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Background: Medical image segmentation plays a vital role in computer-aided diagnosis (CAD) systems. 
Both convolutional neural networks (CNNs) with strong local information extraction capacities and 
transformers with excellent global representation capacities have achieved remarkable performance in medical 
image segmentation. However, because of the semantic differences between local and global features, how to 
combine convolution and transformers effectively is an important challenge in medical image segmentation.
Methods: In this paper, we proposed TransConver, a U-shaped segmentation network based on convolution 
and transformer for automatic and accurate brain tumor segmentation in MRI images. Unlike the recently 
proposed transformer and convolution based models, we proposed a parallel module named transformer-
convolution inception (TC-inception), which extracts local and global information via convolution blocks 
and transformer blocks, respectively, and integrates them by a cross-attention fusion with global and local 
feature (CAFGL) mechanism. Meanwhile, the improved skip connection structure named skip connection 
with cross-attention fusion (SCCAF) mechanism can alleviate the semantic differences between encoder 
features and decoder features for better feature fusion. In addition, we designed 2D-TransConver and 
3D-TransConver for 2D and 3D brain tumor segmentation tasks, respectively, and verified the performance 
and advantage of our model through brain tumor datasets.
Results: We trained our model on 335 cases from the training dataset of MICCAI BraTS2019 and 
evaluated the model’s performance based on 66 cases from MICCAI BraTS2018 and 125 cases from 
MICCAI BraTS2019. Our TransConver achieved the best average Dice score of 83.72% and 86.32% on 
BraTS2019 and BraTS2018, respectively.
Conclusions: We proposed a transformer and convolution parallel network named TransConver for brain 
tumor segmentation. The TC-Inception module effectively extracts global information while retaining 
local details. The experimental results demonstrated that good segmentation requires the model to extract 
local fine-grained details and global semantic information simultaneously, and our TransConver effectively 
improves the accuracy of brain tumor segmentation.

Keywords: Brain tumor segmentation; transformer; convolution; cross-attention; local and global semantic 

information

Submitted Sep 16, 2021. Accepted for publication Jan 04, 2022.

doi: 10.21037/qims-21-919

View this article at: https://dx.doi.org/10.21037/qims-21-919

2415

^ ORCID: Cihui Yang, 0000-0003-4544-1486; Junjie Liang, 0000-0003-4582-2393; Mengjie Zeng, 0000-0002-0043-7793; Xixi Wang, 
0000-0001-8522-9602.

https://crossmark.crossref.org/dialog/?doi=10.21037/qims-21-919


Liang et al. TransConver for brain tumor segmentation in MRI images2398

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(4):2397-2415 | https://dx.doi.org/10.21037/qims-21-919

Introduction

Brain tumor segmentation is a critical step in the process 
of brain tumor diagnosis and treatment. With the help 
of multimodal brain images for tumor segmentation, 
doctors can conduct quantitative analysis of brain tumors 
to measure the maximum diameter, volume and quantity of 
brain lesions and formulate the best diagnosis and treatment 
plan for patients. However, brain segmentation usually 
relies on manual segmentation, which is time-consuming, 
labor-intensive and affected by personal experience. 
Therefore, finding an accurate and efficient automatic brain 
tumor segmentation method to reduce doctors’ workload 
and avoid subjective opinions is indispensable for research.

Early medical image segmentation systems were mainly 
based on conventional image segmentation algorithms (1), 
involving edge detection-based methods, threshold-based 
methods and region-based methods. However, medical 
images, especially MRI images, usually have characteristics 
with low contrast, complex texture and blurred boundary 
areas, which limit the effect and application of such image 
segmentation algorithms.

With the development of deep learning and the 
expansion of application fields, the accuracy of medical 
image segmentation methods based on deep learning has 
continuously improved. In current research, medical image 
segmentation algorithms (2,3) based on deep learning 
mainly fall into three categories: CNN-based methods, 
transformer-based methods, and methods based on both 
transformers and CNNs.

CNNs-based methods

In recent years, convolutional networks and other deep 
learning algorithms have been widely studied and applied 
because of their powerful nonlinear feature extraction 
capabilities. Among various CNN variants, existing 
medical image segmentation methods mainly rely on fully 
convolutional networks (4) (FCNs), which can accept 
input images of any size and use the deconvolution layer 
to upsample the feature map to restore it to the same size 
as the input image. In particular, since the introduction of 
U-Net (5), CNN-based networks with U-shaped structures 
[e.g., UNet++ (6), Attention U-Net (7), DenseUNet (8), 3D 
Unet (9), V-net (10)] have achieved state-of-the-art results 
and excellent segmentation potential on various 2D and 3D 
medical image segmentation tasks. However, the locality 
of convolution makes the model ignore the correlation of 

long-range information. Studies (11,12) show that good 
segmentation requires a model to extract local fine-grained 
details and interactions of global semantic information at 
the same time. To improve the locality of convolution, some 
studies (13-15) try to expand the receptive field by using an 
attention mechanism, image pyramids and superimposed 
convolution layers. Although these methods increase the 
receptive field, they still have limitations in modeling long-
range contextual interactions and spatial dependencies.

Transformer-based methods

The major issue in the natural language processing (NLP) 
domain is how to model global and long-range contextual 
interactions and spatial dependencies in long sequences. 
Among the studies on this issue, the self-attention 
mechanism represented by transformer (16) has achieved 
great success on many NLP tasks. The key to the success 
of transformers lies in the modeling of the global semantic 
information interactions and spatial dependencies with 
the self-attention mechanism and feed-forward networks 
(FFNs). Motivated by the transformer’s success, many 
studies (17,18), especially the most representative vision 
transformer (ViT) (17), have also proven the feasibility 
and effectiveness of applying transformers to downstream 
tasks in computer vision, such as classification, detection 
and segmentation. Solving issues related to the complex 
calculations and huge training costs of transformers is the 
main challenge of applying transformers to medical image 
segmentation. Guo et al. (19) used external attention instead 
of a self-attention mechanism to reduce computational 
complexity. Liu et al. (18) proposed Swin Transformer, 
which uses window-based self-attention to reduce 
parameters and computation and uses a shifted windows 
mechanism to realize global dependency modeling. 
Furthermore, Cao et al. (20) and Lin et al. (21) proposed 
Swin-Unet and DS-TransUNet, respectively, both of which 
are Unet-like transformers for medical image segmentation 
that have achieved performance similar to the most 
advanced CNN-based methods. According to T2T-Vit (22),  
we visualized the feature maps of the first two layers of 
Swin-Unet (20) and U-Net (5), as shown in Figure 1. We 
observe that U-Net can effectively capture local structures 
(including edges, lines and textures) in low-level semantic 
information extraction, which is absent in Swin-Unet. In 
contrast to CNNs, transformers inevitably ignore local 
structures when directly splitting images into patches as 
tokens. 
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Transformer- and CNN-based methods 

Local features and global representations are important 
counterparts (23). As shown in Figure 1, local features 
are compact vector representations of local image 
neighborhoods. Global representations include, but are not 
limited to, contour representations, shape descriptors, and 
object typologies at long distances. The main difference 
between global and local features is the size of receptive 
fields. Inspired by CNNs with strong local information 
extraction capacities and transformers with excellent global 
and long-range representation capacities, many concurrent 
works, such as CvT (24), PVT (25), TransUNet (26) and 
Segtran (12), try to combine convolution with transformers 
in different ways, hoping to combine the local advantages 
of convolution and the global advantages of transformers. 
For CvT and PVT, the linear projection of self-attention in 
the transformer is replaced by convolution. TransUNet and 
Segtran connect the transformer module behind multiple 
stacked convolution layers. Although transformer- and 
CNN-based methods have achieved remarkable results in 
medical segmentation, the performance of those methods 
mentioned can be further improved. 

In medical image segmentation, the lack of fine-
grained details will lead to fuzzy and inaccurate boundary 

segmentation of diseased tissues or organs, whereas the 
lack of long-distance information interaction will lead to 
segmentation failures when segmenting images with low 
contrast between organs. Therefore, how to combine CNN 
and transformer is an essential challenge for medical image 
segmentation. However, a simple combination of existing 
models (26,27) cannot effectively combine the advantages 
of convolution and transformers. Additionally, due to the 
ambiguity of semantic information between local features 
of convolution and global features of the transformer, 
combining local and global features directly in the channel 
dimension and then using Point-Wise Convolution for 
feature fusion is insufficient to fuse local and global features 
well. Furthermore, because of the quadratic computation 
complexity of the feature number, the calculation of the 
transformer is very complicated, and the complexity of the 
combination of the transformer and convolution is even 
more unaffordable. Finally, how to use convolution and 
transformers to design the encoder and decoder of medical 
image segmentation models to achieve a better training 
effect also remains a challenge.

To address the aforementioned issues, as shown in Figure 
2, we propose TransConver, an efficient encoder-decoder 
network that mainly combines the advantages of CNN and 
transformer for automatic medical image segmentation. 

Figure 1 Feature visualization of Swin-Unet and U-Net. (A) is the original input image. (B) and (C) are feature maps of the output of the 
first and the second Swin transformer block, respectively. (D) and (E) are feature maps of the output of the first and the second convolution 
block, respectively. Red dotted boxes highlight learned low-level structure features such as edges and lines.
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Instead of using the serial connection structure of 
convolution and transformer as encoder, our TransConver 
adopts stacked Transformer-Convolution Inception (TC-
Inception), which is a parallel module based on convolution 
and transformer inspired by Inception structure in 
GoogLeNet (28). To achieve a better feature fusion effect, 
motivated by dynamic fusion with intra and inter-modality 
attention flow (29) (DFAF) and cross-modal attention (30) 
success, we propose cross-attention fusion with global and 
local features (CAFGL) to alleviate the semantic difference 
between the local features extracted by convolution and 
the global features extracted by transformer. Considering 
that the feature fusion in skip connection will be affected 
by the semantic differences between different scale feature 
maps, we propose skip connection with cross-attention 
fusion mechanism (SCCAF), which can help feature 
fusion between semantically misaligned feature maps to 
effectively improve segmentation results. Based on the 

above components, we construct a U-shaped medical image 
segmentation network model named TransConver and 
design 2D-TransConver and 3D-TransConver for 2D and 
3D tumor segmentation tasks, respectively. 

We present the following article in accordance with the 
TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-21-919/rc).

Methods

Model architecture

In  th i s  sec t ion ,  the  overa l l  a rch i tec ture  o f  our 
3D-TransConver is introduced in detail as shown in Figure 
2. TransConver is a U-like network based on an encoder-
decoder structure and skip connection. The encoder is 
composed of a Conv Block, TC-Inception Block and 
Downsample Block. The encoder is mainly responsible 
for feature extraction and downsampling. Given a medical 

Figure 2 Overview of the 3D-TransConver architecture. SCCAF, Skip Connection with Cross-Attention Fusion mechanism. Conv, 
convolution layer.
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image with an input size of H×W×D×4, we first extract 
features and downsample through the Conv Block to 

obtain a feature map with a resolution of 
 

2 2 2
H W D C× × × ,  

where H, W, and D are the three dimensions of the 3D 
image and C is the channel dimension. Then, hierarchical 
feature representation is generated by the hierarchical 
architecture consisting of three stacked TC-Inception 
Blocks and Downsample Blocks, in which the resolution 
of the output feature map of each layer is reduced by half 
compared to the previous layer, and the number of channels 
is doubled while the channel on the last layer remains 
unchanged. Corresponding to the encoder, the decoder is 
mainly responsible for mapping the low-resolution feature 
map obtained by the encoder to the pixel-level prediction. 
The skip connection structure is one of the keys to the 
success of U-Net. In this work, we utilize SCCAF to fuse 
features of different scales to improve the semantic loss in 
upsampling. Finally, at the output of the decoder, we obtain 
a feature map with the same resolution as the input image 
and classify the pixels via convolution with a 1×1×1 filter. 
We will describe the main components in detail below.

TC-inception module

Motivated by the inception structure of GoogLeNet (28), 
we propose the TC-inception module, as shown in Figure 
3. The Inception of GoogLeNet is designed to extract 
multiple features with different receptive fields to be able to 
obtain features with richer semantic information. Therefore, 
we design a convolution and transformer parallel module, 
which extracts local and global features by the convolution 
block and transformer block, respectively. At the same time, 

to fuse local features and global features with large semantic 
differences more effectively, we propose a cross-attention 
fusion with global and local features (CAFGL) mechanism, 
inspired by the success of cross-attention (29,31). 

Global feature extraction via transformer block
Vision transformer (ViT) (17) is a pioneering work for 
transformers applied directly to images. In the multi-
head self-attention (MSA) of the standard transformer, the 
computational complexity is proportional to the number 
of tokens quadratically, which is the main reason for the 
large computational cost of the transformer. To reduce 
the computational complexity of the 2D and 3D models 
during extraction of global features, we use the 2D Swin 
Transformer (18) and 3D Swin Transformer (32) instead of 
ViT in the 2D model and 3D model respectively, as shown 
in Figure 4. 

In contrast to the standard transformer, the Swin 
transformer utilizes window-based MSA (W-MSA) to 
reduce the computation. Moreover, it utilizes shifted 
window-based MSA (SW-MSA) in the next continuous 
layer to maintain cross-window connection and ensure 
global context information interaction, as shown in Figure 5. 
In layer i, the feature map is partitioned into 2×2×2 regular 
nonoverlapping windows, and self-attention is computed 
within each window. For layer i+1, the window partitioning 

is shifted by 
  

2
windowsize  patches, resulting in new 3×3×3 

irregular windows, to realize the interaction between 
adjacent windows in layer i. With the 3D W-MSA and 3D 
SW-MSA approaches, consecutive 3D Swin Transformer 
layers can be written as:

Figure 3 The architecture of Inception and TC-Inception module. (A) for the Inception module of GoogLeNet. (B) for the TC-Inception 
module of TransConver. CAFGL, Cross-Attention Fusion with Global and Local features mechanism.
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 ( )( )1 1ˆ 3DW- MSA LNl l l
glo glo gloZ Z Z− −= +  

[1]

 ( )( )ˆ ˆMLP LNl l l
glo glo gloZ Z Z= +  [2]

 ( )( )1ˆ 3DSW- MSA LNl l l
glo glo gloZ Z Z+ = +  [3]

 ( )( )1 1 1ˆ ˆMLP LNl l l
glo glo gloZ Z Z+ + += +  [4]

where ˆ l
gloZ  and l

gloZ  represent the output global features of 
the 3D(S)W-MSA module and MLP module in the lth 3D 

Swin Transformer block, respectively. MLP and LN denote 

the multilayer perceptron module and layer normalization, 
respectively. 3D W-MSA and 3D SW-MSA denote 
window-based multi-head self-attention using regular and 
shifted window partitioning configurations, respectively.

Through the mechanism of shifted windows, an increase 
in the window number will inevitably lead to an increase of 
computational complexity, as shown in Figure 6. Therefore, 
the 3D Swin Transformer utilizes a 3D cyclic-shifting and 
masking mechanism to efficiently compute batches for 
shifted configurations. As illustrated in Figure 6B, to keep 
the number of calculation windows consistent with W-MSA, 

Figure 4 The architecture of different Transformer module. (A) for the standard Transformer layer. (B) for the two successive Swin 
Transformer layers. LN, layer normalization. MLP, multilayer perceptron. MSA, multi-head self-attention mechanism. W-MSA and SW-
MSA denote window based multi-head self-attention and shifted window based multi-head self-attention, respectively.

Figure 5 An illustration of the 3D shifted window approach for computing self-attention.
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Figure 6 Illustration of window based self-attention and masking self-attention mechanism. (A) for the 3D window based multi head self-
attention. (B) for the efficient batch computation approach for multi head self-attention in shifted window partitioning. MSA, multi head 
self-attention.

the feature map is shifted cyclically by 
 

2
window size

 tokens 
along the axial, coronal and sagittal directions, while the 
shifted window partition stays consistent with the window 
partition in WSA. After this cyclic shift, a batched window 
may be composed of several nonadjacent subwindows in 
the initial feature map. Therefore, the masking mechanism 
is adopted to limit the self-attention computation to each 
subwindow. With the masked attention map Wmask, the 
masking self-attention in 3D SW-MSA can be formulated 
as:

 T

softmaxmAttn mask
QKW W

d
 

= + 
   [5]

 mSA mAttnZ W V=  [6]

where WmAttn and ZmSA denote the masking attention matrix and 
the result of 3D SW-MSA, respectively. Q, K, V are the query, 
key and value matrices. d is the Q/K dimension. With the above 
batch computation approach, 3D SW-MSA can retain efficient 
computational complexity consistent with 3D W-MSA. 

Local feature extraction via convolution block
Similar to the convolution block of U-Net (5), we use two 
consecutive convolutions with a 3×3×3 filter size to extract 
local features and add batch normalization and ReLU (33) 
after each convolution for normalization and nonlinear 
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transformation, as illustrated in Figure 7. The Convolution 
Block can be expressed as:

 ( )( )( )1ReLU BN Convl l
loc locZ Z −=  [7]

where  l
locZ  represent the output local features of the 

convolution module in the lth convolution layer, and BN 
denotes batch normalization.

Cross-attention fusion with global and local features
Inspired by several studies (29-31) on multimodal feature 
fusion with an attention mechanism, we propose cross-
attention fusion with global and local feature structures to 
fuse global and local features with semantic differences as 
shown in Figure 8. Cross-attention includes master input 

Figure 7 The architecture of Convolution Block in TC-Inception. 
Conv, convolution layer. BN, batch normalization.

Figure 8 The structure of Cross-Attention Fusion with Global and Local Feature. Conv, convolution layer. Trans, transformer.
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and auxiliary input. The Cross-Attention can be formulated 
as follows.

 ( ) ( )T
1 2softmaxattn

f A f M
W

d

 
=   

 
 [8]

 ( )3
ˆ

hybrid attnZ W f M=  [9]

 ( )4
ˆ

hybrid hybridZ f Z M= +  [10]

where A and M are the auxiliary and master input features, 
Mattn denotes the attention matrix, f1(·), f2(∙), f3(∙) and f4(∙) are 
all linear projections with depthwise convolution, and d is 
the channel number of A/M. Therefore, the attention matrix 
Mattn reflects the importance of the master features to the 
auxiliary features and then obtains hybrid features  ˆ

hybridZ  by 
Eq. [9]. To allow efficient backpropagation during training, 
we finally obtain the output Zhybrid by summing M and  ˆ

hybridZ . 
In CAFGL, the global and local features are input into two 
cross-attention as master branches and auxiliary branches 
in turn, and then the global hybrid features ZGhybrid and local 
hybrid features ZLhybrid are obtained. Finally, we concatenate 
them in the channel dimension. 

Skip connection with cross-attention fusion mechanism

The skip connection structure is one of the keys to the 
success of U-Net (5). Skip connections can compensate for 
the details lost due to upsampling. The conventional skip 
connection structure always directly upsamples the decoder’s 
feature map to the resolution as one of the encoder’s feature 
maps and concatenates them in the channel dimension. 
As the literature (34) mentioned, the feature mapping 
from the encoder and decoder subnetworks in the skip 
connection operation has a large semantic difference. In 
addition, Wang et al. (35) also conduct a detailed analysis of 

skip connections. The features of the encoder and decoder 
are inconsistent, and not all simple skip connections are 
effective for the segmentation model. In general, the two 
features participating in skip connection are different 
in size. Before the fusion of two features, the small size 
feature is usually upsampled. Most of the commonly used 
upsampling methods use bilinear interpolation or bicubic 
interpolation. However, these methods will lead to blurred 
images, particularly when upsampling low-resolution 
features.

Considering the semantic difference between the 
encoder’s features and decoder’s features and the pixel 
misalignment caused by rough upsampling, we proposed 
a structure of skip connection with cross-attention fusion 
(SCCAF) mechanism to better integrate encoder features 
and decoder features with different scales, as shown in 
Figure 9. By using the SCCAF structure, irrelevant or noisy 
pixels in two inputs of skip connections can be masked, and 
more useful pixels can be highlighted. 

2D-TransConver and 3D-TransConver

In this work, we also build a 2D-TransConver model to 
solve various 2D medical segmentation tasks. We transform 
the above 3D-TransConver into a 2D-TransConver 
through the following two steps:

(I) Transformation of data dimensions. The size of the 
input will be reduced from 3D to 2D, that is, from 
H×W×D×4 to H×W×4. Meanwhile, the output size 
is also reduced from H×W×D×4 to H×W×4.

(II) Transformation of model dimensions. In our 
proposed methods, the dimension reduction of 
the model is relatively direct. Specifically, all 3D 
convolution and 3D normalization operations in 
the whole network are replaced by 2D convolution 

Figure 9 The structure of Skip Connection with Cross-Attention Fusion.
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and 2D normalization operations, respectively. 
For the TC-Inception module, we use a 2D Swin 
Transformer instead of a 3D Swin Transformer in 
the Transformer Block. 

Loss function

The cross-entropy loss function is a basic loss function 
of image segmentation. However, cross entropy cannot 
evaluate the contour similarity between the ground 
truth and the predicted result. Meanwhile, it has high 
susceptibility when the data classes are imbalanced. The 
Dice loss function (10) can effectively alleviate these two 
problems. Therefore, the loss function we use is composed 
of Dice and cross entropy, which can be formulated as 
follows:

 
, ,1

2 2
1 , ,1 1

21
I

J
i j i ji

Dice I I
j i j i ji i

G Y
loss

J G Y
=

=
= =

= −
+

∑∑
∑ ∑

 [11]

 
, ,

1 1

1 log
I J

CE i j i j
i j

loss G Y
I = =

= − ∑∑  [12]

 total Dice CEloss loss loss= +  [13]

where I is the number of voxels, and J is the number of 
classes. Gi,j and Yi,j denote the one-hot encoded ground truth 
and predicted value for class j at voxel i, respectively.

Experimental framework

Datasets
The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The 3D MRI 
image data for brain tumor segmentation in our experiments 
were provided by the Brain Tumor Segmentation 2018 
(BraTS2018) challenge (36-38). Each BraTS2018 dataset 
consists of four modalities of MRI scans, namely, native 
T1-weighted (T1), postcontrast T1-weighted (T1ce), T2-
weighted (T2) and fluid attenuated inversion recovery 
(FLAIR), and each modality’s size is 240×240×155. The 
labels for tumor segmentation involve four classes: whole 
tumor (WT), tumor core (TC), enhancing tumor (ET) and 
background. The dataset contains 285 examplar patient 
images for training and 66 examplars for validation. The 
Dice scores and Hausdorff distance (39) (95%) metrics of 
ET, WT and TC on the validation scans were obtained 
from the official evaluation server. Another 3D MRI 
dataset was provided by the Brain Tumor Segmentation 

2019 (BraTS2019) challenge, including 335 examplars for 
training and 125 examplars for validation.

A t  t h e  s a m e  t i m e ,  t o  v e r i f y  t h e  v a l i d i t y  o f 
2D-TransConver, we sliced the training sets in BraTS2018 
and BraTS2019 to obtain corresponding 2D data with 
labels. The 3D MRI images, are sliced along the axial 
view to obtain 155 2D images. However, not all 155 2D 
slice images are selected as experimental images since the 
original 3D image contains slices that cover background 
areas exclusively. We select the slices with the lesion region 
and discard the slices that only have background to avoid 
class imbalance. The data are divided into 18923 examplars 
for training and 3219 examplars for validation. The same 
evaluation metric is used with that of 3D MRI data.

Data preprocessing and augmentation
Before inputting the data into the network for training or 
inference, we first combine 4 images with different modalities 
(T1, T1ce, T2, FLAIR) into a 3D voxel with 4 channels and 
then apply Z Score normalization for each image, that is, for 
each pixel, subtract the mean value from the image value and 
divide it by the standard deviation of the non-background 
region of the image. Since 2D data are obtained from 3D 
data, they share the same preprocessing technique.

Using data augmentation can effectively increase the 
diversity of training data and improve the generalization 
ability of the model. Thus, in the training process, we adopt 
the following data augmentation methods: (I) randomly 
crop the data from 240×240×155 to 128×128×128 voxels; (II) 
randomly shift intensity between [−0.1, 0.1] and randomly 
scale intensity between the range [0.9, 1.1]; (III) randomly 
mirror flip across each 3D axis with a probability of 50%.

All experiments (including the cited experiments) in 
this paper are based on the above data preprocessing and 
augmentation steps.

Evaluation metric
To compare and evaluate the segmentation results 
quantitatively, we calculate two widely used metrics in 
segmentation research, namely, the Dice metric and 
Hausdorff distance.

The Dice metric evaluates the degree of pixel overlap 
between the ground truth and prediction results and is 
calculated as follows:

 2
2

TPDice
TP FP FN

×
=

× + +
 [14]

where TP is the number of pixels that are correctly classified 
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as a given class, FP is the number of pixels that are incorrectly 
classified as a given class, and FN is the number of pixels that 
are incorrectly classified as nonlabels in the predicted results.

The Hausdorff distance calculates the maximum distance 
between the contours of the ground truth and predicted 
results, which can be formulated as follows:

 ( ) ( )( )max , , ,hausdDist h G P h P G=  [15]

 ( ) { }{ }, max min
p Pg G

h G P g p
∈∈

= −  [16]

 ( ) { }{ }, max min
g Gp P

h P G p g
∈∈

= −  [17]

where G and P denote the contours of the ground truth 
and predicted results, respectively, and h(G,P) denotes the 
unidirectional Hausdorff distance from G to P.

Results

Implementation details

TransConver is implemented in PyTorch and trained with 
2 parallel NVIDIA GeForce 2080Ti GPUs. We trained 
400 epochs of 3D-TransConver and 2D-TransConver with 
batch sizes of 4 and 16, respectively. We adopted the Adam 
optimizer with an initial learning rate =0.001, momentum 
=0.9 and weight decay =0.0001.

Comparison with state-of-the-art network architectures

Comparative experiment of 3D segmentation 
approaches
To verify the effectiveness of TransConver, as shown in 

Table 1, we compare the performance of 3D-TransConver 
against the baselines of one-stage CNN-based networks and 
Transformer- and CNN-based networks on the BraTS2019 
dataset. It should be noted that due to the limitation of our 
computer’s computational power, the parameters (including 
the dimensions of the hidden layer and feedforward layer) 
of UNETR had to be adjusted to a suitable size to make 
the model train successfully on our computer in this 
experiment. The quantitative results demonstrate that our 
3D-TransConver network achieves the best segmentation 
performance with segmentation accuracy of 83.72% 
(Average Dice of ET, WT and TC) and 4.741 mm (Average 
Hausdorff of ET, WT and TC) in the one-stage methods. 
Among all the one-stage methods, compared with CNN-
based networks [3D U-Net (9), V-Net (10), Att-Unet (7), 
DMFNet (41)], transformer- and CNN-based networks 
[UNETR (40), TransBTS (42), 3D-TransConver] have 
obvious improvement in segmentation performance. This 
demonstrates that the combination of transformer and CNN 
is effective and significant. In other words, the ability of 
long-range contextual information interaction in the model 
is beneficial to improve the segmentation result. As shown 
in Figure 10, we show a visual comparison of the brain 
tumor segmentation results of various methods, including 
CNN-based networks [3D U-Net (9) and V-Net (10)] and 
transformer- and CNN-based networks [UNETR (40),  
TransBTS (42) and our method, TransConver]. Because 
the validation set provided by the BraTS dataset does 
not provide ground truth, we conducted a fivefold cross-
validation evaluation on the training set for all methods. 
Compared with other models, our method is more 
complete and more accurate in boundary segmentation 

Table 1 Comparison of single-prediction on BraTS 2019 dataset

Method
Dice (%) ↑ Hausdorff 95% (mm) ↓

Avg ET WT TC Avg ET WT TC

3D U-Net (9) 76.21 72.21±5.2 85.36±2.1 71.05±5.1 12.936 10.262±3.4 12.393±3.7 16.155±4.1

V-Net (10) 77.02 72.43±5.2 85.18±2.0 73.46±4.3 8.916 7.076±2.0 8.893±2.6 10.779±2.4

Att-Unet (7) 79.53 74.51±5.0 87.24±1.9 76.85±4.0 7.613 6.183±1.9 8.042±2.6 8.615±2.5

UNETR (40) 82.25 77.37±4.7 88.56±2.2 80.81±3.9 7.071 5.846±2.0 7.296±2.7 8.071±2.7

DMFNet (41) 82.60 76.88±4.4 89.38±1.5 81.55±3.5 5.375 4.508±1.9 5.036±1.4 6.581±1.5

TransBTS (42) 82.32 77.58±4.6 88.42±2.0 80.96±3.5 7.171 6.213±2.1 7.632±1.9 7.668±2.0

TransConver 83.72 78.40±4.4 90.19±1.2 82.57±3.4 4.741 3.414±0.8 4.848±1.2 5.962±1.8

Data with 95% confidence interval in Dice and Hausdorff. ↑ indicates that the higher the value is, the better the result is. ↓ indicates that 
the lower the value is, the better the result is. Avg, average. ET, enhancing tumor; WT, whole tumor; TC, tumor core.
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Figure 10 The visual comparison of MRI brain tumor segmentation results. (A) and (B) for cross section, (C) and (D) for sagittal cross 
section, (E) and (F) for coronal cross section. The green region, yellow region and red region represent peritumoral edema, enhanced tumor 
and necrotic tumor, respectively. Among them, WT consists of green, red and yellow region, TC consists of red and yellow region, ET 
consists of yellow region. MRI, magnetic resonance imaging; ET, enhancing tumor; WT, whole tumor; TC, tumor core. 

and category prediction. This shows the great potential of 
transformer- and convolution-based networks in medical 
image segmentation. 

In addition, we also carried out the same comparative 
experiment on the BraTS 2018 dataset. As shown in Table 
2, our network achieves the best segmentation performance 

with segmentation accuracy of 86.32% (Average Dice of 
ET, WT and TC) and 4.23 mm (Average Hausdorff of ET, 
WT and TC).

Meanwhile, as shown in Table 3, we quantitatively 
analyze the parameters and computational complexity of all 
the models in the 3D segmentation experiment. Compared 

A

B

C

D

E

F

VNet DMFNet Trans BTS UNETR Trans conver (ours) Ground truth
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with other methods, TransConver uses relatively small 
parameters and computational power, although it achieves 
high accuracy.

Furthermore, we compare the results of the ensemble 
methods on the BraTS2019 dataset. The two-stage 
cascaded U-Net (43) with an ensemble of 12 models is the 
best ranked method on the BraTS2019 Challenge. The 
experimental results demonstrate that such model ensemble 
strategy and postprocessing also work well in our proposed 
network. As shown in Table 4, we improve the final result 
via model ensemble strategy and post-processing. 

For model ensemble, we choose 5 models by the 5-fold 
cross validation method just like the two-stage U-Net. Then, 
during the inference phase, the five cross-validated models 
were ensembled by averaging the probabilities, and we 
adopted test time augmentation to enhance the prediction 
results. For postprocessing, to alleviate the situation in which 
the model predicted a few voxels with an enhanced tumor 
but there were no voxels in the ground truth, we applied the 

following postprocessing strategy. For each connected region 
composed of an enhanced tumor, if the number of voxels was 
less than 16 and the mean probability was less than 0.9, we 
replaced its class with a necrotic tumor. Afterward, if overall 
voxels number of an enhanced tumor was less than 73 and the 
mean probability was less than 0.9, we replaced its class with 
a necrotic tumor. The results show that network architecture, 
postprocessing and model ensembles are equally important 
for medical image segmentation.

Comparative experiment of 2D segmentation 
approaches
Actually, the contrast experiment of 2D approaches is 
almost the same as those of 3D approaches, except that 
the dimensions of input, output and model are converted 
from 3D to 2D. As shown in Table 5, we compare the 
performance of 2D-TransConver against baselines of 
CNN-based networks and Transformer- and CNN-based 
networks on the sliced 2D image data of the BraTS 2019 
validation dataset. Our approach achieves the best average 
Dice score of 82.87% and an average Hausdorff distance of 
2.2951 mm. This proves that our methods can be applied 
not only to 3D models but also to 2D models.

Ablation study

TC-inception module
To verify the effectiveness of our proposed TC-Inception 
module for the ablation study, we replaced the TC-
Inception module with a convolution block and transformer 
block separately. Table 6 shows the results of different 
feature extraction modules in the encoder. As expected, the 
complete TC-Inception module with convolution block, 

Table 2 Comparison of single-prediction on BraTS 2018 dataset

Method
Dice (%) ↑ Hausdorff 95% (mm) ↓

Avg ET WT TC Avg ET WT TC

3D U-Net 78.49 74.36±4.8 88.34±1.8 72.79±4.2 11.35 5.98±1.9 15.62±2.4 12.47±2.6

V-Net 80.59 78.84±4.9 88.42±1.9 74.51±4.3 10.29 6.34±2.0 13.59±2.5 10.95±2.4

UNETR 83.85 79.46±4.6 89.16±2.3 82.93±4.1 5.92 4.76±1.9 6.34±2.1 6.67±2.1

DMFNet 84.76 80.09±3.9 89.86±1.5 84.35±4.1 4.74 3.14±1.1 4.61±1.4 6.46±2.0

TransBTS 85.36 81.09±4.1 90.82±1.8 84.16±3.8 5.41 4.06±1.1 5.79±1.9 6.37±2.0

Ours 86.32 81.73±4.1 91.57±1.8 85.68±3.3 4.23 3.27±1.0 3.74±1.3 5.68±1.4

Data with 95% confidence interval in Dice and Hausdorff. ↑ indicates that the higher the value is, the better the result is. ↓ indicates that 
the lower the value is, the better the result is. Avg, average; ET, enhancing tumor; WT, whole tumor; TC, tumor core.

Table 3 Parameter quantity and computational complexity of the 
experimental model

Method Parameter (M) FLOPs (G)

3D U-Net 2.4 162.7

V-Net 37.7 396.3

Att-Unet 6.4 151.2

UNETR 102.8 2198.5

DMFNet 3.8 27.0

TransBTS 30.6 263.8

Ours 9.0 66.7
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transformer block and CAFGL achieves the best result. 
Table 6 reports the Dice metric of ET, WT, TC of different 
feature extraction modules in 2D-TransConver. The Dice 
metric of ET is 77.39, 78.44, 78.51 for the 2D-TransConver 
with only Convolution Block, the 2D-TransConver with 
only Trans Block, the 2D-TransConver without CAFGL 
structure, respectively, and 78.93 for the complete model 

(P values: <0.1, <0.1, >0.1). The Dice metric of WT is 
84.23, 84.89, 85.34 for the 2D-TransConver with only 
Convolution Block, the 2D-TransConver with only 
Trans Block, the 2D-TransConver without CAFGL 
structure, respectively, and 85.94 for the complete model 
(P value: <0.05, <0.05, <0.05). The dice metric of TC 
is 82.41, 83.13, 83.46 for 2D-TransConver with only 

Table 4 Comparison of ensemble methods on BraTS 2019 dataset

Method
Dice (%) ↑ Hausdorff 95% (mm) ↓

Avg ET WT TC Avg ET WT TC

Two-stage U-Net 85.26 83.27 88.80 83.70 3.799 2.650 4.618 4.130

Ours w/o ensemble 83.72 78.40 90.19 82.57 4.741 3.414 4.848 5.962

Ours w/ensemble 85.32 81.69 90.53 83.74 4.027 3.081 4.839 4.162

The data of Two-stage U-Net is from (43).  ↑ indicates that the higher the value is, the better the result is. ↓ indicates that the lower the val-
ue is, the better the result is. Avg, average; ET, enhancing tumor; WT, whole tumor; TC, tumor core.

Table 5 Comparison on slice image data (2D) of BraTS 2019 validation dataset

Method
Dice (%) ↑ Hausdorff 95% (mm) ↓

Avg ET WT TC Avg ET WT TC

Unet++ 81.46 77.46±0.27 84.23±0.27 82.69±0.35 2.4115 2.8456±1.02 2.6393±0.98 1.7496±1.56

DenseUNet 81.71 78.09±0.31 84.59±0.26 82.46±0.30 2.3485 2.7571±1.13 2.6140±0.91 1.6746±1.47

Att-UNet 82.01 78.23±0.42 84.66±0.31 83.15±0.39 2.4122 2.8783±1.31 2.6714±1.04 1.6869±1.58

TransUNet 82.19 78.49±0.40 84.76±0.32 83.33±0.31 2.3851 2.8126±1.08 2.6883±0.93 1.6546±1.46

SwinUnet 82.25 78.53±0.41 84.78±0.32 83.45±0.33 2.3783 2.8334±1.13 2.6571±1.07 1.6445±1.26

2D-TransConver 82.87 78.93±0.38 85.94±0.28 83.76±0.31 2.2951 2.6915±1.09 2.5865±0.96 1.6073±1.31

We report the results of mean ± standard deviation by fixed the training set and run three different seeds. ↑ indicates that the higher the 
value is, the better the result is. ↓ indicates that the lower the value is, the better the result is. Avg, average; ET, enhancing tumor; WT, 
whole tumor; TC, tumor core.

Table 6 Ablation study of different feature extraction module in 2D-TransConver

Module
Dice (%) ↑

Avg ET WT TC

Convolution Block 81.34 77.39±0.42 84.23±0.35 82.41±0.41

Transformer Block 82.15 78.44±0.43 84.89±0.33 83.13±0.40

without CAFGL 82.43 78.51±0.40 85.34±0.29 83.46±0.34

TC-Inception 82.87 78.93±0.38 85.94±0.28 83.76±0.31

We report the results of mean ± standard deviation by fixed the training set and run three different seeds. CAFGL, cross-attention fusion 
with global and local features mechanism. ↑ indicates that the higher the value is, the better the result is. Avg, average; ET, enhancing tu-
mor; WT, whole tumor; TC, tumor core.
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Convolution Block, 2D-TransConver with only Trans 
Block, and 2D-TransConver without the CAFGL structure, 
respectively, and 83.76 for the complete model (P values: 
>0.1, >0.1, >0.1). The difference between TC-Inception and 
other feature extraction modules in TransConver on the 
metrics of WT was statistically significant (P value <0.05).

According to the experimental results of the model 
using convolution blocks and the model using transformer 
blocks, the latter can achieve higher accuracy in brain 
tumor segmentation. In addition, by removing CAFGL 
in TC-Inception and using a simple concatenation 
instead, we verify that the semantic gap between local 
features and global features can be narrowed by a cross-
attention mechanism. As shown in Figure 11, we observe 
that TransConver w/o CAFGL relies on local features for 
segmentation, especially when segmenting tumor images 
with low contrast. Meanwhile, we found that the training 
process of the model using CAFGL is more stable than that 
of the model without CAFGL. The result suggests that 
model extraction of local features and global features at the 
same time can improve the segmentation accuracy. 

Skip connection with cross-attention fusion mechanism
Skip connections are important components of networks 
with encoder-decoder structures. Many studies (6,7) are 
devoted to the study of an effective skip connection to 
better fuse encoder features and decoder features to achieve 
remarkable results. In this work, we compare the SCCAF 
with the skip connection structure of U-Net. Table 7  
reports the Dice metric of ET, WT, TC of different skip 
connection structures in 2D-TransConver. By comparing 
the simple concatenation with the SCCAF structure in 
2D-TransConver, the Dice metric ranged from 78.52 to 
78.93 for ET (P value: >0.1) and from 85.74 to 85.94 for 
WT (P value: >0.1) and from 83.62 to 83.76 for TC (P 
value: >0.1). The difference between SCCAF and simple 
concatenation structure in TransConver on the metrics was 
not statistically significant (P value <0.05). The purpose 
of using skip connections is to restore the details of the 
image by combining the high-resolution features of the 
encoder during upsampling. Through the visualization 
results shown in Figure 12, we observe that the model with 
SCCAF is beneficial for segmenting detailed features such 

Figure 11 The visual comparison of MRI brain tumor segmentation results in CAFGL ablation experiment. MRI, magnetic resonance 
imaging; CAFGL, cross-attention fusion with global and local feature.

Table 7 Ablation study on SCCAF in 2D-TransConver

Skip connection method
Dice (%) ↑

Avg ET WT TC

Simple concatenation 82.62 78.52±0.39 85.74±0.30 83.62±0.31

SCCAF 82.87 78.93±0.38 85.94±0.28 83.76±0.31

We report the results of mean ± standard deviation by fixed the training set and run three different seeds. SCCAF, skip connection with 
cross-attention fusion mechanism. ↑ indicates that the higher the value is, the better the result is. Avg, average; ET, enhancing tumor; WT, 
whole tumor; TC, tumor core.

Origin Ground truth Ours Ours w/o CAFGL
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as the edge of the tumor. This result shows that SCCAF 
can reduce the influence of pixel misalignment caused by 
upsampling. 

Discussion

Advantages of TransConver

Good segmentation requires a model to extract local 
fine-grained details and global semantic information 
simultaneously. Conventional CNNs have achieved 
remarkable performance in several medical image 
segmentation tasks and have good generalization ability. 
However, medical images usually contain many interrelated 
organs and tissues, so the size of the receptive field is 
particularly important in medical image segmentation. 
As shown in Figure 10C, the locality of CNNs (V-Net, 
DMFNet) becomes a limitation when segmenting an 
outlier region that is small in size and positioned far from 
the core of the disease. In contrast, the transformer and 
convolution-based networks (UNETR, TransConver) can 
successfully segment these regions. Although UNETR 
output is oversegmented, it also shows that the model has 
successfully delineated these regions through a transformer. 
This indicates clearly that long-range contextual interaction 
(i.e., global feature extraction) is essential for brain tumor 
segmentation. In addition, as illustrated in Figure 10B, 
other methods, including TransBTS and UNETR, still 
cannot segment these regions when segmenting images 
with low contrast between organs and targets. However, 
our proposed TransConver network can accurately fulfill 
the task. These results demonstrate that the combination 

method of transformer and convolution in the proposed 
network is better than other transformer- and convolution-
based networks. Meanwhile, accurate classification of lesions 
can help doctors conduct quantitative analysis and clinical 
treatment more effectively. Our TransConver achieved the 
best performance in the classification of lesion categories, 
as illustrated in Figure 10D and Figure 10E. In summary, 
compared with state-of-the-art segmentation approaches, 
our network shows the best results in terms of the accuracy 
of tumor boundary segmentation, the integrity of tumor 
segmentation and the classification of lesion status. The 
structural characteristics and advantages of TransConver 
can be summarized in the following points:

(I) The structural design of TransConver follows 
the U-shaped network structure. The ability of 
U-shaped networks in medical image segmentation 
has been proven by many studies and experiments. 
Based on this network structure, we proposed a 
new tumor segmentation network with higher 
accuracy.

(II) We proposed a parallel module consisting of 
transformer and convolution, called TC-Inception, 
which performs convolution and transformer 
operations on the same feature map simultaneously 
and fuses local features of convolution and global 
features of transformer through the CAFGL 
mechanism. Through the TC-Inception module, 
we can effectively extract the local and global 
features of the image to accurately segment regions 
with low contrast and inconspicuous local features.

(III) We proposed skip connection with a cross-
attention fusion mechanism to effectively fuse low-

Figure 12 The visual comparison of MRI brain tumor segmentation results in SCCAF ablation experiment. MRI, magnetic resonance 
imaging; SCCAF, skip connection with cross-attention fusion.

Ground truth Ours with SCCAF Ours with simple concatenation
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level semantics and high-level semantics having 
different scales and semantical misalignments.

Training from scratch

In general, transformer-based networks may achieve good 
performance only after a very large amount of data training 
or pretraining because of the lack of inductive bias for 
images. However, our TransConver model is trained from 
scratch. For our model to achieve the expected performance 
without a large amount of data for pretraining, we enhanced 
it with the following rationale:

(I) Swin Transformer Block. In this study (18), the 
author also expressed the view that inductive bias is 
still beneficial to visual modeling, especially in the 
task of object detection and segmentation. Because 
of the window-based self-attention mechanism, Swin 
Transformer introduces inductive bias of locality.

(II) Patchify stem replaced by the convolution stem. 
Xiao et al. (44) found that after the patchify stem is 
replaced by the convolution stem, the transformer 
performs more stably and converges faster in 
training. This is one of the reasons why our 
TransConver structure uses convolution block to 
extract features at the beginning.

(III) Data augmentation. Data augmentation is a very 
effective data expansion method. We adopt data 
augmentation methods to alleviate the problem of 
insufficient medical image data.

Limitations and further work

Compared with other computer vision tasks, such as 
face recognition and object detection, the primary 
l imitation of  medical  image segmentation l ies  in 
insufficient datasets. In our work, we use a variety of 
data augmentation methods, including random cropping, 
random translation and random flipping, to increase 
the amount of data. However, these data augmentation 
methods cannot fundamentally solve this limitation. In 
recent years, semi-supervised and self-supervised learning 
methods have attracted much attention in the field of 
training with few samples, and many studies (45,46) have 
made remarkable achievements.

For future work, we intend to try to use semi-supervised 
or self-supervised learning methods in medical image 
segmentation tasks with transformer and convolution based 
networks.

Conclusions

In this paper, we proposed 3D and 2D medical image 
segmentation networks based on convolution and 
transformers, which can achieve high accuracy on 3D 
and 2D brain tumor segmentation, respectively. Differing 
from other transformer- and convolution-based networks, 
we designed a TC-inception module to parallelize the 
transformer and convolution operations. Moreover, 
inspired by many studies of multimodal feature fusion, we 
proposed CAFGL to effectively fuse global features and 
local features. In addition, we also used a cross-attention 
mechanism to improve the skip connection structure. The 
experimental results and ablation study on the BraTS 2018 
and BraTS 2019 datasets show that our methods achieved 
superior Dice scores and Hausdorff distances in comparison 
with existing methods. Quantitative analysis of brain MRI 
based on our proposed model indicate that our method 
can segment tumor regions more accurately and improve 
clinical diagnosis.
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