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Background: It is critical to have a deep learning-based system validated on an external dataset before 
it is used to assist clinical prognoses. The aim of this study was to assess the performance of an artificial 
intelligence (AI) system to detect tuberculosis (TB) in a large-scale external dataset.
Methods: An artificial, deep convolutional neural network (DCNN) was developed to differentiate TB 
from other common abnormalities of the lung on large-scale chest X-ray radiographs. An internal dataset 
with 7,025 images was used to develop the AI system, including images were from five sources in the U.S. 
and China, after which a 6-year dynamic cohort accumulation dataset with 358,169 images was used to 
conduct an independent external validation of the trained AI system.
Results: The developed AI system provided a delineation of the boundaries of the lung region with a Dice 
coefficient of 0.958. It achieved an AUC of 0.99 and an accuracy of 0.948 on the internal data set, and an 
AUC of 0.95 and an accuracy of 0.931 on the external data set when it was used to detect TB from normal 
images. The AI system achieved an AUC of more than 0.9 on the internal data set, and an AUC of over 0.8 
on the external data set when it was applied to detect TB, non-TB abnormal and normal images.
Conclusions: We conducted a real-world independent validation, which showed that the trained system 
can be used as a TB screening tool to flag possible cases for rapid radiologic review and guide further 
examinations for radiologists.
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Introduction

Tuberculosis (TB) is a pulmonary infectious disease caused 
by Mycobacterium tuberculosis. The World Health 
Organization (WHO) estimated that 1.5 million people died 
of TB in 2018 (1). TB has become the second leading cause 
of infectious disease death (2). The key methods to prevent 
and control TB are rapid and accurate diagnoses and timely 
treatments. Chest X-ray is one of the most commonly used 
methods to detect TB (3), and it has the potential to allow 
screening for TB at an early stage.

Artificial intelligence (AI) has played an increasingly 
important role in medical imaging. LeCun et al. (1998) 
proposed the multilayer network LeNet-5 after Waibel et al.  
(1989) developed the first convolutional neural network (CNN) 
for speech recognition (4,5). Since then, CNNs have become 
the subject of much investigation (6,7). With consistent 
improvements in computer and AI technologies, advanced 
AI techniques have been integrated into medical big data and 
used as a way of assisting diagnosis. Meanwhile, the accuracy, 
specificity and speed of diagnoses have also been improved. 
Many studies have shown that artificial intelligence can help 
classify lesions and identify the nature of lesions (8,9).

Research in the application of deep learning to radiology 
(10,11) is a rapidly growing field as a result of its promising 
performance in disease detection, such as pleural effusion 
and cardiomegaly detection on chest radiographs (12,13), 
and mediastinal lymph node and lung nodule detection 
on computed tomography (CT) (14,15). Researchers have 
realized that AI-based chest X-ray (CXR) is a very promising 
tool for diagnosing TB, especially in resource-limited rural 
areas (10). In a study where the AlexNet and GoogLeNet 
networks were used to detect TB on chest radiographs, 1,007 
chest radiographs were used for two different deep CNN 
tests, and the final result showed that the best-performing 
classifier achieved an AUC of 0.99 (10). Reviews of different 
computer-aided diagnosis (CAD) methods for TB can be 
found in the studies of Jaeger et al. (16) and Fatima and  
Shah (17). These CAD systems can automatically score the 
TB likelihood of each chest image. However, the test datasets 
from many previous studies had either a small sample size 
or were acquired from a single source; furthermore, most 
of the studies conducted model validation only on internal 
datasets, which might not have comprehensively evaluated 
the performance of the developed AI models (18). Therefore, 
the purpose of our study was to develop an AI system for 
TB detection on chest radiographs and to validate its 
performance using both internal and external datasets. We 

present the following data in accordance with the STARD 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-21-676/rc).

Methods

Data

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study 
was approved by the Peking University Shenzhen Hospital 
Institutional Review Board with a waiver of informed 
consent. All patient identification on internal and external 
datasets were removed. The internal dataset was gathered 
from five different sources and separated into training, 
validation, and testing subsets to develop the AI system 
(Figure 1). Among these images, 2,736 images were of TB 
images, 2,169 images were of non-TB abnormal images, 
and 2,120 images were normal images. Patients of separated 
subsets were different and exclusive from each other. Then, 
358,169 images of the external dataset were also read by the 
developed AI system to conduct independent validations 
(Figure 1). The external dataset included posterior-anterior 
(PA) or anteroposterior (AP) chest X-ray radiographs, 
among which there were 3,355 pulmonary TB images, 
251,495 non-TB abnormal images and 103,319 normal 
images. In this study, TB cases were bacteriologically 
confirmed by at least one positive laboratory investigation 
including specimens of sputum, Xpert MTB/RIF, 
bronchoalveolar lavage and endotracheal aspirate. Non-
TB abnormal cases were verified by medical records from 
hospitals, which included clinical information along with 
laboratory and radiological findings, and normal cases 
were judged by radiological reports and a 2-year follow-
up examination. All radiological reports were made by 
consensus readings by two experienced radiologists with at 
least 10 years of radiological experience.

Internal data set

The internal dataset was collected from two public datasets 
[CHNCXR and MCUCXR (19)] and three different 
Chinese organizations, which were labeled Site 1, Site 
2, and Site 3, respectively. Site 1, Site 2 and Site 3 were 
all in the TB high-prevalence area of China. Site 1 was a 
specialist hospital for infectious diseases, having the largest 
proportion of TB cases among its patients (1,102/1,377, 
80.0%) when compared with Site 2 (150/1,351, 11.4%) 

https://qims.amegroups.com/article/view/10.21037/qims-21-676/rc
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and Site 3 (1,090/3,497, 31.2%). A total of 7,025 images 
were classified in Table 1 according to data source and type, 
among which 5,045 images (71.8%), 631 images (9.0%) 
and 1,349 images (19.2%) were randomly selected for 
training, validation, and testing, respectively. The detailed 
information is listed in Table 2.

External data set

As shown in Table 3, the external dataset of 358,169 images 
labeled as Site 4 was retrospectively collected from February 

1, 2012, to July 31, 2018, in a low-prevalence setting (TB 
prevalence of 1.0%) to conduct an independent validation 
of the developed AI system. The gender distribution is 
shown in Figure 2. More men contract TB than women. 
The ratio of TB images to normal images is 3.24%. The 
TB distribution, normal and sickness rates relevant to age 
and gender are displayed in Figure 2. As shown in Figure 2C, 
people between 60 and 70 years of age are more likely to 
contract TB, with over 100 people per 100,000 contracting 
TB in that age group. The trained AI system in this study 
was installed at Site 4 to identify TB, non-TB abnormal and 

Figure 1 Flowchart for study dataset.

Internal dataset: Hospitals
Bacteriologically confirmed tuberculosis 
1. Site 1 (TB=1102, non-TB=275, Normal=0)
2. Site 2 (TB =150, non-TB=199, Normal=1002)
3. Site 3 (TB =1090, non-TB=1695, Normal=712)

Internal dataset: 7025 chest radiographs
1. Training data (n=5045)
2. Validation data (n=631)
3. Testing data (n= 1349)

Total dataset (n=365194)
1. Internal dataset (7025 chest radiographs)
2. External dataset (358169 chest radiographs )

Internal dataset: Public dataset 
1. CHNCXR (TB=336, Normal=326)
2. MCUCXR (TB=58, Normal=80)

External dataset: 358169 chest radiographs detected 
between Feb 1, 2012 and July 31, 2018 in Site 4
1. Bacteriologically confirmed tuberculosis (TB=3355)
2. Non-TB=251495, Normal=103319

Table 1 Distribution of internal dataset

Site 1 Site 2 Site 3 CHNCXR MCUCXR Subtotal

TB 1,102 150 1,090 336 58 2,736

Non-TB 275 199 1,695 0 0 2,169

Normal 0 1,002 712 326 80 2,120

Total 1,377 1,351 3,497 662 138 7,025

Table 2 Distribution of training, validation, and testing data generated from internal data

TB Non-TB Normal Subtotal

No. training data 2,186 1,734 1,125 5,045

No. validation data 273 217 141 631

No. testing data 277 218 854 1,349

Total 2,736 2,169 2,120 7,025
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normal images.

Artificial intelligence (AI)-based detection system

The AI system was developed using the following 
procedures. First, the chest radiographic images in 
DICOM format were converted into Portable Network 
Graphics format, and then these converted images were 
de-noised and resized to 500×500 pixels as training input. 
Augmentation was then performed by random horizontal 
flip, random crop, and color jittering in sequence to 
overcome problems caused by insufficient training data 
or the uneven class balance within the datasets (20,21). 
Specifically, the crop ratio of random crops ranged from 
0.08 to 1, and color jittering was implemented by randomly 
changing the contrast, brightness, and saturation of images 
in the range of 0.8 to 1.2. Second, a U-Net-based algorithm 
was trained to automatically segment the lung area. CXR 
images worked as input, and then U-Net output the 

probabilities for each class based on the softmax function. 
The U-Net we trained consisted of four contraction and 
expansion processing parts. In each contraction processing, 
high-level abstract features were extracted by consecutive 
application of pairs of convolutional and pooling layers. 
In the expansion part, the low-level abstract features were 
merged with the features from the contractive part. As a 
result, the system provided a highly accurate delineation 
of the lung region boundaries with a Dice coefficient of 
0.958 (22) (Figure 3). Finally, a transfer learning approach 
was applied to train a pretrained ResNet model to build the 
final DCNN to identify and locate TB lesions. ResNet is 
a network architecture that allows training a large number 
of layers while still achieving compelling performance (23). 
The DCNN was first developed by an internal dataset that 
involved 2,736 TB and 2,120 normal CXRs (including 
training, validation, and testing set), as described in Table 1.

Diagnostic performances of the trained system

The test of the trained AI detection system was conducted 
as follows: (I) TB and normal images where TB CXRs were 
positive and normal CXRs were negative were identified. (II) 
TB, non-TB abnormal and normal images where TB and 
non-TB abnormal CXRs were positive and normal CXRs 
were negative, were identified. These three datasets did not 
overlap. The first experiment was to test the AI system’s 
capability to detect TB and normal images, and the second 
experiment was to evaluate its performances to identify TB, 
non-TB abnormal and normal images.

TB and normal images detection by the trained system

The trained system was applied to detect TB and normal 
images on internal and external datasets. First, 277 TB 
and 854 normal CXR images of the internal dataset were 
involved in the test. Second, the system was validated by 
an external dataset that included 3,355 TB and 103,319 
normal CXR images. Finally, indicators of the system’s 
performances were recorded and analyzed.

TB, non-TB and normal image detection by the trained 
system

TB, non-TB and normal images from the internal and 
external datasets were used in this section. Data collected 
from Site 4, as shown in Table 3, were read to conduct 
independent validation of AI performance, and different 

Table 3 Summary of external dataset

Abnormality types Number

Normal 103,319

Pneumonia 52,140

Aorta (widening) distortion 31,724

Pleural thickening 27,012

Nodules 26,918

Fibrosis 27,367

Bronchitis 21,911

Aortic calcification 18,655

Cardiomegaly 19,536

Effusion 11,670

Calcification 4,177

Primary/secondary tuberculosis 3,355

Pneumothorax 2,613

Emphysema 2,318

Fractures 2,269

Lung cancer 1,042

Atelectasis 1,966

Pulmonary edema 177

Total cases 358,169
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Figure 2 Description for study population. (A) Distribution of TB. (B) Normal rates relevant to age and gender for the external dataset. (C) 
Disease rates relevant to age and gender for the external dataset. (D) Corresponding table displaying the distribution. TB, tuberculosis.

Figure 3 Results of lung segmentation using U-Net (yellow lines represent the ground truth boundaries of the lung area, and green areas 
denote U-Net results). The Dice coefficient of lung region segmentation is 0.958.

Disease Total images No. of males No. of femals Imaging time Comorbidity

TB 3,355 2,154 1,201 2012-2018 56.48%

Normal 103,319 44,653 58,666 2012-2018 0%

Ratio #TB/#Normal 3.24% 4.82% 2.05% NA NA
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contrast experiments were performed to test the trained 
AI network. For the internal dataset, contrast experiments 
consisted of (A) TB images that were positive and non-
TB and normal images that were negative; (B) TB images 
that were positive and non-TB images that were negative; 
and (C) abnormal (TB and non-TB) images that were 
positive and normal images that were negative. For the 
external dataset, contrast experiments were (A) positive 
images consisting of TB and negative images consisting of 
nodules, pneumonia and normal cases; (B) positive images 
consisting of TB and negative images consisting of nodules 

only; (C) positive images consisting of TB and negative 
images consisting of pneumonia only; (D) positive images 
consisting of TB, nodules, as well as pneumonia, and 
negative images consisting of normal cases only.

Statistical analysis

To evaluate the performances of the trained system, we 
illustrated test results by receiver operating characteristic 
(ROC) curve and the value of the area under the curve 
(AUC), accuracy, sensitivity (SS), specificity (SP), false-
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positive rate (FPR), positive predictive value (PPV) and 
negative predictive value (NPV).

Results

The first experiment test

Internal data set
As shown in Table 2, the detection system was evaluated 
by the ROC curve and the AUC, as shown in Figure 4A. 
There are more performance measures listed in Table 4, 
which show that the system yielded high performance with 
an AUC of 0.998 (95% CI: 0.981–1.004) on the internal 
dataset, and its accuracy, SS, SP, FPR, PPV, and NPV were 
0.948, 0.798, 0.996, 0.004, 0.986 and 0.938, respectively.

External data set
The system’s performance on the external dataset is shown 

in Figure 4B, and our algorithm was again evaluated by 
accuracy, SS, SP, FPR, PPV, and NPV (Table 4), which were 
0.931, 0.844, 0.934, 0.066, 0.292 and 0.995, respectively. 
The system’s performance based on the external dataset 
yielded a high performance with an AUC of 0.956 (95% 
CI: 0.937–0.975). The AUC value of the internal validation 
was larger than that of the external validation, indicating 
better performance of the AI model on internal validation. 
However, overall, our trained network achieved promising 
accuracy when it was applied to a large and multi-disease 
external dataset.

The second experiment test

Internal data set
The ROC curves of three different contrast experiments 
based on the internal dataset are presented in Figure 5, 

Table 4 Performance of the AI system to distinguish TB and normal cases on internal and external datasets

Independent testing AUC (95% CI) Accuracy (95% CI) SS (95% CI) SP (95% CI) FPR (95% CI) PPV (95% CI) NPV (95% CI)

Internal validation 0.998  
(0.981–1.004)

0.948  
(0.933–0.960)

0.798  
(0.746–0.841)

0.996  
(0.989–0.999)

0.004  
(0.001–0.011)

0.986  
(0.960–0.997)

0.938  
(0.921–0.952)

External validation 0.956  
(0.937–0.975)

0.931  
(0.914–0.945)

0.844  
(0.802–0.880)

0.934  
(0.917–0.948)

0.066  
(0.053–0.084)

0.292  
(0.265–0.322)

0.995  
(0.988–0.998)

AI, artificial intelligence; TB, tuberculosis; AUC, area under the curve; SS, sensitivity; SP, specificity; FPR, false-positive rate; PPV, positive 
predictive value; NPV, negative predictive value.

Figure 4 Testing the performance of the trained AI system. (A) The ROC curve for the internal testing dataset. The internal testing dataset 
contains 277 TB-positive and 854 normal cases, and the area under the ROC curve (AUC) is 0.99. (B) The ROC curve for the independent 
external dataset. The independent external dataset contains 3,355 TB-positive and 103,319 normal cases, and the area under the ROC curve 
(AUC) is 0.95. AI, artificial intelligence; TB, tuberculosis; ROC, receiver operating characteristic curve; AUC, area under the curve.

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 p
os

iti
ve

 r
at

e

ROC

0.0           0.2           0.4            0.6           0.8           1.0
False positive rate

TB vs normal, area =0.99

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 p
os

iti
ve

 r
at

e

ROC

0.0           0.2           0.4            0.6           0.8           1.0
False positive rate

TB vs normal, area =0.95

A B



Zhou et al. Tuberculosis detection by a deep learning-based system2350

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(4):2344-2355 | https://dx.doi.org/10.21037/qims-21-676

which shows that the AI system achieved an AUC of more 
than 0.9 to identify TB images. Specifically, the blue line 
with an AUC of 0.985 (95% CI: 0.968–1.002) represented 
the test to identify TB, non-TB and normal images. Its 
accuracy, SS, SP, PPV, and NPV were 0.946, 0.798, 0.984, 
0.928 and 0.950, respectively. The orange line with an 
AUC of 0.943 (95% CI: 0.924–0.962) represented the test 
to identify TB and normal images. Its accuracy, SS, SP, 
PPV, and NPV were 0.859, 0.798, 0.936, 0.940 and 0.785, 

respectively. The green line with an AUC of 0.868 (95% 
CI: 0.846–0.889) represented the test to identify TB, non-
TB and normal images. Its accuracy, SS, SP, PPV, and NPV 
were 0.805, 0.475, 0.997, 0.987 and 0.766, respectively.

External data set
The testing results are displayed in Figure 6 .  The 
performances on contrast groups (A) and (C) were highest 
with an AUC of 0.883 (95% CI: 0.861–0.904); contrast 

Figure 5 Classification performance on the internal dataset for three different contrast experiments. Performance on the trained system was 
measured in terms of SS, SP, PPV, NPV and AUC. SS, sensitivity; SP, specificity; PPV, positive predictive value; NPV, negative predictive 
value; AUC, area under the curve.

Figure 6 Classification performance on external dataset. Performance on the trained system was measured in terms of SS, SP, PPV, NPV 
and AUC. SS, sensitivity; SP, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve.

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 p
os

iti
ve

 r
at

e

ROC

0.0          0.2          0.4           0.6          0.8          1.0
False positive rate

Disease Blue:
Positive: TB
Negative: NonTB 
& Normal

Orange:
Positive: TB
Negative: NonTB

Green:
Positive: Abnormal 
(TB & NonTB)
Negative: Normal

Test 
Performance

AUC (95%CI) 0.985 (0.968-1.002) 0.943 (0.924-0.962) 0.868 (0.846-0.889)

Accuracy (95%CI) 0.946 (0.932-0.957) 0.859 (0.825-0.887) 0.805 (0.783-0.825)

SS (95%CI) 0.798 (0.764-0.841) 0.798 (0.746-0.841) 0.475 (0.431-0.519)

SP (95%CI) 0.984 (0.975-0.990) 0.936 (0.894-0.962) 0.997 (0.989-0.999)

PPV (95%CI) 0.928 (0.888-0.956) 0.940 (0.902-0.965) 0.987 (0.962-0.997)

NPV (95%CI) 0.950 (0.935-0.961) 0.785 (0.731-0.830) 0.766 (0.740-0.790)

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 p
os

iti
ve

 r
at

e

ROC

0.0          0.2          0.4           0.6          0.8          1.0
False positive rate

Disease Blue:
Positive: TB
Negative: Nodule 
& Pneumonia & 
Normal

Orange:
Positive: TB
Negative: Nodule

Green:
Positive: TB
Negative: 
Pneumonia

Red:
Positive: TB 
& Nodule & 
Pneumonia
Negative: Normal

Test Performance

AUC (95%CI) 0.883 (0.861-0.904) 0.856 (0.839-0.876) 0.880 (0.863-0.897) 0.728 (0.704-0.751)

Accuracy (95%CI) 0.791 (0.759-0.820) 0.773 (0.724-0.815) 0.790 (0.748-0.827) 0.519 (0.482-0.556)

SS (95%CI) 0.839 (0.821-0.856) 0.839 (0.821-0.856) 0.839 (0.821-0.856) 0.436 (0.423-0.449)

SP (95%CI) 0.775 (0.737-0.809) 0.704 (0.681-0.726) 0.755 (0.738-0.773) 0.910 (0.892-0.925)

PPV (95%CI) 0.549 (0.487-0.608) 0.750 (0.730-0.769) 0.707 (0.687-0.727) 0.958 (0.949-0.965)

NPV (95%CI) 0.937 (0.909-0.957) 0.805(0.783-0.825) 0.870 (0.854-0.884) 0.255 (0.243-0.269)



Quantitative Imaging in Medicine and Surgery, Vol 12, No 4 April 2022 2351

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(4):2344-2355 | https://dx.doi.org/10.21037/qims-21-676

group (B) was slightly lower at AUC =0.856 (95% CI: 
0.839–0.876); and contrast group (D) was the lowest with 
AUC =0.728 (95% CI: 0.704–0.751), which showed that 
the developed system can detect TB at very high accuracy 
(SS =0.839) for group (A), (B), and (C). This TB detection 
can also detect other non-TB abnormalities but with less 
accuracy. The specificity for group (D), where only normal 
images were used as negative, was highest at 0.910, which 
indicated that the system can identify normal images at 
high accuracy and confidence. As shown in Figure 6, the 
developed system was also able to (I) differentiate TB from 
other abnormalities and normal tissues; (II) differentiate 
between TB and nodules; (III) differentiate between TB 
and pneumonia; and (IV) identify TB and abnormalities 
in the lung with AUCs of 0.883, 0.856, 0.880, and 0.728, 
respectively.

Discussion

In this study, we developed a DCNN and evaluated its 
ability to detect TB, non-TB and normal CXRs. The AI 
system applied U-Net to automatically segment the lung 
area and used ResNet to make classifications. The detection 
results are presented in the form of a heatmap (Figure 7), 

and representative examples of two false-positive cases 
and two false negative cases detected by the AI system are 
shown in Figure 8.

In the current study, to improve the generalizability of 
the AI model, only those datasets that met the image quality 
criteria of each hospital were included, and then multicenter 
datasets and additional external independent validation sets 
were used as internal and external datasets, respectively. 
Moreover, we conducted image preprocessing for all the 
included datasets before AI modeling. The AI system was 
first “trained” by an internal dataset, and the results showed 
that it is possible to achieve a high accuracy (>0.931) on 
this five-source dataset. Tests based on the internal dataset 
yielded a high accuracy of 0.948 when the AI system was 
used to identify TB from normal images. Hwang also 
reported that their CNN model obtained an accuracy of 
0.90 to identify TB on a dataset of 10,848 CXRs (24). The 
internal dataset in this study was composed of five different 
sources, which was different from previous reports where 
they mainly relied on publicly available CXR datasets, as 
creating a large annotated medical dataset is not easy (25). An 
accuracy of 0.931 was obtained for the external independent 
validation, which showed that using multisource datasets 
to train the DCNN may be effective in creating a robust 

Figure 7 Detection results generated by the AI system. Both the likelihood score (between 0 and 100%) of the presence of TB and a heatmap 
are provided. The left panel shows the original X-ray image of the patient. The right panel shows the abnormal area with a heatmap, where red 
indicates the highest probability of TB and green shows the less probable TB regions. AI, artificial intelligence; TB, tuberculosis. 
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detection system that is able to maintain its accuracy across 
datasets (26).

It is noteworthy that the developed AI system had 
better performance at the detection of TB vs. non-TB 
abnormalities on both the internal and external dataset 
when compared to any abnormality vs. normality test. Given 
that our algorithm was trained with a larger number of TB 
cases than non-TB abnormalities (2,186 vs. 1,734, Table 2), 
the system extracted more TB features (grayscale, shape, 
texture, etc.) to correctly identify TB. In addition, 1,734 
cases of non-TB abnormalities were divided into nodules, 
pneumonia and other abnormalities, which led to each 
kind of abnormality having a smaller dataset to train the 
system. Therefore, when detecting all types of abnormalities 
(TB and non-TB abnormality) from normal images, the 
system could identify TB well but had poor performance 
in detecting non-TB abnormalities, resulting in the lowest 
AUC value among all test situations (Figures 6,7). Future 
studies dealing with these issues are likely to provide better 

performance in detecting radiologic abnormalities other 
than pulmonary tuberculosis, which is an important issue in 
the area of pulmonary diseases (26).

Clinically, this research is important in two ways. First, 
to our knowledge, this is the first study to use a large-scale, 
long-term dynamic cohort accumulation dataset to conduct 
an additional validation, where this external dataset went 
through more than 6 years of analysis and included 358,169 
images. Unlike the internal testing, the external dataset in 
this study possessed a small number of TB cases with a TB 
prevalence of 1.0% because these cases were experimentally 
designed to be representative rather than balanced. 
Therefore, they reflected a real systematic screening 
population. We found that in such situations, the system 
showed good performance, achieving an accuracy of 0.931 
to identify TB from normal images, and the sensitivity 
and specificity were 0.844 and 0.934, respectively. The 
latest WHO consolidated guidelines on tuberculosis (27)  
indicated the sensitivity and specificity ranges of computer-

Figure 8 Examples of two false-positive cases and two false negative cases of the AI system for detecting TB from chest radiographs. (A) A 
normal case. (B) A false-positive case: the AI system misdiagnosed this normal case as TB with a TB lesion heatmap in the right upper lung 
field. (C) A chronic bronchitis case. (D) A false-positive case: the AI system misdiagnosed this chronic bronchitis as TB with lesion heatmaps 
in bilateral lung fields. (E) A TB case. (F) A false-negative case: the AI system misdiagnosed this TB case as normal with missed TB lesions 
in the left upper lung field. (G) A TB case. (H) A false-negative case: the AI system misdiagnosed this TB cases as normal with bilateral 
upper lung fields. AI, artificial intelligence; TB, tuberculosis. 
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aided detection software, referring to a minimum sensitivity 
of 0.90 when the specificity reaches 0.7. In the current 
study, the sensitivity was 0.94 for a specificity of 0.70 when 
classifying TB from normal cases on external independent 
validation. This is larger than the values reported by WHO, 
indicating the promising potential of our AI model in 
clinical application. Second, few previous studies conducted 
such a strict external test to evaluate the performance of 
AI models in detecting TB images. In our study, we had 
no access to the 358,169 images from the external dataset; 
since the developed AI system was connected to the hospital 
intranet, and doctors sent back results directly after the test 
was completed. This differed from the 138 images from 
the USA and 662 images from China, which were used to 
validate all internally downloaded and stored images (24).  
It should be noted that external validation is strongly 
recommended for all prediction models. Kang Zhang et al. 
(2020) evaluated AI performance on external datasets to 
detect COVID-19 after the internal test (28), and the lack 
of appropriate external validation for AI algorithms is a 
growing concern for its clinical application (18). However, 
a strict external validation such as ours would be preferable. 
Therefore, we believe that our results can provide 
supporting evidence for the usefulness of AI systems in real-
world applications.

Differential diagnosis of TB is important, as it is essential 
to guide clinical patient management. However, sometimes 
it may be difficult to distinguish TB from other pulmonary 
diseases, such as pneumonia, by limited radiologic 
features (29). In some images, TB manifests as dense and 
homogeneous parenchymal consolidation in the lower and 
middle lobes of the lung, which is often indistinguishable 
from the appearance of bacterial pneumonia. However, it 
can be differentiated on the basis of radiographic evidence 
of lymphadenopathy (30). Therefore, our system may be a 
convenient approach to differentiate TB and other common 
pulmonary diseases as a result of its ability to identify a large 
number of radiologic features, which is an improvement 
over other reported studies focusing on classifying TB and 
normal images only.

There are some limitations to this study. Although 
a large number of chest radiographs from multiple 
institutions and external, independent evaluations were used 
to evaluate the performance of the AI system, this was still a 
retrospective study where datasets were available at the time 
of the study. For the next step of our study in the future, we 
aim to conduct a prospective clinical evaluation with human 
participants by comparing the performance of manual 

methods with or without AI assistance in an external, 
independent validation to further explore the clinical benefit 
of the AI method.

Conclusions

The AI system developed in our study was validated on 
both internal and external sets and demonstrated excellent 
detection performances in real-world independent 
validation. In addition, it should be noted that this AI 
system can only be used for TB routine screening to flag 
possible cases for rapid radiologic review and guide further 
examinations by radiologists, at this stage of development.
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