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Background: When the heart rate of a patient exceeds the physical limits of a scanning device, even 
retrospective electrocardiography (ECG) gating technology cannot correct motion artifacts. The purpose of 
this study was to use deep learning methods to correct motion artifacts in coronary computed tomography 
angiography (CCTA) images acquired with retrospective ECG gating.
Methods: To correct motion artifacts in CCTA images, we used a cycle Wasserstein generative adversarial 
network with a gradient penalty (WGAN-GP) to synthesize CCTA images without motion artifacts, and 
applied objective image indicators and clinical quantitative scores to evaluate the images. The objective image 
indicators included peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and normalized mean 
square error (NMSE). For clinical quantitative scoring, we randomly selected 50 sets of images from the test 
data set as the scoring data set. We invited 2 radiologists from Zhongnan Hospital of Wuhan University to 
score the composite images.
Results: In the test images, the PSNR, SSIM, NMSE and clinical quantitative score were 24.96±1.54, 
0.769±0.055, 0.031±0.023, and 4.12±0.61, respectively. The images synthesized by cycle WGAN-GP 
performed better on objective image indicators and clinical quantitative scores than those synthesized by 
cycle least squares generative adversarial network (LSGAN), UNet, WGAN, and cycle WGAN.
Conclusions: Our proposed method can effectively correct the motion artifacts of coronary arteries in 
CCTA images and performs better than other methods. According to the performance of the clinical score, 
correction of images by this method does not affect the clinical diagnosis.
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Introduction

Cardiovascular disease is the leading cause of disease-
related death worldwide. For many years, coronary heart 
disease has been the leading cause of cardiovascular 
disease-related death among humans. Coronary computed 
tomography angiography (CCTA) is an effective screening 
method for arterial disease (1,2). It determines blood 
flow in the coronary arteries to facilitate the diagnosis of 
artery stenosis, occlusion, embolism, pseudoaneurysm, or 
dissection. Compared with other imaging technologies, 
CCTA has many advantages. Examinations with CCTA 
can be used to investigate the arteries and veins of the heart 
and identify stenosis for timely treatment. Moreover, the 
required contrast agent can be injected through a forearm 
vein, which is less traumatic and safer than other methods. 
Compared with magnetic resonance angiography (MRA), 
the anatomical details of blood vessels displayed by CCTA 
are more accurate, and the scan time is shorter. Therefore, 
research on CCTA imaging technology is of great 
significance.

However, CCTA also has limitations. In the process of 
obtaining projection data from different angles by computed 
tomography (CT), the points (voxels or pixels) in the image 
matrix are displaced, forming motion artifacts in the CCTA 
image (3). The degree of motion artifacts depends on the 
rate of displacement and the correction effect of the image 
reconstruction algorithm. When the time window selected 
for reconstruction is inappropriate, the coronary arteries are 
in a phase of high-speed displacement during imaging. If 
the heart rate is too fast, the coronary arteries will move at a 
low speed for too little time, exceeding the time resolution 
of the collected CT data. Both of these issues can cause 
motion artifacts.

In recent years, the rapid development of deep neural 
networks has provided the possibility of CCTA motion 
artifact correction. Engineers at Philips Labs proposed 
using the residual network [ResNet; He et al. (4)] to 
identify and locate motion artifacts in coronary arteries (5). 
In another study, a 2.5-D convolutional neural network 

(CNN) was used to calculate the motion vector of motion 
artifacts in the coronary artery, thereby providing a 
reference for traditional artifact correction (6). Xie et al. (7)  
used residual learning with the improved Google-Net 
to study the artifacts of sparse-view CT reconstruction, 
subtracted the artifacts obtained by learning from the 
sparsely reconstructed images, and finally recovered clear 
corrected images.

Deep learning has a large number of applications in the 
image field. As a multi-scale CNN, UNet (University of 
Freiburg, Freiburg im Breisgau, Baden-Württemburg) is 
a model commonly used for medical image segmentation, 
and its updated model has many applications in medical 
imaging (8-15). Generative adversarial networks (GANs) 
perform well in image generation, high-resolution 
image reconstruction, image style conversion, and other 
fields, and they offer more possibilities than ordinary  
CNNs (16). The Wasserstein GAN (WGAN) introduces 
the Wasserstein distance, which solves the problem of 
unstable training and provides a reliable training progress 
indicator, which is highly correlated with the quality of the 
generated samples (17). The WGAN and various improved 
models have many applications in medical image processing 
(18-21). The WGAN with a gradient penalty (WGAN-GP) 
is an improved version of the WGAN that provides higher 
performance in image generation (22). Zhang et al. (23) used 
a pixel2pixel GAN with V-Net as the generator to correct 
motion artifacts in the right coronary artery, confirming 
that GANs have the potential to provide a new method of 
removing motion artifacts in coronary artery images (23). 
Additionally, the cycle GAN also provides an important 
deep learning method for medical image processing (24,25). 
In our previous research, the cycle least-squares GAN 
(LSGAN) was used to correct motion artifacts in CCTA 
clinical images, and multiple image indicators confirmed 
that the cycle LSGAN was more effective in correcting 
motion artifacts in global images than in regions of interest 
(ROIs) (26). 

In this study, we retrospectively collected CCTA 
images of 60 patients scanned using retrospective 
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electrocardiography (ECG) gating technology. We 
combined UNet, WGAN-GP, and cycle GAN to propose 
a method of cycle WGAN-GP constrained by multiple 
loss functions (L1 loss, perceptual loss, and Wasserstein 
loss) to correct motion artifacts in clinical CCTA images. 
The WGAN-GP method used UNet as a generator, and 
WGAN-GP was used as a unit for constructing the cycle 
WGAN-GP. In cycle WGAN-GP, we added a content 
discriminator to stabilize the cycle GAN. The performance 
of the method was assessed using image indicators, 
including the peak signal-to-noise ratio (PSNR), structural 
similarity (SSIM), normalized mean square error (NMSE), 
and radiologist clinical quantitative scores.

Methods

Network

Compared with the general GAN, the WGAN proposed 
in 2017 addressed the problems of gradient disappearance, 
gradient instability, and collapse mode. The WGAN-GP 
improved upon WGAN, providing higher performance in 
image generation. Cycle GAN uses 2 GANs to constrain 
each other to generate the target images more stably and 
reliably and to ensure correlation between the input images 
and generated images.

In this study, cycle WGAN-GP included 2 WGAN-GPs 
and a content discriminator. Each WGAN-GP contained 
a generator and a discriminator. The generator was UNet, 
and the discriminator was a CNN. The structure of 
content discriminator is shown in Figure 1. The content 

discriminator contained 6 non-linear processing steps. The 
first 4 layers were convolutional layers with a convolution 
kernel of 3, stride of 2, padding of 1, and the activation 
function of leaky rectified linear unit (ReLU). Then, an 
adaptive average pooling layer was included, finally followed 
by a convolution layer with a convolution kernel of 1 and a 
stride of 1.

A d i scr iminator  was  des igned to  improve  the 
generalization of the generator. The discriminator used 5 
non-linear mappings, which each containing a convolution 
layer, leaky ReLU, and average pool. In each convolution 
layer, the size of the convolution kernel was 4, the step size 
was 2, and the zero padding was 1. In addition, the filling 
method was reflection padding. To perceive the various 
scales of the input images, the discriminator used the image 
feature matrix obtained from each non-linear mapping to 
calculate the loss. With this process, the discriminator had 
an improved ability to distinguish the overall features and 
local features of the input images.

The generator of the original WGAN was an ordinary 
CNN, which generates images by learning relevant 
features. This study used UNet as a generator to integrate 
information at different scales. The structure of UNet is 
shown in Figure 2. The overall structure included 5 scales. In 
each scale, the feature matrixes from the encoder scale were 
concatenated with the feature matrixes from the decoder 
scale. In this way, deep semantic information and shallow 
position information could be merged to extract more 
comprehensive image features and improve the effect of 
CCTA image reconstruction. The orange arrow in Figure 2  

Figure 1 Structure of the discriminator and content discriminator. (A) The discriminator is used for WGAN, cycle WGAN and cycle 
WGAN-GP. (B) The content discriminator is use for cycle WGAN-GP. WGAN-GP, Wasserstein generative adversarial network with a 
gradient penalty; WGAN, Wasserstein generative adversarial network.
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represents the convolutional layer with a convolution kernel 
of 3, padding of 1, and dilation of 2 (27). The orange and 
black arrows together form a convolutional layer with a 
receptive field of 7×7. In the last layer, leaky ReLU was 
used instead of ReLU. To prevent checkerboard artifacts in 
the generated image, the decoding section was designed as a 
bilinear interpolation instead of a transposed convolution.

Loss function

In designing the loss function of the entire framework, we 
designed the loss functions of the content discriminator, 
discriminator, and generator. First, the loss of the content 
discriminator WGAN-GP was designed to stabilize the 
training and convergence of the generator and avoid 
the problems of gradient disappearance and model 
collapse. Therefore, we used the least-squares loss in the 
content discriminator (28). The least-squares loss in the 
training content discriminator and training generator was 
determined as follows:

( ) ( ) ( )( ) ( ) ( )( )( )1 21 21 2

2 2
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where x1 and x2 represent two different images.
The loss function of the discriminator of WGAN-

GP was the Wasserstein loss with a gradient penalty. 

The Wasserstein loss with a gradient penalty played an 
important role in preventing gradient disappearance and 
model collapse. The formula was as follows:
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where D and G represent the discriminator and generator, 
respectively, and λ is the gradient penalty coefficient, which 
was set to 10.

After designing the loss function of the discriminator, we 
designed the loss function for the generator in the WGAN-
GP cycle. First, the loss function of the generator itself in 
WGAN-GP was as follows:

( ) ( ) ( )( )~G x p xL x D G x = −Ε    
[4]

To improve the generator’s understanding of the CTA 
image structure, we added perceptual loss and L1 loss. The 
perceptual loss was calculated by VGG19 to generate the 
feature loss between synthesized images and target images, and 
then the generator was optimized by back propagation (29).  
Perceptual loss can greatly improve the convergence speed 
of a generator, allowing it to learn the characteristics of 
the target image more quickly. The L1 loss was used to 
calculate the loss value between the generated and target 
images per pixel. The generator could effectively learn 
the distribution of the target images at the pixel level. The 
perceptual loss was determined as follows:

( ) ( ) ( )( )
1 2

2
1 2 , 1 2, arg minp x xL

L x x VGG x VGG x = Ε −   [5]

Figure 2 The network structure of UNet and the generators of WGAN, cycle WGAN, and cycle WGAN-GP. WGAN-GP, Wasserstein 
generative adversarial network with a gradient penalty; WGAN, Wasserstein generative adversarial network.
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To improve the stability of the generator in the loop 
structure, we used the L1 loss as the cycle consistency 
loss of the loop structure. The cycle consistency loss was 
determined as follows:

( )1 1 2,CL L x x=
                                

[6]

When training a batch in cycle WGAN-GP, the content 
discriminator was trained 3 times, and the discriminator 
and generator were each trained once. When training the 
generator, its loss function was as follows:
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 [7]

where Wp, W1, WLG, WG and WC were 0.5, 1, 0.1, 0.1, and 1, 
respectively.

Throughout the process of Figure 3, all generators and 
discriminators used the adaptive movement estimation 
(ADAM) optimizer, and the learning rate was set to 0.001 (30). 
The learning rate update strategy used was cosine annealing, 
and the maximum number of iterations was 25 (31). The 
hidden layer weight initialization method was the Kaiming 
method (32). The entire model was trained on an NVIDIA 
GeForce RTX 3090 (Nvidia, Santa Clara, CA, USA) on the 
Windows 10 operating system (Microsoft Corp., Redmond, 
WA, USA). During training, the entire data set was trained 
as an epoch, and a total of 100 epochs were trained. During 
the test, Ga2b was used to correct motion artifacts in CCTA 
images, and corrected images without motion artifacts were 

output.

Data set

The CTA clinical images used in this study were clinical 
images collected by the Department of Radiology, 
Zhongnan Hospital of Wuhan University through 
Siemens SOMATOM Definition (Siemens Healthineers, 
Erlangen, Germany) from December 2019 to October 
2020. Clinicians used retrospective ECG gating technology 
to scan the cases and reconstructed 4 phases of images 
from the obtained data, 2 of which were in diastole, while 
the other 2 were in systole. To focus the framework on 
correcting motion artifacts in CCTA images, we chose 
2-phase images in the diastolic phase or 2-phase images in 
the systole as the data set. Among them, CCTA images with 
motion artifacts were used as input data, and other clear 
CCTA images were used as ground-truth images. The data 
set included 60 patients with 3,410 pairs of two-dimensional 
(2D) CCTA images. Due to the small size of the data set, 
we enhanced the existing data by rotating the images by 
−10°, −5°, and 5°, which quadrupled the amount of data and 
yielded a total of 13,640 images.

Metrics

Clinical quantitative analysis index
We invited 2 radiologists from Zhongnan Hospital of 
Wuhan University to score the original, synthesized, and 
target images. We used the input image, corrected images 

Figure 3 The training process of cycle WGAN-GP: the dotted line represents the cycle process, and the solid line represents the general 
process. Ga2b and Gb2a are the generators of the cycle WGAN-GP. Da and Db are the discriminators of cycle WGAN-GP, and Dc is the 
content discriminator of the cycle WGAN-GP. WGAN-GP, Wasserstein generative adversarial network with a gradient penalty.
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generated by 5 methods, and the target image as a set. We 
randomly selected 50 sets of images in the test data set as the 
scoring data set. According to the effect of artifact correction, 
the scores ranged from 1 to 5. Scores of 1 to 3 indicated poor 
quality, and scores of 4 and 5 indicated better image quality. 

Image quantitative analysis index
We used the PSNR, SSIM, and NMSE to the analyze 
images. The PSNR and SSIM are global image indicators 
that compare and calculate noise and structure, respectively. 
The NMSE is a dimensionless image index that compares 
pixels between comparison images and target images.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by Institutional Ethics Committee of Zhongnan 
Hospital of Wuhan University. Informed consent was 
waived in this retrospective study.

Results

To monitor the stability of the model during the training 
process, we randomly selected 4 sets of images for use as 
supervised data. The curves of 2 indicators, the SSIM and 
NMSE, during the model training process are shown in 
Figure 4. In the first quarter of the training process, the 
curves converged quickly, after which the curves converged 
steadily throughout the remaining training process.

Table 1 shows the values of various image indicators for 
the test set for all methods. Among the various methods, our 
proposed algorithm performed best in terms of PNSR and 
NMSE on the test set. Although cycle WGAN performed 
the best in terms of SSIM among all methods, the SSIM 
difference between cycle WGAN and the proposed method 
was 0.001. In addition, we invited 2 radiologists from 
Zhongnan Hospital of Wuhan University to rate the motion 

Figure 4 SSIM-epoch and NMSE-epoch curves of images generated from 4 artifact images during cycle WGAN-GP training. SSIM, 
structural similarity; NMSE, normalized mean square error; WGAN-GP, Wasserstein generative adversarial network with a gradient 
penalty.
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Table 1 Objective indicators: the mean and standard deviation of artifact images, generated images, and target images in different image metrics 
in the test data set 

Variables PSNR SSIM NMSE

Artifact 21.46±2.70 0.683±0.081 0.077±0.036

Cycle LSGAN 23.43±1.58 0.728±0.058 0.042±0.018

UNet 23.70±1.57 0.762±0.055 0.042±0.032

WGAN 24.41±1.73 0.767±0.055 0.035±0.021

Cycle WGAN 24.43±1.97 0.770±0.056 0.039±0.045

Proposed 24.96±1.54 0.769±0.055 0.031±0.023

PSNR, peak signal-to-noise ratio; SSIM, structural similarity; NMSE, normalized mean square error; LSGAN, least squares generative 
adversarial network; WGAN, Wasserstein generative adversarial network.
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artifact-corrected images. Table 2 shows the statistical data 
of the radiologist scores for the corrected images. In Table 2, 
our proposed method received the highest scores. To more 
intuitively observe the score distribution of each method, 
when 2 doctors evaluated the same image, we selected the 
lowest of the 2 scores, as shown in Figure 5. In Figure 5, 
the image processed by our proposed algorithm did not 
score below 3 points. The results from other algorithms 
received scores of 2 points or even 1 point. In other words, 
our proposed algorithm was the most stable among the 
compared methods.

To observe the effects of motion artifact correction more 
intuitively, we compared the results of artifact correction 
using different methods among different patients. We 
randomly selected 5 patients and extracted the ROI of the 
right coronary artery. These regions are shown in Figure 6. 
The results showed that the correction effect of the other 
4 methods was not sufficiently stable, and the correction 

effect of our proposed method was more stable than those 
of the other 4 methods. And the red arrow pointed to the 
coronary arteries in the CCTA images.

In addition, we randomly selected 5 patients and 
extracted images of the left circumflex coronary artery 
region, as shown in Figure 7. The left circumflex coronary 
artery is a smaller feature than the right coronary artery, 
and artifact correction in the left circumflex artery is more 
difficult than that in the right coronary artery. However, 
among the examined methods, most could correct the 
motion artifacts, but our proposed method achieved more 
accurate correction.

After viewing the images corrected for motion artifacts 
in the right coronary artery and left circumflex coronary 
artery, we examined additional images for motion artifact 
correction. We selected 4 images of patients with motion 
artifacts in both the right coronary artery and left circumflex 
coronary artery, as shown in Figure 8. In Figure 8, the right 

Table 2 Clinical quantitative scores: the mean and standard deviation of the 50 sets of data used for clinical scoring in the motion artifact 
correction score 

Variables Radiologist 1 Radiologist 2 Total

Artifact 1.19±0.39 1.23±0.50 1.21±0.40

Cycle LSGAN 3.27±0.76 3.42±0.97 3.35±0.83

UNet 3.92±0.83 4.04±0.81 3.98±0.77

WGAN 3.35±0.73 3.88±0.80 3.62±0.72

Cycle WGAN 3.88±0.93 4.27±0.65 4.08±0.76

Proposed 4.19±0.62 4.04±0.71 4.12±0.61

LSGAN, least squares generative adversarial network; WGAN, Wasserstein generative adversarial network.

Figure 5 Clinical quantitative score distribution of the input images and the generated images corrected by cycle LSGAN, UNet, WGAN, 
cycle WGAN, and cycle WGAN-GP. LSGAN, least squares generative adversarial network; WGAN, Wasserstein generative adversarial 
network; WGAN-GP, Wasserstein generative adversarial network with a gradient penalty.
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Figure 6 Right coronary artery ROIs of 5 patients, which are artifact images, images generated by cycle LSGAN, UNet, WGAN, cycle 
WGAN and cycle WGAN-GP, and ground-truth. The red arrow pointed to the coronary arteries in the CCTA images. CCTA, coronary 
computed tomography angiography; LSGAN, least squares generative adversarial network; ROIs, regions of interest; WGAN, Wasserstein 
generative adversarial network; WGAN-GP, Wasserstein generative adversarial network with a gradient penalty.
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coronary artery of the third patient almost disappeared in 
the WGAN-GP and cycle WGAN results, while the other 
methods could correct the motion artifacts. Our proposed 
method could stably correct right coronary artery, left 
circumflex branch, and overall motion artifacts.

Discussion

In this study, we proposed using cycle WGAN-GP to 
correct motion artifacts in CCTA images. The UNet, 
WGAN, and cycle GAN are currently relatively stable deep 
learning models which have many applications in magnetic 
resonance imaging (MRI), positron emission tomography 
(PET), and CT. We combined these models and added a 
content discriminator to construct a stable and convergent 
deep learning model. By using cycle LSGAN to correct 
motion artifacts in CCTA images, we found that using the 

entire image was better than extracting local coronary artery 
regions to correct motion artifacts. Therefore, in this study, 
we also used the entire image for motion artifact correction. 
In addition, to maintain the overall characteristics of the 
images and provide more details in the coronary arteries, we 
used multiple loss functions to constrain the generator. The 
image indexes of CCTA images corrected by this method 
indicated a better performance than that of cycle LSGAN. 
In the clinical quantitative analysis index, the score of cycle 
WGAN-GP was 0.04 higher than that of cycle LSGAN. All 
indexes indicated that our method was the best among those 
compared.

However, our method still has some limitations. 
First, due to the relatively few characteristics of the left 
circumflex coronary artery, achieving model convergence 
was difficult. A small number of patients had severe left 
circumflex coronary artery motion artifacts, and their 
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Figure 7 Left circumflex coronary artery ROIs of 5 patients, which are artifact images, images generated by cycle LSGAN, UNet, WGAN, 
cycle WGAN and cycle WGAN-GP, and ground-truth. The red arrow pointed to the coronary arteries in the CCTA images. CCTA, 
coronary computed tomography angiography; LSGAN, least squares generative adversarial network; ROIs, regions of interest; WGAN, 
Wasserstein generative adversarial network; WGAN-GP, Wasserstein generative adversarial network with a gradient penalty.
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left circumflex coronary artery motion artifacts could not 
be corrected. Second, correcting motion artifacts in the 
coronary arteries was our goal, but the texture and edge 
information of the heart region is very important. The 
deep learning method could also maintain the texture and 
edge information of the heart when correcting motion 
artifacts, algorithms for which should be explored in 
future research. Third, the cycle WGAN-GP frame is too 
large, and it is difficult for ordinary machines to meet the 
training requirements. Although the hardware that we 
used is relatively advanced, it still had difficulty meeting 
the needs of network training.

Deep learning methods are very promising for artifact 
correction. In the task of correcting motion artifacts in 
CCTA images, our proposed cycle WGAN-GP was more 
stable than cycle LSGAN and performed better on small 
features. However, the proposed deep learning method 
should also more stably correct motion artifacts in the 

right coronary artery and left circumflex artery. In theory, 
deep learning methods can correct not only retrospective 
ECG-gated CCTA images, but also prospective ECG-
gated CCTA images. However, whether motion artifacts 
in CCTA images collected by the prospective ECG gating 
technology can be corrected by deep learning has not been 
verified as no relevant data are currently available.

Conclusions

In conclusion, the cycle WGAN-GP proposed in this study 
could correct motion artifacts in CCTA images and is more 
stable than the general cycle WGAN-GP. In future work, 
the framework can also be used for other types of medical 
image processing. In addition, CCTA image motion 
artifact correction needs to be more stable, and appropriate 
algorithms for improving the overall and coronary artery 
characteristics are required.
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Figure 8 Artifact images, images generated by cycle LSGAN, UNet, WGAN, cycle WGAN and cycle WGAN-GP, and ground-truth of 
4 patients. The red arrow pointed to the coronary arteries in the CCTA images. CCTA, coronary computed tomography angiography; 
LSGAN, least squares generative adversarial network; WGAN, Wasserstein generative adversarial network; WGAN-GP, Wasserstein 
generative adversarial network with a gradient penalty.
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