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Background: This study aimed to build a deep learning model to automatically segment heterogeneous 
clinical MRI scans by optimizing a pre-trained model built from a homogeneous research dataset with 
transfer learning.
Methods: Conditional generative adversarial networks pretrained on the Osteoarthritis Initiative MR 
images was transferred to 30 sets of heterogenous MR images collected from clinical routines. Two trained 
radiologists manually segmented the 30 sets of clinical MR images for model training, validation and test. 
The model performance was compared to models trained from scratch with different datasets, as well as two 
radiologists. A 5-fold cross validation was performed.
Results: The transfer learning model obtained an overall averaged Dice coefficient of 0.819, an averaged 
95 percentile Hausdorff distance of 1.463 mm, and an averaged average symmetric surface distance of  
0.350 mm on the 5 random holdout test sets. A 5-fold cross validation had a mean Dice coefficient of 0.801, 
mean 95 percentile Hausdorff distance of 1.746 mm, and mean average symmetric surface distance of  
0.364 mm. It outperformed other models and performed similarly as the radiologists.
Conclusions: A transfer learning model was able to automatically segment knee cartilage, with 
performance comparable to human, using heterogeneous clinical MR images with a small training data size. 
In addition, the model proved robust when tested through cross validation and on images from a different 
vendor. We found it feasible to perform fully automated cartilage segmentation of clinical knee MR images, 
which would facilitate the clinical application of quantitative MRI techniques and other prediction models 
for improved patient treatment planning.
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Introduction

Osteoarthritis (OA) is the most common cause of knee pain 
and disability among the patients over the age of 50 with an 
estimated annual treatment cost of more than $51 billion 
in the United States alone (1,2). Knee magnetic resonance 
imaging (MRI) is one of the best imaging modalities to 
determine the severity of OA. It has been shown to be 
predictive of outcomes after surgeries such as arthroscopic 
partial meniscectomy (3-5). Manual grading of cartilage 
disease using semi-quantitative grading systems, however, is 
time-consuming and suffers from inter-observer variability 
limiting its routine use in clinical practice (6). Similarly, 
quantitative MRI, i.e., compositional and morphologic 
techniques, which can detect early cartilage degeneration 
and serve as biomarkers for disease prognostication are 
not routinely used in clinical practice. One of the major 
hurdles preventing the adoption of quantitative imaging 
into clinical practice is the need for cartilage segmentation 
which, to date, requires significant manual effort and time. 
Manual or semi-automatic cartilage segmentation is not 
only laborious and time-consuming but also suffers from 
intra- and inter-reader variability (7,8). Researchers have 
attempted to build an end-to-end deep learning network to 
detect knee joint abnormalities without the segmentation 
step by using multi-sequence, multi-planar MR images 
as inputs (9). The diagnostic performance of the model, 
however, was significantly lower than that of humans. 
Alternative deep learning approaches including tissue 
segmentation as a separate step in the pipeline achieved 
diagnostic performance comparable to humans (10-12). 
These results suggested that the segmentation stage may 
still be a necessary step in the deep learning pipeline to 
maximize diagnostic performance of the models in the 
detection of early cartilage degeneration (13).

Efforts have been made recently to build fully automated 
segmentation models based on deep learning (14-23), with 
cartilage segmentation performance as good as 0.880 in 
Dice coefficient (21). These models, however, are typically 
trained and tested on homogeneous research datasets, 
e.g., the osteoarthritis initiative (OAI) dataset (http://nda.
nih.gov/oai). It is not known how well these results will 
directly translate to the heterogeneous data sets found in 
clinical practice, since the images are typically obtained 
from an assortment of MR scanners with variations in 
imaging parameters, and image quality. To the best of 
our knowledge, no previous studies have provided an 
automated cartilage segmentation model that has been 
successfully applied to a heterogeneous set of clinical MR 

images or explored the ability to use transfer learning (TL) 
to improve model performance for cartilage segmentation 
on heterogeneous MR images collected from clinical 
routines with different field strengths, different MR 
systems, different coils, and different protocols etc. Our 
initial experience applying such models to clinical datasets 
resulted in poor segmentation performance (Table 1). To 
improve model performance, models could be trained 
directly from the clinical datasets. However, such training 
would require large training datasets that would have to 
be manually segmented to prevent overfitting which could 
occur if only a small dataset is used (24). Consequently, 
the enormous amount of annotated training data needed 
becomes prohibitive for direct model training. An alternate 
approach to improve model performance is to optimize a 
previously trained model with homogeneous data using 
transfer learning (22,25-34). The advantage of the transfer 
learning is that only small amount of manually segmented 
clinical data is needed.

The purpose of this study was to build a model using 
a conditional generative adversarial network (cGAN) 
to automatically segment heterogeneous clinical MRI 
scans by optimizing a pre-trained model built from a 
homogeneous research dataset with transfer learning 
from a small dataset of heterogenous clinical MR scans. 
Specifically, we compared the performance of the model 
with transfer learning to that of the model without transfer 
learning and to the performance of manual segmentation 
by 2 radiologists. If successful, the automatic segmentation 
model could be used to facilitate qualitative and quantitative 
grading of OA which would not only allow for the adoption 
of these methods into routine clinical practice but for the 
development of models to guide patient management and 
predict patient outcomes. 

We present the following article in accordance with the 
MDAR checklist (available at https://qims.amegroups.com/
article/view/10.21037/qims-21-459/rc).

Methods

Data

The datasets used in this study included two parts: a set 
of publicly available homogeneous MRIs from the OAI 
collected in a research setting, and a set of heterogeneous 
MRIs locally collected through clinical routines. OAI 
dataset (https://nda.nih.gov/oai/) was used to pre-train our 
model. It contained 176 sagittal knee MR images collected 
on Siemens 3T Trio scanner using the 3D sagittal double-

http://nda.nih.gov/oai
http://nda.nih.gov/oai
https://qims.amegroups.com/article/view/10.21037/qims-21-459/rc
https://qims.amegroups.com/article/view/10.21037/qims-21-459/rc
https://nda.nih.gov/oai/
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Table 1 Overall and compartment-wise model performance comparison among different model/reference combinations

Method

Overall FC LTC MTC PC

DC
HD95 
(mm)

ASSD 
(mm)

DC
HD95 
(mm)

ASSD 
(mm)

DC
HD95 
(mm)

ASSD 
(mm)

DC
HD95 
(mm)

ASSD 
(mm)

DC
HD95 
(mm)

ASSD 
(mm)

OAI/R1 0.519 6.227 1.224 0.504 7.035 1.373 0.445 5.699 1.959 0.465 11.21 2.296 0.499 6.098 1.492

APM/R1 0.018 61.15 30.21 0.794 1.769 0.460 0.692 7.613 1.171 0.645 8.260 1.464 0.003 116.0 37.84

MIX/R1 0.741 2.361 0.447 0.741 2.195 0.412 0.703 3.705 0.729 0.586 5.082 0.937 0.836 1.387 0.269

TL/R1 0.819* 1.463* 0.350* 0.812* 0.978* 0.386* 0.823* 1.754* 0.317* 0.750* 3.546 0.647 0.874* 1.240 0.210*

TL/R2 0.785 1.895 0.417 0.774 2.037 0.490 0.769 2.071 0.417 0.712 2.663 0.614 0.859 1.069* 0.225

R1/R2 0.782 1.766 0.505 0.763 1.730 0.524 0.774 1.766 0.556 0.728 2.396* 0.605* 0.865 1.083 0.335

TL/R1 (1.5T) 0.797 1.691 0.331 0.795 1.418 0.326 0.742 2.652 0.664 0.734 2.616 0.510 0.844 1.522 0.327

TL/R1 (3T) 0.832 1.565 0.364 0.823 1.482 0.406 0.802 2.163 0.627 0.768 2.864 0.694 0.896 0.739 0.350

Philips (1.5T) 0.774 2.882 0.456 0.775 3.009 0.420 0.691 3.475 0.762 0.652 3.760 0.772 0.856 2.030 0.272

*, Best performance values. The comparison between 1.5T and 3T scans are shown as well. OAI, the initial model trained on the OAI 
dataset; APM, model trained from scratch on the APM dataset; MIX, model trained from scratch on the OAI and APM mixed dataset; 
TL, the transfer learned model fine-tuned on the clinical dataset; Philips, TL model trained on the APM Siemens data and tested on the 
APM Philips data; R1, reader 1; R2, reader 2; FC, femoral cartilage; LTC, lateral tibial cartilage; MTC, medial tibial cartilage; PC, patellar 
cartilage; DC, Dice coefficient; HD95, 95 percentile Hausdorff distance; ASSD, average symmetric surface distance.

echo steady state (DESS) sequence with the same coil model 
and acquisition parameter settings. Each image consisted 
of 160 slices (0.7 mm slice thickness) with fixed FOV of 
14 cm2 and matrix size of 384×384 with cartilage manually 
segmented by iMorphics (35). 

The clinical knee MR images used for transfer learning 
model training, validation and test were collected from 
the Cleveland Clinic OME cohort (36), a prospective 
orthopaedic surgical cohort within Cleveland Clinic 
health care system. The cohort was operationalized in 
2015 and has collected more than 45,000 episodes of care 
representing over 40,000 patients at 16 Cleveland Clinic 
sites through the end of 2019. Most of the patients had gone 
through MRI at the baseline at different locations across the 
Cleveland Clinic health care system with different scanner 
models and various 2D/3D imaging parameters. To re-train 
our model using transfer learning, 25 sets of knee MRIs  
(15 1.5T and 10 3T) from 9 different locations scanned on 
6 different Siemens scanner models were randomly selected 
from the cohort for patients underwent arthroscopic partial 
meniscectomy (APM). In addition, 5 more APM patients 
knee MRIs collected on a Philips 1.5T Achieva scanner 
were randomly selected for testing purpose. The patients 
had an age of 45 years and older with no prior orthopedic 
knee surgeries. Sagittal 2D fat-saturated proton density 
weighted (PDw) images were common to all the knee 

MRIs and used for the segmentations. Many institutions 
did not obtain 3D images as part of routine knee MRI and 
qualitative grading of cartilage was typically done using 2D 
images. These 30 sagittal PDw MRIs were a heterogeneous 
dataset obtained on a variety of scanner models from 
different vendors, acquired at different field strengths 
with varying coils, fields of view, spatial resolutions, slice 
thicknesses, image contrast, and image quality (see Table 2).  
The positioning of patient knees also varied, with lateral-
medial offset from the isocenter ranging from 0 to  
120 mm. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study 
was approved by our institutional review board with study 
number 19-005. Informed consent was waived.

Two radiologist readers manually segmented the Siemens 
MRIs using an in-house segmentation tool under the 
supervision of an attending musculoskeletal radiologist 
with 13 years of experience. After setting the rule set 
for segmentation during a training session, each sagittal 
MRI image was segmented separately by the readers. The 
cartilage of the four different subregions [femoral condyle 
(FC), patella (PC), medial tibial plateau (MTC), and lateral 
tibial plateau (LTC)] was included, consistent with the 
OAI data cartilage segmentation. Each of the 25 Siemens 
cases contained approximately 23–40 sagittal MRI images 
for model training, validation, and test. Each case required 
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Table 2 Scanner models and parameters resulting in heterogeneous MR image data

Model
Field 
strength 
(Tesla)

Coil FOV (mm) Matrix size
Slice 
thickness 
(mm)

Repetition 
time (ms)

Echo time 
(ms)

Flip 
angle

Number of 
slices

Number of 
scans

Siemens 
Aera

1.5 Siemens Tx/Rx 
15-Channel Knee Coil

140×140 384×384 3 2,790 15 150 27 2

Siemens 
Avanto

1.5 Siemens CP Extremity 140×140 320×320 3 2,660, 3,190 14, 15 180 25, 30 2

Siemens 
Espree

1.5 Body 140×140 384×384 3 2,700 11 180 30 1

Siemens 
Symphony

1.5 Siemens CP Extremity 140×140, 
150×150, 
160×160

256×256, 
320×320

3
4

2,920, 3,000, 
3,140, 3,260, 
3,400, 3,500, 
3,790, 3,920

14, 15, 17 180, 
150

23, 24, 27, 
28, 30, 31

10

Siemens 
Trio

3 Siemens 8-Channel 
Knee Coil

140×140 448×448 2.5 5,970 10 150 40 2

Siemens 
Verio

3 Siemens 8-Channel 
Knee Coil

134×140, 
154×160

308×320 2.5 3,250, 3,550, 
3,620

16 150 35, 38 8

Philips 
Achieva

1.5 Philips SENSE-Knee-8; 
SENSE-Flex-M

140×140, 
150×150, 
186×186

480×480, 
528×528, 
560×560, 
704×704

3 3,312, 3,581, 
3,583, 3,589, 
3,988

15, 30 90 25, 27, 30 5

around 2 hours of work, per radiologist. One radiologist 
(reader 1) segmented all the 25 Siemens cases. The other 
(reader 2) segmented the 5 Siemens test cases. Reader 1 
further segmented the 5 Philips test cases.

Evaluation metrics

The quantitative metrics chosen to evaluate the cartilage 
segmentation performance included the Dice coefficient 
(DC) (37), the 95 percentile Hausdorff distance (HD95) 
(38,39), and the average symmetric surface distance  
(ASSD) (40). The DC focuses on assessing the overlap of 
two sets of segmentations. The Hausdorff distance calculates 
the maximum point distance between the segmentations, 
which is sensitive to outliers. The ASSD looks for averaged 
surface difference between the segmentations. Therefore, 
these three metrics are complementary to each other.

The Dice coefficient is defined as

2 G S
DC

G S
=

+


 

[1]

where G is the ground truth segmentation and S is the 
segmentation to be evaluated. The DC is a widely accepted 
metric for knee tissue segmentation. It ranges from 0 to 1,  

with 0 indicating no overlap in segmentation and  
1 indicating a perfect agreement in segmentation. 
Volumetric DC was calculated to accurately reflect model 
segmentation performance.

The Hausdorff Distance (HD) (41) between G and S is 
defined by

( ) ( ) ( )( ), max , , ,HD G S h G S h S G=
 

[2]

where the direct Hausdorff distance h(G,S) is given by

( ), max min
s Sg G

h G S g s
∈∈

= −
 

[3]

The HD is an informative metric since it is an indicator 
of the largest segmentation error. The HD is, however, 
known to be sensitive to outliers. The HD95 replaces 
the maximum in HD with the 95 percentile to reduce the 
impact of outliers on HD.

The average symmetric surface distance is the average of 
all distances from points on the boundary of S (∂S) to the 
boundary of  (∂G) and from points on ∂G to ∂S:

( )
min min

,
g G s Ss S g G

s g g s
ASSD G S

G S
∈∂ ∈∂∈∂ ∈∂

− + −
=

∂ + ∂

∑ ∑
 

[4]

where ⋅  denotes the Euclidean norm and ⋅  denotes the 
cardinality of a set. The smaller the ASSD, the better the 
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Back propagation Back propagation 

OAI pre-trained

Discriminator Manual 
or auto? 

MRI

MRI + auto segmentation 

MRI + manual segmentation 

Generator 
(U-Net)

OAI pre-trained

Figure 1 Overall flow of the transfer learning model structure. Modified from Figure 1 in reference (21) with permission. OAI, osteoarthritis 
initiative; MRI, magnetic resonance imaging.

segmentation boundaries agree to each other.

Model specifics

The architecture of the deep learning segmentation model 
was based on the cGAN (42), which was one variant of the 
generative adversarial networks (GAN) (43). As detailed 
in (21) (Figure 1), the U-Net (44) was used in place of 
the generative network or the generator in cGAN to 
generate four segmentation masks for the four cartilage 
compartments and a background channel. It contained 
an encoding path and a decoding path. Every step of the 
encoding path consisted of two repeated 3×3 unpadded 
convolutions with stride 2, each followed by batch 
normalization and a rectified linear unit (ReLU), and a 2×2 
max pooling layer with stride 2 for downsampling. Each 
step of the decoding step consisted of a 2×2 upsampling 
convolutional layer and two repeated 3×3 convolutional 
layers followed by batch normalization and a ReLU. 
Each step in the encoding path was connected to the 
corresponding step in the decoding path with a skip 
connection. The number of feature channels was doubled 
in each step of the encoding path, and halved in each 
step of the decoding path. The output block contained a 
1×1 convolutional layer and a softmax activation function 
to map the features to the probability maps for the four 
cartilage compartments channels and a background 
channel. A threshold of 0.5 was applied to each channel to 
obtain the binary segmentation masks of different cartilage 

compartments. 
Details of the network architecture are illustrated in 

Figure 2A. The discriminative network or the discriminator 
followed the architecture of a typical convolutional 
neural network as shown in Figure 2B. It contained  
5 convolutional blocks followed by average pooling, 
1×1 unpadded convolution, and sigmoid activation. 
Each convolutional block consisted of two repeated  
3×3 unpadded convolutional layers, each followed by batch 
normalization and ReLU activation, and a 2×2 max pooling 
layer. The objective loss function was a combination of the 
averaged DC segmentation loss and the feature matching 
loss for the generator, and the binary cross entropy loss for 
the discriminator, as defined in (21).

Model training, validating, and testing

The OAI dataset knee MRIs were randomly split into 70%, 
20%, 10% for training, validation, and test respectively for 
model pre-training. The 25 sets of clinical PDw Siemens 
knee MRIs were randomly divided into 15, 5, 5 for training, 
validation, and test respectively for transfer learning using 
the OAI pretrained model. The clinical PDw MRIs were 
further augmented by counterclockwise 90-degree rotations 
and mirroring for training and validation. All scans and 
segmentation masks were interpolated with bi-cubic and 
nearest neighbor interpolation respectively to 384×384 
to fit the input size of the pretrained OAI model. The 
discriminator and the generator were trained alternatively, 
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with the discriminator trained once for each generator 
training iteration. No layers were frozen during transfer 
learning. The ADAM optimizer was used for all model 
training with default moment values, an initial learning rate 
of 1e-3, and a decay rate of 0.9. The batch size was set to 
10 due to GPU memory limitation. The maximum number 
of iterations was set to 90,000. Early stopping was imposed 
when the learning rate reached 1e-8 to avoid potential 
overfitting. 

Four models were trained and applied to the clinical 
test cases for comparison: (I) an OAI pretrained model; (II) 
a model trained from scratch on the APM dataset; (III) a 
model trained from scratch on the OAI and APM combined 
dataset; and (IV) a TL model transferred from the OAI 
pretrained model to the APM dataset. The dependence 
of the TL model performance on the training set size was 
further investigated by comparing the model performance 
trained on different number of training sets (training sizes 
=1, 5, 10 and 15 respectively) and tested on the 5 Siemens 
test cases. The TL model performance on scanners from a 
different vendor (Philips 1.5T Achieva) was also tested. The 
training, validation, and test of the models were realized 

with the Python deep learning frameworks Keras (45) and 
Tensorflow (46) on a NVIDIA Titan Xp GPU. 

Inter reader variation

Inter reader variation was assessed on 5 Siemens test cases 
from one random draw that were not included in the 
model training and validation. The model trained with 
segmentation from reader 1 as ground truth was evaluated 
on the test cases and compared with both readers using DC, 
HD95, and ASSD. The agreement between the manual 
segmentation of the two readers was also evaluated. 

Cross-validation

Due to the small size of the test set, the transfer learning 
model for the clinical knee MRIs was further tested for 
robustness using cross-validation. The 25 sets of Siemens 
MRIs were randomly partitioned into 5 groups with each 
group containing 5 sets of MRIs. A 5-fold cross validation 
was performed on the 5 groups, each time using 4 groups 
for training and validation and one for testing. In addition, 

Figure 2 Detailed model architecture of the generator and discriminator of the transfer learning model. (A) A U-Net architecture as the 
generator. (B) A convolutional neural network architecture as the discriminator.
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a 4-fold cross-validation was applied to the 4 groups of each 
training and validation step, using 3 for training and one 
for validation. The models with best DC on the validation 
sets through the 4-fold cross-validations were chosen. The 
22 test cases from the 5-fold cross validation, excluding the 
cases with flow artifacts or failed fat saturation, were used 
to further examine the TL model performance difference 
between the 1.5T and 3T scans. 

Results

The time for one instance of transfer learning model 
training on the APM dataset was approximately 26 h on the 
NVIDIA Titan Xp GPU. Once trained, however, the mean 
time cost per case for automated cartilage segmentation on 
the test cases was under 2 seconds. 

Applying the trained transfer learning model to the 
holdout test sets yielded an overall averaged DC of 0.819 
(±0.039), an averaged HD95 of 1.463 (±0.827) mm, and an 
averaged ASSD of 0.350 (±0.114) mm. For comparison, an 
averaged DC of 0.519 (±0.088), an averaged HD95 of 6.227 
(±2.751) mm, and an averaged ASSD of 1.224 (±0.465) mm 
were obtained on the holdout test set when applying the 
pretrained OAI model without transfer learning. The model 
trained from scratch using the APM dataset yielded an 
averaged DC of 0.018 (±0.005), an averaged HD95 of 61.15 
(±5.944) mm, an averaged ASSD of 30.21 (±2.212) mm.  
The model trained from scratch on the mixed dataset with 
OAI and APM datasets combined produced an averaged DC 
of 0.741 (±0.083), an averaged HD95 of 2.361 (±0.988) mm, 
an averaged ASSD of 0.447 (±0.151) mm. Moreover, a 
comparison between the segmentation of the test sets from 
two readers showed an averaged DC of 0.782 (±0.046), an 
averaged HD95 of 1.766 (±0.321) mm, and an averaged 
ASSD of 0.505 (±0.033) mm. A more detailed breakdown 
comparison, including a comparison between 1.5T and 3T 
scans, for the four sub-compartments was shown in Table 1. 
The TL model performance on test images from a different 
vendor (Philips) was also shown in Table 1.

Figure 3 showed a sample comparison between the 
automatic and manual cartilage segmentation on lateral, 
central, and medial sides of sagittal fat-saturated PDw MR 
image slices collected on a Siemens 3T Verio scanner with 
FOV of 134×140 mm2, matrix size of 308×320, and the 
number of slices being 38.

The dependence of the TL model performance on 
the number of training cases was plotted in Figure 4. 
Specifically, Figure 4A-4C showed the dependency plots of 

the TL model performance on the training sizes 1, 5, 10 and 
15 in terms of DC, HD95, and ASSD respectively. For each 
evaluation metric, both the overall model performance and 
the compartment-wise model performance were plotted.

The results of the TL model performance on the 
respective holdout test sets of the 5-fold cross validation 
were shown in Figure 5. The overall mean (± SD) DC, 
HD95 and ASSD for all 25 test cases of the 5-fold cross 
validation were 0.801 (±0.051), 1.746 (±0.944) mm, and 
0.364 (±0.149) mm, respectively. Compartment-wise violin 
plots for the TL model performance in DC, HD95, and 
ASSD on all 25 test cases of the 5-folder cross validation 
were depicted in Figure 6 respectively.

Discussion

In this study, we observed that the model trained on the 
homogeneous OAI dataset did not perform well on the 
heterogeneous clinical dataset (overall DC of 0.519). 
However, when the OAI model was used as a pre-trained 
model for transfer learning to the clinical dataset, the 
TL model showed a markedly improved performance, 
even using only a small training dataset. Moreover, the 
transfer learning model performance was similar to that of 
the 2 radiologists (overall DC of 0.819). Specifically, the 
trained TL model achieved overall a Dice coefficient of 
0.819, an HD95 of 1.463 mm, and an ASSD of 0.350 mm  
on a randomly drawn and holdout clinical test dataset 
with various MR scanner models, field strengths, image 
resolution, contrast, and quality. It clearly outperformed its 
counterpart pre-trained on the homogenous OAI dataset 
collected in a research setting in all three evaluation metrics 
for all four sub-compartments as shown in Table 1. The 
TL model trained with reader 1’s segmentation was also 
tested for inter-reader agreement on the holdout test set 
by comparing to reader 2’s segmentation, which yielded a 
similar agreement as that between reader 1 and reader 2. 

Compartment-wise, the TL model performance on PC 
was the best considering all the three metrics as shown in 
Table 1; the performance on MTC was the worst. As shown 
in Figure 7A, in the central part of the knee joint close to 
the tibial eminence, the MTC was not segmented by the 
TL model but was segmented by reader 1 according to 
experience in this case. There was however inconsistency in 
manual segmentation for this difficult area, which may have 
caused confusion to the model. Focusing on the weight 
bearing area only may help remediate this problem and 
improve the model performance without impacting clinical 
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Figure 4 TL model performance on the number of training cases. (A) TL model performance in DC; (B) TL model performance in HD95; 
(C) TL model performance in ASSD. DC, Dice coefficient; HD95, 95 percentile Hausdorff distance; ASSD, average symmetric surface 
distance; TL, transfer learning; FC, femoral condyle; LTC, lateral tibial plateau; MTC, medial tibial plateau; PC, patella.

Original OAI model TL model Reader 1

Figure 3 Three sagittal slices from different locations are shown in rows. The first column contains the original FSE fat-suppressed proton 
density weighted images. The second column presents the segmentation performance of the pretrained OAI model. The third column shows 
the automatic segmentation from the proposed model. The last column shows the manual segmentation from a trained radiologist. The red, 
green, magenta, and yellow contours represent femoral, lateral tibial, medial tibial, and patellar cartilage segmentations respectively. TL, 
transfer learning; OAI, osteoarthritis initiative; FSE, fast spin echo.



Yang et al. Automated cartilage segmentation of clinical knee MRI2628

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(5):2620-2633 | https://dx.doi.org/10.21037/qims-21-459

0.9 

0.8 

0.7 

0.6 

0.5

D
C

FC LTC
Compartment

MTC PC

35

30

25

20

15

10

5

0

H
D

95

FC LTC
Compartment

MTC PC

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 
A

S
S

D
FC LTC

Compartment
MTC PC

A B C

Figure 5 Bar plots of the TL model performance on the holdout test sets for the 5-fold cross validation with DC, HD95, and ASSD as 
metrics. DC, Dice coefficient; HD95, 95 percentile Hausdorff distance; ASSD, average symmetric surface distance; TL, transfer learning. 

Figure 6 Compartment-wise violin plots for the TL model performance on all 25 test sets of the 5-fold cross validation. The blue color 
represents femoral cartilage; orange represents lateral tibial cartilage; green represents medial tibial cartilage; red patellar cartilage. (A) TL 
model performance in DC; (B) TL model performance in HD95; (C) TL model performance in ASSD. DC, Dice coefficient; HD95, 95 
percentile Hausdorff distance; ASSD, average symmetric surface distance; TL, transfer learning.

diagnosis.
We also examined the model performance when trained 

from scratch using the APM dataset and the OAI and APM 
combined dataset. As shown in Table 1, the performance of 
the APM model on all compartments was worse compared 
to the TL model. In particular, it failed on PC, which led 
to the worst overall performance among all the models. 
This could be due to the relatively small number of slices 
available containing PC to train the model. The model 
performance on the rest compartments, however, was better 
than directly applying the OAI model. The mixed model 
performed better than the OAI model and improved the 
PC results of the APM model, but still worse than the TL 
model.

Furthermore, there was a clear trend of the TL model 
performance with regard to the training size as shown 
in Figure 4. Specifically, the overall DC increased as the 

number of training cases increased (Figure 4A); the overall 
HD95 and ASSD decreased as the number of training cases 
increased (Figure 4B,4C). Moreover, the curves flattened 
when using 15 training cases. Compartment-wisely, FC and 
PC showed similar trend. LTC and MTC, however, may 
benefit from more training data.

The TL model performance difference between 1.5T 
and 3T scans was also examined as shown in Table 1. The 
overall DC of the TL model on 3T scans was significantly 
higher than that on 1.5T scans. The differences in the 
overall distance metrics, however, were not significant. 
Similar story was observed among different compartments. 
One of the potential reasons for the increased DC on 3T 
scans could be the increased signal to noise ratio compared 
to 1.5T scans. Studies with larger dataset are needed to 
better understand the model performance difference 
between 1.5T and 3T scans. 
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In addition, the TL model performance on MR scans 
from a different vendor was also tested. Specifically, 
the TL model trained on the APM Siemens scans were 
further tested on 5 APM patient scans collected from a 
Philips 1.5T Achieva scanner with Philips coils and various 
acquisition parameters (Table 2). As shown in Table 1, the 
TL model showed good overall as well as compartment-
wise performance in all three metrics on the Philips test 
cases. The performance was slightly worse than that on 
the Siemens test cases, which was expected. Including 
scans from a different vendor in the training dataset should 

improve the TL model performance on the test cases from 
the vendor.

To test the robustness of the TL model on the small 
sized test data set, the best performed TL model was chosen 
for each round of the 5-fold cross-validation based on 
4-fold cross validations among the training and validation 
sets, which is a standard practice for deep learning model 
training. Figure 5 showed the robustness of the TL models 
across the 5 rounds of cross validation when comparing the 
automatic segmentations with the manual segmentation 
references. Specifically, the DCs had minimal variation 

Figure 7 Examples of poor segmentation (indicated by the arrows) from the TL models compared to the reference segmentation from 
reader 1. (A) The TL model missing medial tibial cartilage segmentation. (B) The TL model missing patellar cartilage segmentation. (C) 
False positive lateral tibial cartilage segmentation by the TL model. The red, green, magenta, and yellow contours represent femoral, lateral 
tibial, medial tibial, and patellar cartilage segmentations respectively. TL, transfer learning.

Original TL model Reader 1
A

B

C
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while the HD95s and ASSDs had some fluctuations. This 
was expected since the DC served as a general measure for 
checking segmentation overlaps, while the HD95 and the 
ASSD looked for segmentation boundary discrepancies. 
The HD95 captured the worst-case boundary discrepancy 
between the segmentations, and the ASSD evaluated 
the averaged boundary discrepancy. That being said, 
the fluctuations in HD95 and ASSD are comparable 
to the literature reported values for articular cartilage 
segmentation (19,47).

The compartment-wise robustness of the model on 
all 25 test cases was shown in violin plots (Figure 6) 
with DC, HD95, and ASSD as the metric respectively. 
The distribution of the DCs shown in Figure 6A for all  
4 compartments was reasonably good except for PC, where 
there was a clear failure with a DC of 0.444. The cause for 
this failure was that the fat-saturation in the corresponding 
case failed during the clinical scan as shown in Figure 7B, 
which made it difficult for the model to distinguish between 
cartilage and other fat tissues. Including more failed fat-
saturation cases in the model may help remediate the 
problem. For HD95 shown in Figure 6B, a clear outlier 
of HD95 of 36.283 mm was calculated for LTC. A close 
look at the case as shown in Figure 7C suggested that this 
was due to the heavy flow artifact collected during the 
clinical scan. The flow artifact was also one of the major 
contributors to the spikes in ASSD for LTC and PC shown 
in Figure 6C. Training the model on more images with non-
ideal fat saturation or flow artifacts may help improve the 
model performance to clinical images with sub-optimal 
image quality.

One of the major potential problems of applying 
deep learning models to small training data set is model 
overfitting. Transfer learning has been recognized as 
a solution to this problem. In this study, we have in 
addition employed other remedies including a variable 
learning rate for early stopping, data augmentation with 
90-degree rotations and mirroring, cross validation, and 1  
regularization. We observed an averaged DC of 0.875 on 
the 5 validation sets, compared to the averaged DC of 0.819 
on the test sets, which indicated that a slight overfitting 
problem still existed. Inclusion of dropout layers in the TL 
model and usage of more sophisticated augmentation such 
as finer angle rotation, translation, and deformation may 
help to further reduce the overfitting problem and improve 
the model performance (48,49).

This study has several limitations. First, although the 
robustness of our TL model has been validated through 

cross validation, the small size of the test set is still one 
limitation. Evaluation on larger sized test dataset will be 
conducted before its implementation into clinical workflow. 
Second, we did not compare our current TL model with 
other model structures on this clinical dataset. Some initial 
comparisons have been made in the literature (21). We 
will extend this comparison with existing models (16,17) 
in future studies. We will also explore the possibility to 
build the generator using U-Net with VGG or ResNet  
backbones (50). In addition, only 2D networks were used 
in our current cGAN model. Multi-planer or fully 3D 
networks, while requiring more CPU/GPU computing 
resources, could incorporate more 3D information to 
improve segmentation accuracy and efficiency over 2D 
models (51-53). Third, although results in the DC, HD95, 
and ASSD were reported in this study, the loss function 
was solely based on the DC. Model performance of 
incorporating different metrics or a hybrid of them into 
the loss function needs to be investigated in the future. 
Fourth, single contrast PDw images were used in this 
study. Training and testing the TL model on multi-contrast 
images need to be further investigated. Another limitation 
is that all training images were collected with scanners from 
one vendor, although with different models, and all within 
the Cleveland Clinic system. In the future, we will develop 
and test models using multi-site and multi-vendor data.

Conclusions

In this study, we observed that the model trained on the 
publicly available homogeneous OAI dataset did not 
perform well on the heterogeneous clinical dataset. As a 
remedy, we created a transfer learning model using a small 
training data set. This TL model was able to automatically 
segment knee cartilage, with performance comparable to 
human, for a wide range of knee MR images chosen to 
reflect the realities of clinical practice, i.e., different field 
strengths, scanner models, coils, imaging parameters, and 
image quality. In addition, we showed the robustness of 
the proposed model through cross validation. We found 
it feasible to perform fully automated segmentation of 
clinical knee MR images, which would enable the clinical 
application of quantitative MR imaging technique and other 
prediction models for improved patient treatment planning.
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