGBT. Cohen’s d ES are provided to document the standardized mean differences  
between IDCs and FGBT. The MD and the mean ADC are given in units of µm2/ms, remaining parameters are unitless

Variables MD MKT MKA MKI FA μFA ADC

IDCs 1.07±0.27 1.07±0.45 0.84±0.46 0.26±0.28 0.26±0.07 0.69±0.14 0.94±0.20

FGT 1.34±0.29 0.38±0.36 0.22±0.21 0.16±0.19 0.21±0.08 0.40±0.13 1.38±0.30 

P value <0.001 <0.001 <0.001 0.018 0.008 <0.001 <0.001

ES 1.0 1.7 1.8 0.4 0.7 2.2 1.7

Data are mean ± standard deviation. P values were calculated using Mann-Whitney’s U test. QTI, Q-space trajectory imaging; IDC,  
invasive ductal carcinoma; FGBT, fibroglandular breast tissue; ES, effect sizes; MD, mean diffusivity; ADC, apparent diffusion coefficient;  
MKT, total mean kurtosis; MKA, anisotropic mean kurtosis; MKI, isotropic mean kurtosis; FA, macroscopic fractional anisotropy; μFA,  
microscopic fractional anisotropy.
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Figure 3 A 50-year-old woman with stage I invasive ductal carcinoma in the left breast. (A) Axial DCE T1-weighted fat-suppressed image 
reveals a round shaped mass with heterogeneous enhancement in the left breast at the 2 o’clock position. (B,C) Single diffusion encoding 
image (b-value 1,500 s/mm2) (B) and ADC map (C) show the prominent diffusion restriction of the tumor (mean ADC, 0.92 µm2/ms). (D) 
Region-of-interest of the tumor is defined on S0 map, referring to the DCE image and single diffusion encoding image. (E,F) MD (E) is 
slightly decreased (mean MD, 1.10 µm2/ms) whereas MKT (F) is elevated in the tumor. The isotropic heterogeneity and the microscopic 
anisotropic component cannot be distinguished on single diffusion encoding image and MKT maps. (G,H) On the MKA (G) map and MKI 

(H) map, the tumor exhibits elevation of MKA and relatively low MKI, indicating that dominance of the anisotropic component in the 
IDC. (I,J) Macroscopic FA (I) map reveals insignificant elevation of FA in the tumor. Conversely, μFA (J) is increased in the tumor. (K,L) 
Histopathological examinations of a specimen from the breast conserving surgery shows the IDC is composed of multiple pleomorphic 
tumor cells with large nuclei along the radiating the ductal structures. The tumor cells originated from mammary duct epithelium infiltrate 
and replace the surrounding duct and lobular structures with fibrosis. The tumoral and underlying structures appear well organized over 
longer distances along the radiating direction, that is, elongated structure resembling mammary duct (black arrows), explains the increased 
MKA. Areas of higher cell density and fibrosis with lower cell density are mixed, which were reflected by increased MKI. Also, some ducts 
filled with tumor cells appear to be cut in cross sections rather than in the entire longitudinal direction according to the cutting direction 
of the pathological specimens [×40 (K) and ×200 (L) magnification; hematoxylin and eosin stain]. DCE, dynamic contrast-enhanced; DWI, 
diffusion-weighted imaging; ADC, apparent diffusion coefficient; MD, mean diffusivity; MKT, total mean kurtosis; MKA, anisotropic mean 
kurtosis; MKI, isotropic mean kurtosis; FA, fractional anisotropy; µFA, microscopic fractional anisotropy; IDC, invasive ductal carcinoma.

Additionally, the MD value of IDC in our study was  
1.07 µm2/ms, which was within the range reported  
(0.71–1.62 μm2/ms) in previous studies (24). In addition, 
there was a strong correlation between the MD and mean 
ADC of IDC which could be interpreted that the two 

parameters being influenced by cellular density within 
the voxel as expected (51). Although these two parameters 
reflect the average diffusivity, the MD has the major 
difference and advantage because it is free of bias from non-
Gaussian diffusion and b-value dependence (25).
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Figure 4 A 45-year-old woman with stage II invasive ductal carcinoma in the left breast. (A) Axial DCE T1-weighted fat-suppressed image 
reveals an irregular mass with focal skin retraction and heterogeneous enhancement in the left breast at the 2 o’clock position. (B,C) Single 
diffusion encoding image (b-value 1,500 s/mm2) (B) and ADC map (C) show the prominent diffusion restriction of the tumor (mean ADC, 
0.58 µm2/ms). (D) Region-of-interest of the tumor is drawn on S0 map, referring to DCE image and single diffusion encoding image. (E,F) 
MD (E) is mildly decreased (mean MD, 0.86 µm2/ms) and MKT (F) is absolutely increased in the tumor. (G,H) The tumor has high MKA 
and relatively low MKI on the MKA (G) map and MKI (H) map, interpreted as dominance of the anisotropic component in the IDC. (I,J) FA 
(I) map shows slight elevation of FA in the tumor. On the other hand, µFA (J) is markedly increased in the tumor. (K,L) Histopathological 
examinations of a specimen from the breast conserving surgery shows the IDC is composed of elongated ductal structures, resembling 
mammary ducts that are consisted of large nuclei-contained tumor cells. This finding reflects variable cell density and dominant anisotropic 
diffusion effect, resulting in changes of QTI parameters. The pleomorphic tumor cells infiltrate and replace the surrounding duct and 
lobular structures with resembled structure. The tumoral and underlying structures appear well organized along the radiating direction, that 
is, ductal structure with fibrosis (black arrows), explains the higher MKA. Also, some ducts filled with tumor cells appear to be cut in cross 
sections rather than in the entire longitudinal direction according to the cutting direction of the pathological specimens [×100 (K) and ×200 (L) 
magnification; hematoxylin and eosin stain]. DCE, dynamic contrast-enhanced; DWI, diffusion-weighted imaging; ADC, apparent diffusion 
coefficient; MD, mean diffusivity; MKT, total mean kurtosis; MKA, anisotropic mean kurtosis; MKI, isotropic mean kurtosis; FA, fractional 
anisotropy; µFA, microscopic fractional anisotropy; IDC, invasive ductal carcinoma; QTI, Q-space trajectory imaging.

We also found that microscopic anisotropy was a 
dominant component of diffusion restriction in IDC, which 
was consistent with the findings of a recent study (34). 
Interestingly, our findings were similar to those of a previous 
study that used tensor-valued diffusion encoding in brain 
tumors and found high MKA values in meningiomas due 
to an abundance of eccentric cells and cell structures (30). 
Based on the histopathological correlation, we speculate 

that, regardless of the organ studied, the consistency of the 
result may be related to the similar tumor growth patterns 
of IDCs and meningiomas; IDC has a growth pattern that 
extends along the ductal system, with penetration into the 
adjacent stroma and high cellularity, prominent nucleoli, 
and numerous mitoses (52). These histopathological features 
can indicate directionality and eccentricity based on the 
anatomical characteristics of tumor growth. IDCs may have 
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Figure 5 A 45-year-old woman with stage III invasive ductal carcinoma in the right breast. (A) Axial DCE T1-weighted fat-suppressed 
image reveals an irregular mass with heterogeneous enhancement in the right breast at the 8 o’clock position. (B,C) Single diffusion 
encoding (b-value 1,500 s/mm2), (B) and ADC map (C) show the diffusion restriction of the tumor (mean ADC, 0.77 µm2/ms). (D) Region-
of-interest of the tumor were defined on S0 map, referring to the dynamic contrast enhancement images and single diffusion encoding 
image. (E,F) MD (E) is markedly decreased (mean MD, 1.08 µm2/ms) whereas MKT (F) is elevated in the tumor. The isotropic heterogeneity 
and the microscopic anisotropic component cannot be distinguished on single diffusion encoding and MKT maps. (G,H) On the MKA (G) 
map and MKI (H) map, the tumor exhibits high MKA and relatively low MKI, indicating that the anisotropic component is dominant in 
the IDC. (I,J) Macroscopic FA (I) map reveals mildly elevated FA in the tumor. Conversely, µFA (J) is prominently increased in the tumor. 
(K,L) Histopathological examinations of a specimen from the breast conserving surgery shows the IDC is composed of multiple oval and 
pleomorphic tumor cells with large nuclei along the radiating the ductal and lobular structures, reflecting higher cell density and anisotropic 
diffusion effect to lead change in QTI parameters. The tumor cells originated from mammary duct epithelium infiltrate and replace the 
surrounding duct and lobular structures with fibrosis. The tumoral and underlying structures appear well organized over longer distances 
along the radiating direction, that is, fascicular (black arrows), explains the higher MKA. Areas of higher cell density and fibrosis with lower 
cell density are mixed, which were reflected by MKI. Also, some ducts filled with tumor cells appear to be cut in cross sections rather than 
in the entire longitudinal direction according to the cutting direction of the pathological specimens [×40 (K) and ×200 (L) magnification; 
hematoxylin and eosin stain]. DCE, dynamic contrast-enhanced; DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; 
MD, mean diffusivity; MKT, total mean kurtosis; MKA, anisotropic mean kurtosis; MKI, isotropic mean kurtosis; FA, fractional anisotropy; 
µFA, microscopic fractional anisotropy; IDC, invasive ductal carcinoma; QTI, Q-space trajectory imaging.

features similar to meningiomas that grow along the dura 
mater and show hypercellularity, relatively uniform tumor 
cells, and a tendency to encircle adjacent tumor cells (53).  
Our results were also consistent to the recent study in 
prostate cancer that demonstrated higher MKI and MKA 

values in the tumor (54). Interestingly, this recent study 
also showed these two QTI parameters had significant 
differences within the different location of normal prostatic 
tissues that might be related to an increase in within-voxel 
diffusion heterogeneity according to its zonal anatomy, 
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reflecting the different compositions of various tissues (54).  
Unlike the prostate, the breast is not an organ with a 
detailed anatomical division, and the non-glandular tissues 
such stroma or fat tissue also inherently exist along the 
driving direction of the ductal distribution. Therefore, 
we could not find these differences in QTI parameters 
according to the detailed anatomical division.

In this study, we evaluated the correlation between 
QTI parameters and tumor size. However, only isotropic 
heterogeneity (MKI) showed a moderate positive correlation 
with tumor size on both MRI and pathological examination. 
The interpretation of this observation remains unclear. A 
potential explanation based on our histopathologic findings 
is that large tumors are more likely to contain poorly 
perfused regions with variable cell density than small tumors 
due to aggressive cell growth or necrosis. It is well-known 
that intratumoral necrosis is contributed to intratumoral 
heterogeneity of breast cancer which indicates its ability to 
adapt to a new microenvironment, leading to chemotherapy 
resistance or tumor progression (55-59). Considering this 
issue, MKI may be a useful non-invasive parameter to 
estimate the intratumoral heterogeneity of breast cancer. 
Further studies of QTI parameters with histopathological 
correlation are required to clarify the relationship between 
intratumoral heterogeneity and treatment response in 
different types of breast cancers.

In this study, we also observed higher mean values of 
FA and µFA due to the disorganized growth and increased 
cellularity of tumors in IDC than in FGBT, and these 
findings are consistent with the results of previous studies 
of brain tumors and breast tumors (30,34,60). However, our 
findings are inconsistent with those of other DTI studies that 

have reported lower or similar values of FA in breast cancer 
compared with FGBT (21,44,46,61-63). These discordant 
results suggest that FA has a limited role as a parameter 
for evaluating breast cancers. Interestingly, we observed 
that µFA was better than FA at differentiating IDC from 
FGBT, therefore, we believe that µFA can be a more reliable 
parameter than FA for assessing breast cancers because of the 
following reasons: (I) µFA is a straightforward microscopic 
analogue to FA and is closely related to MKA (30);  
therefore, this parameter could be a useful biomarker for 
demonstrating the dominant microstructural changes in 
breast cancer, and (II) brain imaging studies have shown that 
FA as a parameter of voxel scale anisotropy is confounded by 
the orientation coherence of the tissue (i.e., cell elongation 
and cell orientation) and voxel size (60,64-66). 

In addition, we found that the LN metastasis group had 
higher MKT, MKA, and µFA than the metastasis negative 
group. These results suggest that QTI parameters could be 
useful non-invasive biomarkers for evaluating LN metastasis 
in breast cancers, because preoperative identification of 
LN metastasis is important for determining pretreatment 
decisions, such as surgical planning and adjuvant therapy 
(67,68). 

Despite of the promising results, this study has several 
limitations which should be considered when interpreting 
the results. First, tensor-valued diffusion encoding tends 
to have a longer acquisition time than single diffusion 
encoding, and a reduced resolution may be required to 
maintain a high signal-to-noise ratio. This may introduce 
biases from dissimilar partial volume effects, especially for 
small lesions. Therefore, careful evaluation using this novel 
sequence with conventional breast MRI, including high-

Table 3 Correlation between tumor size and QTI parameters. MKI is the only parameter that demonstrates positive correlation with the tumor 
size measured on both MRI and the pathological specimen. The MD and the mean ADC are given in units of µm2/ms, remaining parameters are 
unitless

Variables MD MKT MKA MKI FA μFA ADC

MRI tumor size

rs −0.23 0.36 0.33 0.38 −0.02 0.32 −0.35

P value 0.23 0.05 0.07 0.039 0.92 0.09 0.056

Pathological tumor size

rs −0.31 0.46 0.38 0.54 0.06 0.37 −0.48

P value 0.12 0.019 0.06 0.005 0.78 0.07 0.015

QTI, Q-space trajectory imaging; MKI, isotropic mean kurtosis; MD, mean diffusivity; ADC, apparent diffusion coefficient; MKT, total mean 
kurtosis; MKA, anisotropic mean kurtosis; FA, macroscopic fractional anisotropy; μFA, microscopic fractional anisotropy; rs, Spearman’s 
rank correlation coefficient. P values were calculated using Spearman’s correlation analysis.
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Table 4 QTI parameters in IDCs according to the prognostic factors. The MD and the mean ADC are given in units of µm2/ms, remaining  
parameters are unitless

Factor No. of tumors MD MKT MKA MKI FA μFA ADC

Hormone receptor

Positive 25 1.09±0.30 1.05±0.50 0.80±0.47 0.28±0.26 0.26±0.08 0.67±0.15 0.94±0.21

Negative 5 1.05±0.12 0.98±0.26 0.91±0.49 0.06±0.35 0.24±0.05 0.73±0.14 0.92±0.12

P value 0.96 0.83 0.55 0.23 0.83 0.48 0.87

ES 0.17 0.18 0.23 0.71 0.30 0.41 0.12

C-erb-B2

Positive 3 0.97±0.06 1.13±0.16 1.10±0.55 0.03±0.50 0.23±0.06 0.79±0.15 0.84±0.02

Negative 27 1.10±0.29 1.03±0.49 0.78±0.45 0.27±0.25 0.26±0.08 0.67±0.14 0.95±0.20

P value 0.28 0.60 0.25 0.70 0.65 0.23 0.25

ES 0.62 0.27 0.63 0.61 0.42 0.83 0.77

Ki-67†

<14% 7 1.14±0.36 0.89±0.58 0.68±0.53 0.21±0.14 0.27±0.09 0.63±0.18 1.07±0.16

≥14% 19 1.09±0.27 1.08±0.46 0.77±0.39 0.34±0.24 0.26±0.07 0.67±0.12 0.90±0.20

P value 0.82 0.36 0.53 0.23 0.96 0.69 0.05

ES 0.16 0.36 0.19 0.66 0.12 0.26 0.94

Histologic grades‡

Grade 1 10 1.03±0.26 1.19±0.55 0.85±0.50 0.36±0.28 0.28±0.10 0.70±0.13 0.95±0.21

Grade 2 8 1.23±0.39 0.81±0.47 0.69±0.54 0.12±0.22 0.24±0.06 0.63±0.20 1.05±0.19

Grade 3 8 1.02±0.18 1.10±0.33 0.87±0.42 0.28±0.36 0.23±0.07 0.70±0.13 0.81±0.10

P value 0.46 0.27 0.61 0.14 0.61 0.80 0.09

ES 0.28 0.34 0.42 0.58 0.42 0.53 0.23

AJCC prognostic stages§

Stage I 18 1.12±0.27 1.00±0.53 0.76±0.50 0.25±0.27 0.26±0.09 0.67±0.16 0.98±0.21

Stage II 3 0.91±0.46 1.29±0.17 1.26±0.35 0.03±0.49 0.27±0.10 0.84±0.08 1.29±0.18

Stage III 5 1.04±0.16 1.11±0.41 0.77±0.38 0.42±0.24 0.24±0.04 0.67±0.11 0.90±0.13

P value 0.29 0.37 0.15 0.28 0.93 0.11 0.20

ES 0.29 0.03 0.58 0.30 0.59 0.68 0.29

Lymph node metastasis

Positive 11 0.98±0.24 1.30±0.37 1.08±0.49 0.28±0.30 0.26±0.09 0.75±0.12 0.90±0.08

Negative 19 1.15±0.28 0.89±0.45 0.66±0.38 0.23±0.28 0.25±0.07 0.64±0.15 0.97±0.22

P value 0.27 0.033 0.026 0.49 0.55 0.047 0.31

ES 0.26 0.99 0.96 0.17 0.12 0.81 0.42

P values for tests for equal mean values from Mann-Whitney’s U test or Kruskal-Wallis test. ES are provided to document the standardized 
mean differences between the groups. †, Ki-67 index was measured only in the patients underwent surgery at our hospital; ‡, §, histologic 
grade and AJCC cancer stage were determined in the only 26 patients who underwent surgery at Gyeongsang National University Changwon  
Hospital. QTI, Q-space trajectory imaging; ES, effect size; MD, mean diffusivity; MKT, total mean kurtosis; MKA, anisotropic mean kurtosis; MKI, 
isotropic mean kurtosis; FA, macroscopic fractional anisotropy; μFA, microscopic fractional anisotropy; ADC, apparent diffusion coefficient.
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resolution single diffusion encoding, should be performed 
in clinical practice. Alternatively, tensor-valued diffusion 
encoding can be performed using MRI systems with high 
gradient performance (29) or by exploiting methods, such 
as simultaneous multi-slice imaging, to decrease scan time 
and yield high-resolution images in a limited amount of 
time. Second, we did not apply correction for motion, 
eddy-currents, or geometric distortion. We expect that 
such post-processing may improve spatial sharpness, and 
parameter accuracy, especially in regions of high contrast, 
however, implementing such methods was outside the scope 
of the present study. Third, the interpretation of MKI and 
MKA in terms of diffusional variance caused by anisotropic 
and isotropic variance is based on the assumption that 
the diffusion in each voxel has an approximately multi-
Gaussian distribution (30). Since the experiment may 
also encode time-dependent diffusion (69), the metrics 
may be confounded by the size of the restrictions, intra-
compartment kurtosis, and exchange (69,70). In addition, 
we did not perform quantitative microscopy, instead, 
radiological and pathological correlation was qualitative 
in the same manner of the recent previous studies 
(54,71). Therefore, further studies should corroborate 
our interpretation of the parameters by evaluating 
the association of QTI parameters with quantitative 
histopathology.

In conclusion, we found that QTI parameters reflected 
changes in tissue microstructures in IDC. The predominant 
histopathological features of IDC were high MKA and 
µFA, which represent the eccentricity of tumor cells and 
cell structures. µFA was superior to other parameters for 
differentiating IDC from FGBT; therefore, it could be a 
potential imaging biomarker for evaluating breast cancers. 
QTI is not affected by tissue organization as DTI is, hence, 
tensor-valued diffusion encoding can provide additional 
information about microstructural compartments in the 
breast cancer where DTI is limited (72,73). Therefore, QTI 
parameters based on tensor-valued diffusion encoding may 
facilitate a deeper understanding of tissue microstructure 
and intratumoral heterogeneity in patients with breast 
cancer who are prior to undergo surgery or received 
chemotherapy.
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