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Background: Projection tomography (PT) is a very important and valuable method for fast volumetric 
imaging with isotropic spatial resolution. Sparse-view or limited-angle reconstruction-based PT can greatly 
reduce data acquisition time, lower radiation doses, and simplify sample fixation modes. However, few 
techniques can currently achieve image reconstruction based on few-view projection data, which is especially 
important for in vivo PT in living organisms. 
Methods: A 2-stage deep learning network (TSDLN)-based framework was proposed for parallel-beam PT 
reconstructions using few-view projections. The framework is composed of a reconstruction network (R-net) 
and a correction network (C-net). The R-net is a generative adversarial network (GAN) used to complete 
image information with direct back-projection (BP) of a sparse signal, bringing the reconstructed image close 
to reconstruction results obtained from fully projected data. The C-net is a U-net array that denoises the 
compensation result to obtain a high-quality reconstructed image.
Results: The accuracy and feasibility of the proposed TSDLN-based framework in few-view projection-
based reconstruction were first evaluated with simulations, using images from the DeepLesion public 
dataset. The framework exhibited better reconstruction performance than traditional analytic reconstruction 
algorithms and iterative algorithms, especially in cases using sparse-view projection images. For example, 
with as few as two projections, the TSDLN-based framework reconstructed high-quality images very close to 
the original image, with structural similarities greater than 0.8. By using previously acquired optical PT (OPT) 
data in the TSDLN-based framework trained on computed tomography (CT) data, we further exemplified 
the migration capabilities of the TSDLN-based framework. The results showed that when the number of 
projections was reduced to 5, the contours and distribution information of the samples in question could still 
be seen in the reconstructed images.
Conclusions: The simulations and experimental results showed that the TSDLN-based framework has 
strong reconstruction abilities using few-view projection images, and has great potential in the application of 
in vivo PT.
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Introduction 

Projection tomography (PT), such as computed tomography 
(CT), optical projection tomography (OPT), photoacoustic 
tomography (PAT), and stimulated Raman projection 
tomography (SRPT), is an emerging technology that 
provides a novel approach to recreating three-dimensional 
(3D) images of biological specimens (1-5). It plays a vital 
role in biomedical imaging because it can realize fast 
volumetric imaging with isotropic spatial resolution and has 
displayed tremendous applicability in several disciplines, 
including gene expression, protein-protein interaction, 
and clinical drug evaluation (6-8). It is used to record the 
attenuation of collimated light beams passing through an 
object or the signal (fluorescence or Raman) excited by 
the collimated light beams. A reconstruction algorithm is 
then used to recover the spatial distribution of the light 
attenuation or the optical signal emission source (4,9,10). 
Traditionally, intensive acquisition of projection images in 
full-angle is required for PT to achieve high-precision, high-
quality images. For example, using analytic reconstruction 
algorithms such as the filtered back-projection (FBP) 
algorithm, no fewer than 360 projection images within a 
full-angle, or 180 projection images within a semicircle-
angle need to be collected to obtain reasonable imaging 
results (11-13). Furthermore, the higher the number of 
projection images used, the higher the quality and accuracy 
of the reconstructed images will be (14). However, this 
processing has serious drawbacks as it involves long data-
acquisition time, leading to increased sample damage 
from the accumulation of light dose and a high degree of 
sample fixation (15). Moreover, these algorithms are highly 
sensitive to noise (16,17). With sparse-view or limited-angle 
view data, iterative algorithms based on complex physical 
imaging models and noise-computing models can be used 
to reconstruct high-quality images. These techniques can 
reduce the total data-acquisition time, lower light damage 
to the sample, and reduce the need for sample fixation 
to a certain degree. Classical iterative algorithms include 
the algebraic reconstruction technique (ART) algorithm, 

simultaneous ART (SART) algorithm, multiplicative ART 
(MART) algorithm, simultaneous iterative reconstruction 
technique (SIRT), fast-iterative shrinkage thresholding 
algorithm (FISTA),  two-step iterative shrinkage/
thresholding (TwIST) algorithm, and other iterative 
algorithms based on reduced penalized weighted least-
squares (PWLS) cost functions (18-23). Especially when 
integrated with a regularization strategy, such as the total 
variation (TV) and lp (0<P≤1, or P=2) norm terms (24-30),  
these iterative algorithms can reconstruct sparse-view 
images with a quality close to that of analytic reconstruction 
algorithms using a complete dataset. However, there is a 
limit to how far these algorithms can reduce the required 
number of projection images. Generally, when the number 
of projection images is reduced to one-sixth of the complete 
full-angle data used in analytic reconstruction algorithms, 
an acceptable reconstructed image quality can be obtained 
(27-29). In the case of a lower number of projection images, 
such as in few-view reconstruction (PT reconstruction with 
data acquired from less than 10 views), which is in high 
demand in in vivo imaging applications for living systems, 
it is difficult to guarantee the quality of the reconstructed 
images. Moreover, these algorithms need to establish an 
accurate projection model to ensure the quality of the 
reconstructed images. Calculations can be time-consuming, 
and the reconstruction-related parameters need to be 
optimized for different applications (30). These factors 
limit the applicability of such algorithms in living-system  
imaging (31). However, a deep learning network may 
provide a solution to these problems.

Deep learning is playing an increasingly important 
role in PT image reconstruction (32,33). Deep learning 
networks improve tomographic image degradation caused 
by insufficient contrast agent, low radiation dose, or sparse-
view measurements, such as few-view or limited-angle 
measurements (34-54). For example, Chen et al. proposed 
an updated residual encoder-decoder convolutional neural 
network (RED-CNN) integrating the autoencoder, 
deconvolution, and shortcut connections for low-dose CT 
imaging, which exhibited good performance in reducing 

Keywords: Projection tomography (PT); deep learning; sparse reconstruction; volumetric imaging; few-view 

reconstruction; two-stage network

Submitted Aug 04, 2021. Accepted for publication Dec 20, 2021; Published online: 21 Jan 2022.

doi: 10.21037/qims-21-778

View this article at: https://dx.doi.org/10.21037/qims-21-778



Quantitative Imaging in Medicine and Surgery, Vol 12, No 4 April 2022 2537

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(4):2535-2551 | https://dx.doi.org/10.21037/qims-21-778

noise, preserving structural details, and detecting lesions (44).  
Huang et al. proposed a cycle-consistent generative 
adversarial network (GAN) with the aim of suppressing 
noise and reducing artifacts caused by low-dose X-ray (45).  
Much work has been done on deep learning-based 
reconstructions using sparse-view measurements for CT, 
PAT, and OPT. With the help of deep learning networks, 
such as U-net and GAN, high-quality images with a much 
clearer edge and fine structural information can be obtained 
using sparse-view data, thus achieving faster imaging 
speeds (37-40,46-50). For example, Davis et al. used U-net 
to remove artifacts, reducing the processing time for an 
undersampled OPT dataset. Their results showed that it 
was possible to obtain reconstructed images, whose quality 
was comparable to those obtained from a compressed 
sensing-based iterative algorithm, with 40% fewer 
projections (46). Zhang et al. presented a new deep learning 
network that combined direct inversion and DenseNet to 
solve the inverse problem, and combined multi-resolution 
deconvolution and residual learning to achieve image 
structure preservation and artifact removal. This method 
was able to reduce the projection number to 60 (47). In 
another study, Zhang et al. proposed a hybrid-domain CNN 
to remove artifacts from limited-angle CT imaging. Their 
results showed good performance in artifact removal (49). 
Tong et al. developed a domain transformation network for 
PAT to achieve high-quality image reconstruction from 
limited-view and sparsely sampled data (50). These methods 
showed excellent performance in reconstruction based on a 
small number of measurements. Some researchers have also 
developed a priori knowledge-based deep learning networks 
for few-view projection data-based reconstruction (55-60).  
Shen et al. proposed a patient-specific reconstruction 
framework that achieved CT image reconstruction from a 
single-view projection image (55). However, they trained 
the network parameters and predicted the diagnostic result 
using images from the same patient. Ying et al. achieved 3D 
CT image reconstruction from 2 orthogonal 2D images of 
the human chest with the help of GAN (56); however, the 
network was trained and validated using data from the same 
modality, without exploring the migration capabilities of 
their methods.

Like CT, PAT, and OPT, PT requires a rotating sample 
or a source-detector pair to collect multi-angle projection 
data to obtain high-quality images. Data-acquisition time 
in these cases is prohibitively long, and the samples need 
special fixation, which is unfavorable to the dynamic imaging 
of living organisms. Therefore, image reconstruction based 

on few-view projection data has great significance for  
in vivo PT. With the aim of addressing the above problems, 
we developed a 2-stage deep learning network (TSDLN)-
based reconstruction framework for parallel-beam PT. In 
this framework, the TSDLN is comprised of two parts: a 
reconstruction network (R-net) and a correction network 
(C-net). The measurements are first sent to the R-net and 
then to the C-net to obtain high-quality reconstructed 
images. We trained the TSDLN-based framework and 
evaluated its performance with CT data from a public 
database (DeepLesion; Yan et al., NIHCC, Bethesda, MD, 
USA). The framework exhibited better reconstruction 
performance than traditional analytic reconstruction 
algorithms, iterative algorithms, and the cascade U-Net 
of U2E4C2K32 (52), especially in cases using sparse-
view projection images. It should be emphasized that with 
few-view projection data, the TSDLN-based framework 
reconstructed high-quality images very close to the original 
images. By using the previously acquired OPT data in 
the TSDLN trained on CT data, we further exemplified 
the migration capabilities of the framework. Our results 
collectively showed that the TSDLN-based framework 
has strong capabilities in the reconstruction of sparse-view 
projection images and exhibited great applicability potential 
for in vivo PT.

We present the following article in accordance with 
the Materials Design Analysis Reporting (MDAR) 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-21-778/rc).

Methods

TSDLN-based reconstruction framework for image 
reconstruction

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). A diagram of 
the TSDLN-based framework is shown in Figure 1. We first 
built an initial TSDLN. Then, CT datasets from a public 
database, developed by Yan et al. at the National Institute 
of Health Clinical Center (NIHCC) (51), were selected to 
train and optimize the TSDLN. Finally, we evaluated the 
ability of the optimized TSDLN to reconstruct high-quality 
volumetric images from few-view projection data. In order 
not to lose the original projection information, instead of 
filtering the signal, we used the direct inverse projection 
method to turn the sinusoidal signal of the few-view 
projection into an n×n image. In the experiments, previously 
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acquired few-view OPT images were transformed into a 
corresponding series of sparse sinograms, which were used 
to obtain the BP images of the object to be reconstructed. 
Finally, these BP images were used as input data for the 
TSDLN.

The TSDLN

The structure of the proposed TSDLN is shown in Figure 2.  
The BP image, obtained from the BP of the sparse 
sinogram, was used as input data for the TSDLN. The BP 
image was fed to the R-net for image reconstruction, and 
the resulting reconstructed image was fed to the C-net for 
denoising to finally obtain a high-quality reconstructed 
image. The R-net was a GAN framework, in which the 
generator was composed of U-net++ (RG-net) and the 
discriminator was a CNN with 4 blocks (RD-net). The 
C-net was a U-net array, responsible for denoising the R-net 
output.

The training process aimed to seek the optimal 
parameters for the TSDLN that would help it map a BP 

from a down-sampled sinogram image (BPFDS image) 
onto an image reconstructed by a complete projection 
dataset (RBCPD image). Process [1], presented below, 
summarizes the 2-stage training process, which comprised 
an initial mapping of a BPFDS image to a WSA image 
and the subsequent mapping of the WSA image to an 
RBCPD image. In the process, if  N N×∈b 

 is a BPFDS 
image,  N N×∈s 

 denotes an image without stellate artifact 
(a WSA image). Stellate artifact refers to the fact that 
FBP reconstruction will produce polygonal artifacts if few 
projection images are used.  N N×∈x   is the corresponding 
RBCPD image, and  N N×∈y 

 is the corresponding ground 
truth. In the process diagram [1],  R net−→  is training R-net, 
and  C net−→  is training C-net. 

 : R net C netTSN − −→ →b s x  [1]

The R-net

The R-net was built on a GAN-based framework. We used 
U-net++ as the generator and referred to it as the RG-net, 

Figure 1 Diagram of the TSDLN-based framework for image reconstruction. The goal of this framework was to reconstruct the chemical 
distribution of a 3D volume using previously acquired few-view projection data. In the framework, the TSDLN was first trained and 
optimized using a public CT dataset. Then, the few-view projection images were acquired using an experimental system and converted into 
a sparse sinogram. The sparse sinogram was then converted into a BP down-sampled image, which was used as the input data for the well-
trained TSDLN to finally obtain the high-quality volumetric image. 3D, three-dimensional; TSDLN, 2-stage deep learning network; CT, 
computed tomography; BP, back-projection.

Projection images
Few-view image Back-projection image

Experimental
Few-view

projection data

High-quality
volumetric

images C-net R-net

Trained TSDLN with CT dataset



Quantitative Imaging in Medicine and Surgery, Vol 12, No 4 April 2022 2539

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(4):2535-2551 | https://dx.doi.org/10.21037/qims-21-778

while the CNN acted as the discriminator and was referred to as the RD-net. To map the BPFDS image to the WSA image, 
the following minimax problem was raised:

 ( )min max ,RRG RD
L RG RD  [2]

where the first term is the loss function of the RG-net and the second is the loss function of the RD-net. 
The loss functions were defined as follows: 

 
( )( )( ) ( )( ) ( )( )2 2

1 2 3
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where α1, α2 and α3 are constant weighting coefficients; N is the mini-batch size; RG(bi) maps the BPFDS image bi to the WSA 
image. RD(·) aims to distinguish between si and the corresponding ground truth yi; SSIM(si,yi) is the error summation of the 
structural similarity (SSIM) (61) between si and yi; and
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where μ and σ denote the means and standard deviations (the square roots of the variances) of the images, respectively. 
C1=(k1L)2 and C2=(k2L)2, where L is the maximum pixel value in the image, and k1 and k2 are small constants to avoid the 
denominator being close to zero.

Figure 2 Diagram of the TSDLN. In the first stage, an R-net was used to generate a WSA image from a BPFDS image. The R-net was 
built on a GAN framework, with a U-net++-based generator (RG-net) and a discriminator with 4 residual blocks (RD-net). The loss 
function used in the GAN framework included the LRD for the generator and LRG for the discriminator. In the second stage, the U-net-based 
C-net was used to correct the WSA image, converting it into an RBCPD image, whose loss function was LC. TSDLN, 2-stage deep learning 
network; WSA, without stellate artifacts; BPFDS, back-projection from down-sampled sinogram; GAN, generative adversarial network; 
RBCPD, reconstructed by complete projection dataset.
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The C-net

The second stage involved mapping the WSA image to 
an RBCPD image. The loss function of this network was 
defined as follows:

 
 

( )2
1

1
i i

N

C
i

x yL N =
−= ∑  [6]

It is a mean squared error (MSE) loss function, where 
xi is the RBCPD image that is determined from the WSA 
image si via the C-net.

Dataset and pre-processing

The DeepLesion dataset is the largest open-access dataset 
of multi-category, level-of-focus clinical CT images to 
date (51). The images in the dataset include a variety of 
lesion types, such as renal lesions, bone lesions, pulmonary 
nodules, and lymphadenopathy. The DeepLesion dataset 
contains 14,601 folders, and we selected the first image from 
each folder to generate our TSDLN training and testing 
dataset with a total of 14,601 images, containing lesion 
information from 4,427 patients. From this dataset, we 
selected the first 12,000 images from 3,225 patients to train 
our network. A further 1,818 images from 1,202 patients 
were selected from the remaining 2,601 images, according 
to image quality, and used to test our training results. The 
experimental dataset, collected by our homebuilt OPT 
system, had been acquired and published in a previous 
study (14). Full-angle projection images of Drosophilia 
and Arabidopsis silique samples were collected and down-
sampled to obtain sparsely sampled sinusoidal signals.

Each selected image from the DeepLesion dataset 
was first downscaled to 128×128 pixels. The downscaled 
images were then rotated to obtain projection data using 
a method similar to ray tracing technique. First, 180 
projections were generated at equal full-view intervals of 
180°. Each projection was the linear integral of all the pixels 
along the direction of the simulated light source. Then, 
all the projection data (180 projections) were converted 
into a sinogram which was used to reconstruct the down-
sampled image using a BP operator. Finally, the sinogram 
was sampled at equal intervals to generate sparse-view 
sinograms that approximated different numbers of sparse-
view projection images. The selected sparse views included 
2, 3, 4, 5, 6, 9, 10, 12, 15, 30, 36, 45, 60, and 90 projections. 
The sparse-view sinograms were also used to reconstruct 
down-sampled images using a BP operator. Finally, all the 
reconstructed down-sampled images, including those using 

the complete-view data and the sparse-view data, were 
included in the training and testing datasets. All images were 
scaled to the same size 128×128 and the Hounsfield unit 
(HU) values were normalized to between −175 and 275.

The training dataset obtained by using the above process 
was employed to train the R-net. The goal was to find 
a correlation between the direct BP operation and the 
ground truth. The output of the trained R-net was used as 
the training dataset for the C-net. The C-net was trained 
for better reconstruction by using few-view projections, 
specifically 2, 3, 4, 5, 6, and 9 projections.

Training parameters and environment

Since a sample can produce 18 pairs of data, we expected 
a minimum of 18 pairs per batch. The R-net parameters 
were set as: α1=0.1, α2=10, α3=0.03, the learning rate was 

10−4, and the batch size of  
Ul

R ,  
,U SSIMlR  and U-net++ were 

20, 22, and 44. The batch size of the C-net was 100, 

and the learning rate was 10−4. These parameters were 
empirically determined in the experiments. The networks 
were implemented and trained using Pytorch 1.2.0 (https://
pytorch.org/) on a personal computer with Intel Core i7-
8700 CPU @ 3.20 GHz (Intel, Santa Clara, CA, USA) and 
an NVIDIA GeForce RTX 2080 Ti (11G) GPU (Nvidia, 
Santa Clara, CA, USA). The large amount of training data 
resulted in the R-net already starting to converge at the first 
epoch, and we eventually selected the parameters of the 
20th epoch as the result, for a total of 12 hours. Each C-net 
was trained for 2 hours. In the experiments, the processing 
time of the R-net was 41.13 seconds, and that of the C-net 
was 32.72 seconds. Thus, the total reconstruction time was 
73.85 seconds.

Evaluation indicator

To evaluate the quality of the reconstructed images, 3 
commonly used evaluation indictors in sparse-view CT 
reconstruction were introduced into the experiment, 
including the peak signal to noise ratio (PSNR) (28), feature 
similarity (FSIM) (62), and the normalized root mean 
square error (NRMSE) (63). The PSNR was used as the 
metric factor and had the following expression:

  
( ) ( )2

1 2 10 2
1 2 2

, 10log IMAX
PSNR I I

I I

 
 
 
 
 

=
−  

[7]

where MAXI was the maximum possible pixel value of the 
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image, I1 was the sparsely reconstructed image, and I2 was 
the reference image that acts as the ground truth.

The FSIM was calculated using the following formula:
  ( ) ( )

( )
mLp

mp

p p

p

S PC
FSIM

PC
∈Ω

∈Ω

⋅
=
∑
∑  [8]

where the components of Ω, SL, and PCm can be found in 
the detailed expression in (62). The FSIM values were 
expressed in a range of 0 to 1. The larger the FSIM and 
PSNR, the better the quality of the reconstructed image.

The NRMSE was defined using the square root of the 
mean square error (RMSE), with the following expressions:
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where Y represented the ground truth image, X denoted 
the reconstructed image from the noisy input, m and n were 
dimensions of the image, and MAXY and MINY were the 
maximum and minimum values of Y.

Results

Performance evaluation of the TSDLN-based framework

The performance of the TSDLN-based framework was 
first evaluated with simulations using the DeepLesion 
dataset. The experiments were divided into two parts. In 
the first part, the accuracy of the TSDLN-based framework 
was evaluated by comparing it with the popular FBP, pixel 
vertex driven model (PVDM)-based TV regularized SART 
algorithm (PVDM-SART), and the cascade U-Net of 
U2E4C2K32 (52). In the second part, we evaluated the role 
of the network structure and parameters and their influence 
on reconstruction results.

Accuracy verification

In the accuracy verification experiments, sample images 
were randomly selected from the test dataset and 
reconstructed using FBP, PVDM-SART, and the TSDLN-
based framework. The PVDM-SART parameters were 
set as N=20, Ngrad=10 and λ=0.05. The results of the 
representative test data are shown in Figure 3A-3F. For 
ease of reference, we did not include the reconstructed 
results for all the projection numbers examined, but for 

a representative number (2, 6, 15, and 60) of projections. 
Results including those of 2, 4, 6, 9, 15, 45, 60, and 180 
projections are presented in Figure S1. The sinogram 
and corresponding BP images are shown in Figure 3A and  
Figure 3B, and Figure 3C-3F present the reconstructed 
results using the TSDLN, FBP, PVDM-SART, and 
the cascade U-Net of U2E4C2K32. We found that 
the reconstructed results using the proposed TSDLN 
were better than those using FBP, PVDM-SART, and 
U2E4C2K32 in all investigated cases. As observed visually 
from the reconstructed images, FBP results were affected 
when the number of projections was reduced to 60 and 
were greatly affected when the number was reduced to 45  
(Figure S1D). For the PVDM-SART, these numbers were 
60 and 15. When there were 6 projections, the U2E4C2K32 
results were blurred. When the number was reduced to 2, 
it could not resolve the details. However, for the proposed 
TSDLN, all results were free of artifact noise, and when 
the number of projections was reduced to fewer than 10, we 
still obtained reconstructed images that were very similar 
to those of FBP and PVDM reconstructions using 180 
projections. We further calculated the difference images by 
subtracting the reconstructed images from the original ones, 
and observing the missing information from the difference 
images for the different projection numbers. The lower 
the number of projections, the greater the information loss 
in the reconstructed images (Figure S2). To evaluate these 
reconstruction algorithms quantitatively, we calculated 
evaluation indicators for the PSNR, FSIM, and NRMSE 
(Figure 3G-3I). We found that as the number of projections 
increased, the PSNR and FSIM also increased, while the 
NRMSE values decreased for all results. When the number 
of projections was more than 9, the PSNR value provided 
by the TSDLN was higher than that of the U2E4C2K32 
and the FBP and PVDM-SART using 180 projections. 
When the projection number was greater than 20, the FSIM 
value of the TSDLN was greater than that of the PVDM-
SART with 180 projections (Figure S1). To further observe 
the anatomical details, we extracted partially-enlarged views 
(images shown in the upper right corner of Figure 3C-3F), 
and drew the same conclusions. These results verified the 
accuracy of the proposed TSDLN-based framework for 
few-view projection image reconstruction.

We found that the proposed TSDLN-based framework 
had good reconstruction abilities in few-view projections-
based PT. With an increase in the number of projections, 
the overall imaging quality did not change significantly, 
although some details were lost (Figure 4A). When the 
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number of projections was greater than 30, the detailed 
parts of the image were still well-reconstructed. However, 
when the number of projections was reduced to 9, tiny 
details were difficult to reconstruct and there was a big 
difference in detail compared to the ground truth. To 
thoroughly investigate the relationship between the loss of 
information and the reduction in projections, we subtracted 
the reconstructed images from the originals and correlated 

the difference images to the number of the projections 
(Figure 4B). As the number of projections decreased, more 
information was lost. When the number of projections 
was greater than 9, relatively little information was lost 
in the reconstructed images, and the variability of the 
difference images using different numbers of projections 
was not obvious. When the projection number was reduced 
to 6, the contour information and internal details of the 

Figure 3 Accuracy verification of the proposed TSDLN-based framework. (A,B) Sinograms and input BP images corresponding to 2, 6, 15, 
and 60 projections; (C-F) reconstructed results using the TSDLN, FBP, PVDM-SART, and U2E4C2K32, respectively; (G-I) PSNR, FSIM, 
and NRMSE values as a function of the projection number. The images in the upper right corner of (C-F) are partially-enlarged views of 
the reconstructed image. TSDLN, 2-stage deep learning network; BP, back-projection; FBP, filtered back-projection; PVDM-SART, pixel 
vertex driven model-based total variation regularized simultaneous algebra reconstruction technique algorithm; PSNR, peak signal to noise 
ratio; FSIM, feature similarity; NRMSE, normalized root mean square error.
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Figure 4 Analysis of detailed resolution ability. (A) Ground truth selected from the DeepLesion dataset (a1) and images reconstructed using 
the proposed TSDLN-based framework with 9, 30, 45, 90, and 180 projections (a2-a6, respectively); (B) difference images between the 
original and reconstructed images corresponding to (A); (C) intensity profiles extracted from the reconstructed images and the ground truth 
along the selected line, shown with a red line in (a1). TSDLN, 2-stage deep learning network.

reconstructed images almost disappeared. When the 
projection number was further reduced to 2, the significant 
and relatively large internal features of the reconstructed 
image were also lost. To observe this phenomenon more 
clearly, we selected localized regions of the reconstructed 
images for comparison of the intensity profiles (Figure 4C), 
and our observations supported the same conclusions.

Performance analysis

To analyze the reconstruction performance of the proposed 
TSDLN-based framework with few-view projection data 
and discuss the necessity for the TSDLN architecture, we 
disassembled the R-net layer of the proposed TSDLN and 
discussed the reconstruction performance of the different 
networks. The R-net was disassembled into a U-net++ that 
contained only generators, a network of  

Ul
R  that contained 

generator and discriminator but did not use SSIM as a loss 

function, and a network of  
,U SSIMlR  that contained generator 

and discriminator and used SSIM as a loss function. 
Similarly, we used the DeepLesion dataset to train and test 
these 4 reconstruction networks. Representative testing 
results are shown in Figure 5, and Figure 5A-5D present the 
reconstructed results of U-net++,  

Ul
R ,  

,U SSIMlR , and TSDLN 
using 2, 4, 6, and 9 projections. Intuitive analysis of the 

reconstructed images yielded several conclusions, as follows: 
First, when using few-view projection for reconstruction, 
U-net++ can reconstruct the high-brightness portion of 
the image, but not the low-brightness portion very well. 

Second, the reconstructed results of  
Ul

R  and  
,U SSIMlR  are 

similar and closer to the ground truth than those of U-net++. 
Third, as the number of projections increases, so does the 
ability of all networks to reconstruct details. Finally, the 
addition of a correction function for the  

,U SSIMlR  (i.e., the 
TSDLN) is a good way to remove the noise present in the 
 

,U SSIMlR  results, bringing the reconstruction results closer to 
the ground truth.

For soft tissue with a relatively low signal intensity, 
U-net++ ,   

Ul
R  and   

,U SSIMlR  cou ld  not  prov ide  good 
reconstruction quality when using few-view projections. 
The addition of the C-net could remove the artificial 
noise and achieve resolution similar to the ground truth. 
In general, U-net++ had the worst reconstruction results, 

and  
Ul

R  and  
,U SSIMlR  provided similar reconstruction results. 

In applying the correction effect, the C-net reduced the 
noise in the reconstruction results of  

,U SSIMlR . To observe the 
differences with low numbers of projections, we calculated 
the difference images by subtracting the reconstructed 
images from the original images and observed the missing 
information from the difference images for various 
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projection numbers (Figure S3). We could observe some 
differences in detail on these difference images. For 
example, in the bottom third of the reconstructed images, 
clear white lines can be observed in Figure S3A, which do 
not appear in Figure S3B-S3D. This indicated that there 
was significant information loss in the images reconstructed 
by U-net++. While there were no obvious differences 
between Figure S3B-S3D in the difference images, there 
was smoothing in Figure S3B and Figure S3C at a low 
number of projections in the reconstructed images.

We quantitatively analyzed the reconstructed results 
of all the samples of the testing dataset by calculating 
evaluation indicators for the PSNR, FSIM, and NRMSE. 
The quantitative analysis results are shown in Figure 5E-5G. 
In most cases, U-net++ provided the poorest reconstruction 
quality, while the TSDLN provided the best reconstruction 
quality, as seen from the evaluation factor values. Although 

U-net++ provided a slightly higher mean PSNR value 
than the TSDLN when using few-view projection for 
reconstruction, the TSDLN had a slightly smaller variance. 
This indicated better algorithmic stability in the TSDLN. 
The PSNR values of  

,U SSIMlR  were better than those of  
Ul

R  in 
most cases of few-view projections reconstruction, while the 

FSIM values were always better. This indicated that  
,U SSIMlR  

was able to retain more detailed information. We also 
calculated other evaluation indicators for the MSE, RMSE, 
and NMSE values (Table S1). Therefore, we used  

,U SSIMlR  to 
generate the training data for the C-net. It is also interesting 
to note from the quantitative FSIM results that the lower 
the number of projections used in the reconstruction, the 
more pronounced the correction effect of the C-net. This 
indicated that when the number of projections that can be 
acquired is small, i.e., fewer than 4 projections, the use of 

Figure 5 Performance analysis of the different reconstruction networks. (A-D) Reconstructed results of U-net++,  
Ul

R ,  ,U SSIMlR , and TSDLN 
using 2, 4, 6, and 9 projections, respectively; (E-G) evaluation indicators for the PSNR, FSIM, and NRMSE values as a function of the 
projection number. The images in the upper right corner of (A-D) are the partially-enlarged views of the reconstructed images. TSDLN, 
2-stage deep learning network; PSNR, peak signal to noise ratio; FSIM, feature similarity; NRMSE, normalized root mean square error.
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Figure 6 Verification of the migration capabilities of the proposed TSDLN-based reconstruction framework. (A,B) Reconstructed results 
of the Drosophila and Arabidopsis silique, respectively, using the TSDLN with 2, 4, 6, 9, and 15 projections, and the PVDM-SART and FBP 
with 180 projections; (C-E) corresponding evaluation indicators of the PSNR, FSIM, and NRMSE values as a function of the number of 
projections, where the red columns represent the results of the Drosophila samples, and the blue columns denote those of the Arabidopsis 
silique samples. TSDLN, 2-stage deep learning network; FBP, filtered back-projection; PVDM-SART, pixel vertex driven model based total 
variation regularized simultaneous algebra reconstruction technique algorithm; PSNR, peak signal to noise ratio; FSIM, feature similarity; 
NRMSE, normalized root means square error.

the C-net allows better recovery of detailed information.
Taking these results collectively, we reached the following 

conclusions. First, U-net++ does not perform well in few-
view projection-based reconstruction problems. Secondly, 
the reconstruction quality of  

,U SSIMlR  is better than that of 
 

Ul
R , indicating that the SSIM loss has a substantial impact 
on the reconstruction. Thirdly, C-net has a corrective 
effect on the output of the R-net, which provides better 
noise suppression in the low-brightness portions of images, 
such as areas of soft tissue. These results showed that the 
proposed TSDLN is a valid method for obtaining better 
reconstruction results using few-view projections.

Verification of the migration capability of the TSDLN-
based framework

We further verified the migration capabilities of the 

TSDLN with the experimental OPT dataset. It should 
be noted that the TSDLN training only used data from 
the DeepLesion dataset and not from the experimental 
OPT dataset. The down-sampled OPT data of Drosophila 
and Arabidopsis silique were selected as the test dataset for 
the trained TSDLN. Since the actual OPT data collected 
did not include a true image of the sample, we used the 
reconstructed results of the PVDM-SART with 180 
projections data as the ground truth. In Figure 6A,6B, the 
reconstructed results of the Drosophila and Arabidopsis silique 
are shown, respectively, using the TSDLN with 2, 4, 9, 15, 
and 60 projections, and the PVDM-SART and FBP with 
180 projections. More results, including 2, 3, 4, 5, 6, and 
9 projections, are presented in Figure S4. We found that 
when the projection number was reduced to 9, the contours 
and distribution information of the investigated samples 
could still be seen in the reconstructed images. The images 
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could not resolve the structure when the projection number 
was decreased to 2. Similarly, we calculated quantitative 
evaluation indicators for the PSNR, FSIM, and NRMSE 
(Figure 6C-6E), with the following results. Firstly, for both 
the Drosophila and Arabidopsis silique samples, the TSDLN-
based framework recovered the sample image information 
well and had a high degree of agreement with the results 
obtained by the PVDM-SART algorithm. This indicated 
that the TSDLN has good migration ability.

Secondly, the reconstructed results of the Drosophila 
samples were slightly better than those of the Arabidopsis 
silique. For example, at 3 projections, the Drosophila sample 
had a PSNR greater than 18, and an FSIM greater than 
0.85. When the projection number was greater than 2, the 
NRMSE values of the Drosophila were lower than those of 
the Arabidopsis silique. However, to achieve such values, a 
minimum of 4 projections were required for the Arabidopsis 
silique sample, and the results fluctuated. This may be due 
to the somewhat simple morphology and distribution of the 
Drosophila samples. The results in this section showed that 
our proposed TSDLN had good migration ability in OPT 
imaging.

The proposed framework was further evaluated to 
determine how much it relied on a priori knowledge of 
what medical samples typically look like. We conducted 
a simulation of the reconstruction of an unnatural digital 
phantom (Figure S5). The results showed that when 
the projection number was reduced from 180 to 10, the 
structure of the phantom could be well resolved. However, 
when the projection number was fewer than 10, the 
reconstructed images became blurred.

Discussion

Image reconstruction based on few-view projection 
data will be of great significance for in vivo PT of living 
organisms. To this end, a TSDLN-based framework was 
developed for reconstructing parallel-beam PT images. 
Combining R-net and C-net in two steps, the TSDLN-
based framework performed well in few-view projections-
based reconstruction. The TSDLN was trained using 
down-sampled data from a public dataset. We then 
verified the accuracy of the TSDLN-based framework 
with test data extracted from the public dataset. Results 
showed that the TSDLN-based framework could obtain 
a much higher accuracy with few projections than 
FBP, iterative algorithms, and the cascade U-Net of 
U2E4C2K32. Then, we demonstrated the advantages of 

and necessity for a 2-stage network for few-view projection 
reconstruction by decomposing the network structure. 
Finally, we demonstrated the good migration capabilities 
of the proposed TSDLN-based framework in few-view 
projection reconstruction using previously acquired OPT 
data as the experimental dataset. The overall experimental 
results showed that by using the proposed TSDLN-based 
framework, we were able to reconstruct useful information 
about the investigated sample with few-view projections. 
These findings could potentially increase the applicability 
of PT for imaging living organisms. The TSDLN had 2 
loss functions that separately constrained the network. The 
constraint was stronger than that of a single-layer network, 
and the reconstruction result was closer to the actual 
object. Furthermore, training the TSDLN was easier than 
training a single-stage network, which reduced computer 
performance requirements.

Although some details were lost, especially when sparse-
view projection images were used, the TSDLN-based 
framework still reconstructed high-quality images that were 
very close to the originals when the projection number was 
reduced to 6, with an FSIM larger than 0.827. This value 
was equivalent to that obtained in reconstruction using 
a traditional FBP algorithm and 90 projections (FSIM 
=0.814). The FSIM value for the proposed TSDLN-
based framework was 0.848 when the projection number 
was reduced to 15, which was comparable to that obtained 
by the SART-PVDM algorithm at 90 projections (FSIM 
=0.842). In this case, reconstructions using a small number 
of projections had a high morphological similarity to 
the original images, which also showed that the loss 
of information was relatively small. However, exactly 
how many angles are needed to ensure that no useful 
information is lost depends on the details of the region 
of interest. We also need to consider a combination of 
quantitative evaluation metrics for the reconstructed image 
and the amount of information lost. If just the contour 
information of the reconstructed sample is required,  
2 projections are sufficient. If detailed inner information is 
required, the number of projections depends on the detail 
to be observed. There may be cases where a reconstruction 
framework with a small number of projections is simply not 
appropriate. We further analyzed the difference images by 
selecting the region of interest and calculating the number 
of lost pixels in the reconstructed image (Figure S2A).  
The results showed that the values became larger as the 
number of projections decreased, which is consistent 
with and complementary to the quantitative analysis 
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indices. Such information loss, which may impact clinical 
pathological analysis, could be due to 2 possible reasons. 
First, the training data we used to train the TSDLN had a 
low resolution (128×128), which impacted the image details. 
Secondly, the TSDLN framework was too large, which 
resulted in gradient disappearance and loss of detailed 
information. These issues can be improved in follow-up 
studies in two ways. First, we can increase the number of 
dimensions of the training dataset and add high-resolution 
images into it. Secondly, we can employ a super-resolution 
network in the second stage of the TSDLN framework 
and perform super-resolution operations on the images 
reconstructed from the first-stage network to obtain images 
with sharp detail resolution.

We also investigated the robustness of the proposed 
TSDLN framework with regard to mechanical or sample 
drift by performing two sets of simulations. In these 
simulations, we artificially misaligned sinograms to mimic 
mechanical or sample drift. In the first group, the 1°–45° 
and 91°–135° sinograms were moved up by 5 pixels, 
while those of the other angles remained unchanged. In 
the second group, the 1°–30°, 61°–90°, and 121°–150° 
sinograms were moved up by 5 pixels, and those of the 

other angles remained unchanged. Obvious misalignment 
appeared in the reconstructed images as the projection 
number increased (Figure 7 and Figure S6). Furthermore, 
the fewer the number of projections, the less information 
was lost in the reconstructed image. For example, when 
the projection number was 45, the reconstructed images 
exhibited obvious misalignment, but when the number 
of projections was 2 and 4, there was relatively little lost 
information. From these results, we concluded that the 
misalignment of sinograms caused by mechanical or sample 
drift could affect the performance of the proposed TSDLN-
based framework, especially when more projections were 
used in the reconstruction.

 We conducted another simulation to observe the quality 
of the reconstructed images using 2 projections from 
incorrect angles. One of the projections was fixed at the 90° 
angle while the other projection was selected at the 180°, 
175°, 170°, 160°, 150°, and 140° angle. The reconstructed 
images and corresponding difference images are shown in 
Figure S7. When the interval of the two projections was 
90°, the anatomical details in the reconstructed images were 
well resolved. When the interval was reduced to 70° or less, 
the image became blurred and it was difficult to distinguish 

Figure 7 Reconstructed images with a misalignment in the sinogram. (A,B) Sinograms and corresponding input BP images for 2, 4, 6, 9, 
15, 45, 60, and 180 projections; (C) reconstructed images using the TSDLN; (D) difference images between the original and reconstructed 
images. BP, back-projection; TSDLN, 2-stage deep learning network.
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useful information. In addition, as the interval decreased, 
the reconstructed image rotated and became distorted, with 
increasing severity. These results showed that the proposed 
TSDLN-based framework is able to generate high-quality 
images when the projection interval was consistent with the 
training dataset.

Conclusions

In conclusion, a reconstruction framework based on 
a TSDLN was developed for parallel-beam PT. We 
demonstrated the accuracy and feasibility of the framework 
for few-view projection-based reconstruction with 
simulations, and further explored its migration capabilities 
using previously acquired OPT data. Our results showed 
that by using the deep learning technique, it is possible to 
achieve high-quality PT using few-view projections. We 
believe that this work will facilitate basic, preclinical, and 
clinical applications of PT techniques, such as obtaining 
a patient’s 3D CT image from a single 2D projection, a 
challenge we will be working on in the future. 
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Supplementary

Figure S1 Accuracy verification of the proposed TSDLN-based reconstruction framework. (A,B) Sinograms and input BP images 
corresponding to 2, 4, 6, 9, 15, 45, 60, and 180 projections. (C-F) Reconstructed results by the TSDLN, FBP, PVDM-SART, and 
U2E4C2K32 respectively. The upper right corner of (C-F) is a partially-enlarged view of the reconstructed image. (G,H) PSNR and FSIM 
values as a function of projection number. 
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Figure S2 Difference images between the original and reconstructed images under projection number of 2, 4, 6, 9, 15, 45, 60, and 180. (A-D) 
Results the TSDLN, FBP, PVDM-SART and U2E4C2K32, respectively.

Figure S3 Difference images between the original and reconstructed images under projection number of 2, 4, 6, and 9. (A-D) Reconstructed 

results of Unet++, 
Ul

R , 
,U SSIMlR , and TSDLN, respectively.
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Figure S4 Verification results of migration capability of the proposed TSDLN based reconstruction framework. (A,B) Reconstructed 
results of the Drosophila and Arabidopsis silique respectively by using the TSDLN under 2, 3, 4, 5, 6, and 9 projections, as well as using the 
PVDM-SART(P-S) and FBP under 180 projections.

Figure S5 Reconstruction of digital phantom under different projections. (A) G-T image; (B-I) Reconstructed images of the TSDLN by 
using 2, 4, 6, 9, 15, 45, 60, and 180 projections, respectively.
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Figure S6 Reconstructed images with misalignment in the sinogram. (A,B) Sinograms and input BP images corresponding to 2, 4, 6, 9, 15, 
45, 60, and 180 projections; (C) reconstructed images using 2, 4, 6, 9, 15, 45, 60, and 180 projections, respectively; (D) difference images 
between the original and reconstructed images under different projections.

Figure S7 Reconstructed images using two projections from incorrect angles. (A) Reconstructed images by TSDLN using two projections 
from incorrect angles. One projection was fixed at the 90th angle, and the other projection was selected as the 180th, 175th, 170th, 160th, 150th, 
and 140th angle respectively; (B) Difference images corresponding to (A). Here, the 50, 60, 70, 80, 85, and 90 represent the angle interval 
between two projections used for reconstruction.
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Table S1 Other evaluation factors for different reconstruction networks

1 2 3 4 5 6 9

MSE Unet++ 1,607.377 1,311.215 1,178.01 1,080.646 1,018.039 955.8351 840.3254

Rlu 1,663.745 1,309.601 1,121.755 998.8598 902.2595 820.391 659.3591

RlSSIM 1,720.699 1,301.623 1,101.031 969.5406 861.3696 785.5268 642.8228

TSDLN 1,640.746 1,299.265 1,066.525 918.113 842.9279 761.0366 579.5668

RMSE Unet++ 39.5961 35.7471 33.9033 32.4684 31.5114 30.5243 28.59621

Rlu 40.2048 35.6916 33.0335 31.1165 29.5642 28.1723 25.1863

RlSSIM 40.8849 35.5367 32.6751 30.6224 28.8441 27.5290 24.8392

TSDLN 40.0160 35.5342 32.2031 29.8121 28.5488 27.1148 23.5979

NMSE Unet++ 0.6113 0.4985 0.4494 0.4126 0.3892 0.3661 0.3222

Rlu 0.6449 0.5046 0.4309 0.3821 0.3449 0.3135 0.2517

RlSSIM 0.6691 0.5003 0.4232 0.3721 0.3286 0.3001 0.2446

TSDLN 0.6369 0.5005 0.4118 0.3509 0.3223 0.2925 0.2226


