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Background: Digital pathology has aroused widespread interest in modern pathology. The key to 
digitalization is to scan the whole slide image (WSI) at high magnification. The file size of each WSI at 40 
times magnification (40×) may range from 1 gigabyte (GB) to 5 GB depending on the size of the specimen, 
which leads to huge storage capacity, very slow scanning and network exchange, seriously increasing time 
and storage costs for digital pathology.
Methods: We design a strategy to scan slides with low resolution (LR) (5×), and a superresolution (SR) 
method is proposed to restore the image details during diagnosis. The method is based on a multiscale 
generative adversarial network, which can sequentially generate three high-resolution (HR) images: 10×, 
20×, and 40×. A dataset consisting of 100,000 pathological images from 10 types of human body systems is 
used for training and testing. The differences between the generated images and the real images have been 
extensively evaluated using quantitative evaluation, visual inspection, medical scoring, and diagnosis.
Results: The file size of each 5× WSI is approximately 15 Megabytes. The peak-signal-to-noise ratios 
(PSNRs) of 10× to 40× generated images are 24.167±3.734 dB, 22.272±4.272 dB, and 20.436±3.845 dB, 
and the structural similarity (SSIM) index values are 0.845±0.089, 0.680±0.150, and 0.559±0.179, which are 
better than those of other SR networks and conventional digital zoom methods. Visual inspections show that 
the generated images have details similar to the real images. Visual scoring average with 0.95 confidence 
interval from three pathologists are 3.630±1.024, 3.700±1.126, and 3.740±1.095, respectively, and the P value 
of analysis of variance is 0.367, indicating the pathologists confirm that generated images include sufficient 
information for diagnosis. The average value of the Kappa test of the diagnoses of paired generated and real 
images is 0.990, meaning the diagnosis of generated images is highly consistent with that of the real images.
Conclusions: The proposed method can generate high-quality 10×, 20×, 40× images from 5× images, 
which can effectively reduce the time and storage costs of digitalization up to 1/64 of the previous costs, 
which shows the potential for clinical applications and is expected to be an alternative digitalization method 
after large-scale evaluation.
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Introduction

In pathological examinations, technicians make glass slides 
of human tissue, such as routine hematoxylin and eosin 
(HE) (1), frozen sections (2,3), and special staining (4). 
The pathologist magnifies the slides with a microscope to 
diagnose the disease. In recent years, the digitalization of 
pathological slides has begun to be promoted because of 
convenient storage, network transmission, and effective 
computer-aided diagnosis (5-7).

A high-resolution (HR) scanner with 20 t imes 
magnification (20×) or even a 40× lens is used to scan the 
glass slide, and the whole slide image (WSI) is obtained (8).  
Because of multiple magnifications of image, one WSI 
contains up to 50,000×50,000 pixels (9), and the file size 
per 40× WSI may range from 1 gigabyte (GB) to 5 GB, 
depending on the size of the specimen in the slide (10), 
which significantly increases the storage costs and takes a 
few minutes for network exchange (11). The development 
of digital pathology requires the preservation of a large 
number of WSIs for a long time. Taking China as an 
example, there are as many as 50 million new pathological 
examinations every year, which requires 50,000,000 to 
250,000,000 GB storage capacity. Moreover, the HR 
scanning of each WSI needs a few minutes or more (12), so 
the digitization of the WSIs requires more than 200 years of 
scanning time. In addition, because the depth of field of the 
HR lens is very small, the tissue on the slide must be very 
flat or parts of the WSI may be blurred (13). Therefore, the 
HR digitalization of pathological glass slides is inefficient 
and costly.

We assume that low-resolution (LR) scanning, such as 5× 
magnification, can provide an alternative strategy. Compared 
with 40× scanning, the speed of 5× scanning increases by 
64 times, and the size of WSI reduces to 1/64. Second, the 
depth of field of the LR lens is larger, which could reduce 
requirements about the flatness of human tissues. However, 
the 5× images have lost many details for diagnosis, so a 
method must be proposed to restore the missing details and 
generate a series of HR images from 5× images.

The conventional methods of obtaining HR images from 
LR images are algorithms such as bilinear interpolation 
and bicubic interpolation (14). However, it is difficult for 

them to recover the lost details. Recently, to obtain high-
quality images from LR images, superresolution (SR) 
methods based on deep learning have been widely studied 
in natural images. There are many excellent SR algorithms, 
such as deep recursive residual networks (DRRNs) (15), SR 
generative adversarial networks (SRGANs) (16), progressive 
generative adversarial networks (P-GANs) (17), and 
multiscale information cross-fusion networks (MSICFs) (18).  
SR methods are also used in medical images such as 
magnetic resonance (19,20), computer tomography (21), and 
ultrasound images (22). For example, the SR convolutional 
neural network (SRCNN) is used for computer tomography 
images (23), and the pathological SR model is used for 
cytopathological images (24).

Although SR methods have been successfully applied 
in many domains, pathological images are different from 
natural and other medical images. There are a large number 
of cells and rich microtissue structures in them, but general 
SR methods pay attention to the larger image texture and 
structure. Moreover, the maximum magnification of almost 
all SR methods is 4 times (25), but the magnification of the 
pathological image is up to 8 times, e.g., from 5× to 40×. 
For the convenience of diagnosis, a series of HR images 
should be continuously obtained from 5× images; however, 
the magnification of almost all SR methods is fixed. We 
propose a multiscale SR method (MSR), which continuously 
generates 10×, 20×, and 40× SR images from 5× images. 
The highlights of the proposed method are as follows:

The size of the 5× scanned image is small enough, 
approximately 15 Megabytes (MB), and only one-64th of 
the image file is scanned by 40×. The presented method 
can generate 10×, 20×, and 40× SR images simultaneously. 
The optimization is applied on three resolutions, and the 
generated images are of realistic and rich details, better than 
the existing methods.

The differences between generated and real images are 
evaluated based on the pathological diagnosis of 10 types of 
human body systems, which shows the potential for clinical 
applications. Therefore, MSR is promising as a low-cost 
method for pathological digitalization.

We present the following article in accordance with the 
MDAR checklist (available at https://qims.amegroups.com/
article/view/10.21037/qims-21-749/rc). 
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Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Institutional Review Board of Xiangya 
Hospital, Central South University (No. 2019030596), and 
individual consent for this retrospective analysis was waived.

Dataset collection

Pathological glass slides were obtained from Xiang-ya 
Hospital of Central South University, which is one of the 
most famous hospitals in China. The technicians randomly 
selected 200 whole slides, including 10 types of human 
body systems, from the pathological archive of the hospital  
(Table S1). Slides from 10 types of human body systems 
were selected to ensure the generalization of the dataset 
because the pathological structures of different systems 
are different. The number of whole slides of each human 
body system was set to 20, and the WSIs of some typical 
diseases were randomly selected by technicians using the 
pathological archive search tool. The slides were then 
scanned using a KF-PRO-005 digital pathology scanner 
(KFBIO company, Ningbo City, China) to obtain WSIs 
at 40× magnification. After WSIs were obtained, the 

technicians no longer participated in the follow-up studies.

Dataset review

Two pathologists with “associate chief physician” titles 
and at least 10 years in the clinic reviewed the image 
quality of WSIs to ensure that the WSIs were suitable for 
pathological diagnosis. If the image quality of WSI was too 
poor to be suitable for diagnosis, it was excluded. They then 
independently reviewed the pathological tissue structures 
of WSIs for the diagnosis of diseases. If a consensus was 
reached, the WSI was included. No WSI was excluded 
due to image quality or inconsistent diagnosis. Finally, 
they discussed selecting two nonoverlapping regions of 
interest (ROIs) from each WSI for subsequent medical 
testing. The two ROIs were considered to include sufficient 
information on disease diagnosis. After reviewing WSIs, the 
two pathologists would no longer participate in follow-up 
studies.

Dataset division and preprocessing

The WSIs were randomly divided into training, testing, 
and extended medical testing sets, as detailed in Figure 1. 
The training set consists of 80 WSIs, which come from 10 

Figure 1 Datasets. A total of 40× WSIs of 200 (20 of each human body system) were randomly selected from the pathological archive. The 
100 WSIs are used for the training and testing sets. Another 100 WSIs are used for the medical testing set. The images were made using the 
FFPE method and stained with HE. WSI, whole slide image; LR, low-resolution; HR, high-resolution; FFPE, formalin-fixed and paraffin-
embedded; HE, hematoxylin-eosin; ROI, regions of interest.
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types of human body systems, and each system has 8 WSIs. 
The testing and medical testing sets consist of 20 and  
100 WSIs, respectively. Because the size of one WSI is too 
large to be inputted into the convolutional neural network, 
the 1,000 nonoverlapping images (tiles or patches) from 
every WSI in the training and testing sets are randomly 
taken out, and the size of every image is 1,024×1,024 pixels 
(40×). There are a total of 100,000 images in the training 
and testing sets. Among the 100 WSIs of the medical testing 
set, two ROIs of each WSI, selected by the two pathologists 
mentioned above, are used for medical evaluation.

Because the pathological scanner has only two lenses, 
20× and 40×, it is impossible to directly obtain LR images. 
To obtain LR images from the 40× images, the bicubic 
interpolation algorithm is used, where 3 continuous 
downsamples from each 40× image are used to obtain LR 
images of 20×, 10×, and 5× (26,27), which are 512×512, 
256×256, and 128×128 pixels, respectively. Therefore, the 
5×–20× images in the training and testing sets are obtained, 
which are treated as the real LR images. Meanwhile, the 
size of each pixel in the 40× image is 0.25 micrometers 
(KFBIO scanner by KFBIO company, Ningbo City, China), 
while the pixel sizes of 20×, 10×, and 5× images are 0.5, 1, 

and 2 mm, respectively.
The minimum dataset can be found at https://doi.

org/10.6084/m9.figshare.15173634. The whole dataset 
can be obtained by contacting the author for research but 
cannot be used for commercial purposes.

Network architecture

The proposed network comprises three superresolution 
blocks (SBRs), and each SRB can magnify the input image by 
2 times. Therefore, by combining three SRBs, the network 
can magnify the input image by 2 times, 4 times, and 8 times. 
The 5× LR image is inputted into the network, and the 10×, 
20×, and 40× SR images are continuously generated by the 
three SRBs, as shown in Figure 2. The generated images are 
compared with real images at three resolutions, and the pixel 
differences (generator loss), feature differences (perceptual 
loss), and image differences (discriminator loss) are weighted 
together to guide the training of the network.

The structures of these SRBs are the same, as shown in 
Figure 3, where the input LR image is first convolved by 64 
kernels with a size of 3×3, and the 10 repeated basic blocks 
are concatenated to predict the details in the SR image. The 

Figure 2 The flowchart of network pipeline. The LR 5× images in the training set are input into the network, where the three SRBs are 
connected together, and each block generates one SR image. The three generated images are compared with real HR images, and the 
loss is calculated for training the network. The images were made using the FFPE method and stained with HE. LR, low-resolution; SR, 
superresolution; PL, perceptual loss; GL, generator loss; DL, discriminator loss; HR, high-resolution; SRB, superresolution block; FFPE, 
formalin-fixed and paraffin-embedded; HE, hematoxylin-eosin.
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predicted details are mixed by a convolutional layer and 
then added to the input LR image. The sum of predicted 
and original details is upsampled, which is performed by a 
subpixel layer, where four convolution kernels are learned 
to increase the number of channels by four times, and 
the channels are reshaped to three for two upsamplings. 
Meanwhile, every basic block includes three dense blocks, 
where five dense convolutional layers are concatenated to 
find multiscale features from the LR image to reconstruct 
the lost details.

The loss functions, including the generator, perceptual, 
and discriminator losses, are based on three levels: pixel, 
feature, and whole image. The generator loss compares the 
differences of the pixels one by one of the generated images 
and real images and is defined as the mean absolute error.
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where Xj is the magnification and m is the pixel number in 
the image. The SR is the generated image, and HR is the 
real image.

The high-level representations of generated SR images 
and real HR images are extracted, where a network of 19 
layers from the Visual Geometry Group (VGG19) (28) is 
selected as the extractor because of its excellent performance 
on representation learning. The middle-level (layer 5) and 
high-level (layer 9) representations are compared here for 
the perceptual loss of the generated image and real image, 
defined as Eq. [2].

Figure 3 The structure of the superresolution block, where the convolutional layer is denoted as conv, the kernel size, and the number 
of channels/stride size, LReLU is an activation function, and the upsampling layer is used for pixel shuffling to enlarge the image. The 
0.2 is the residual scaling parameter. The images were made using the FFPE method and stained with HE. LR, low-resolution; SR, 
superresolution; FFPE, formalin-fixed and paraffin-embedded; HE, hematoxylin-eosin.
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where Xj=10×,20×,40×, the MSE is the mean square error 
function, and ϕ is the extractor of VGG19.

To make better generated images that have a high 
degree of authenticity, the discriminator network is used 
to identify the true or false values of the real image and the 
generated image. Because the discriminator network will be 
trained with the generator, we only use one discriminator to 
compare the authenticity of the images with the maximum 
40× magnification to reduce the training cost. Generally, the 
greater the magnification is, the more likely the generated 
image is to be distorted. Therefore, if the quality of the 
40× image is good, 20× and 10× should also be good. The 
discriminator loss is defined as Eq. [3].

 ( )( ) ( )( )40 40 40log log 1X X XDL E D HR E D SR   = − − −    [3]

where D is the discriminator network. Because there are 

so many details in 40× pathological images, a very deep 
discriminator network is used, where there are seven 
convolutional modules and two fully connected layers. Every 
convolutional module includes some convolution layers with 
64–512 convolutional kernels of 3×3 size, and the stride 
size is 1–2. The sigmoid function is connected to the end, 
outputting True [1] and False [0], as shown in Figure 4.

The two or three losses at each magnification are added 
and then weighted together for the total loss function.

 
j j

j

X X
X
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where  
jXLoss  is the sum of generator, perceptual, and 

discriminator losses at magnification Xj and  
jXw  is the 

weighted value.

Network training

The proposed network is  implemented using the 
TensorFlow framework (version 1.15.0) (29) and trained on 
a server consisting of two graphics processing units (GPUs) 

Figure 4 The network framework of the discriminator. The images were made using the FFPE method and stained with HE. SR, 
superresolution; HR, high-resolution; Conv, convolutional layer; BN, batch normalization layer; FCL, fully connected layer;  FFPE, 
formalin-fixed and paraffin-embedded; HE, hematoxylin-eosin.
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of Tesla V100 32 GB (NVIDIA company, Santa Clara, 
California, USA). The pretrained model of VGG19 is 
downloaded from the model zoo of TensorFlow and remains 
fixed during training. The generator and discriminator 
are initialized randomly and trained alternately. The 
source code can be found: http://github.com/CSU-BME/
pathology_MSR.

Ten percent  of  the  images  in  the  tra ining set  
(8 WSIs, 8,000 images) are used as the validation set for 
hyperparameter selection. Different parameter values 
were tried, such as the optimizer (SGD, Adadelta, Adam), 
the initial learning rate (0.0005, 0.0004, 0.0001), and the 
batch size [2, 4, 6]. The optimal parameters with the best 
performance on the validation set were selected. The 
hyperparameters are listed in Table 1. The Adam optimizer 
is selected because of its good performance. The initial 
learning rate is 0.0004 and decays exponentially, where 
the rate is reduced by 0.5 times every 30 epochs. The 
total number of training epochs was 120, and 500 steps 
were performed every epoch. The batch size is fixed to 2, 
considering the GPU memory, patch size, and training 
costs. The 50 smaller patches with a size of 64×64 pixels 
are randomly selected from the input LR 128×128 image, 
and the small patches whose standard deviations are 
larger than the flatness value are kept and then input to 
the proposed network for training. The flatness is the 
parameter controlling the complexity of the input patches, 

and only the patches with complex details should be used as 
the training data. The flatness increases 0.01 from 0 every 
5 epochs, but not more than 0.15. The weights of the three 
losses are determined after hyperparameter selection, where 
the weight of the generator loss is 0.06, perceptual loss 
0.083, and discriminator loss 0.04.

Experiment settings for quantitative comparison

The quantitative experiments are described here, and the 
10×, 20×, and 40× SR images are generated from 5× images 
in the testing set by the proposed MSR method. While 
the 5× image is converted to 10×–40× images, the numbers 
of pixels are the same as the real 10×–40× images. Two 
quantitative indices are computed to evaluate the generation 
quality. The first is peak-signal-to-noise-ratios (PSNR), 
which is defined as the pixel-by-pixel similarity between two 
images (30). Its definition is as follows.

 2

10
25510logPSNR
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 
=  

 
	 [5]

The mean square error (MSE) represents the difference 
in pixel-by-pixel value between two images, which is defined 
as Eq. 6.
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where SR and Real indicate the generated image and real 
image, respectively. (i, j) are the coordinates of one pixel on 
the image, and M and N represent the width and height, 
in pixels, of the image, respectively. The image intensity 
ranges from 0 to 255, and the unit of PSNR is decibels (dB). 
From Eqs. [5,6], larger values of PSNR would indicate 
more similarity or less difference.

The second is the structural similarity (SSIM) index, 
which is defined as the similarity in human vision between 
two images (31). The definition is shown as follows:
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where x,y are two images; μx and μy represent the mean 
brightness of the images x,y; and σx, σy, and σxy indicate the 
two variances and covariance, respectively. C1and C2 are the 
two known constants. Larger values of SSIM would indicate 
more similarity or less difference between the two images x,y.

To compare our model and other recent SR models, such 
as deep back-projection networks (DBPN) (32), efficient 

Table 1 Hyperparameters used in our model (Optimizer: Adam)

Hyperparameters Value

Epochs 120

Steps per epoch 500

Batch size 2

Learning rate 0.0004

Decay factor 0.5

Decay frequency 30

Min flatness 0

Max flatness 0.15

Increase factor 0.01

Increase frequency 5

Generator loss weight 0.06

Perceptual loss weight 0.083

Discriminator loss weight 0.04

http://github.com/CSU-BME/pathology_MSR
http://github.com/CSU-BME/pathology_MSR
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sub-pixel convolutional neural network (ESPCN) (33), 
enhanced deep superresolution network (EDSR) (34), 
multiscale deep superresolution system (MDSR) (34), and 
residual dense network (RDN) (34), the existing models 
are retrained and retested in our training and testing sets. 
Because these models support only a fixed magnification, 
three versions with 2 times, 4 times, and 8 times 
magnification of each model are trained and tested, for 
example, DBPN-10×, DBPN-20×, and DBPN-40×, which, 
respectively realize the generation of 10×, 20×, and 40× 
images from 5× images in the testing set. Similarly, after the 
PSNR and SSIM of the 10×, 20×, and 40× images generated 
by each model and the real 10×, 20×, and 40× images in 
the testing set are computed, all PSNRs and SSIMs are 
averaged at different resolutions. The codes of these models 
are downloaded from the links given in their published 
papers and then retrained at 2 times, 4 times, and 8 times 
magnification according to the provided hyperparameters 
in the codes. The RDN code produced some errors when 
magnifying the 5× image by 8 times (34), and the author 
of the RDN model did not give a solution, so the PSNR 
and SSIM of RDN at 40× images cannot be provided. Two 
conventional digital zoom methods, BILINEAR (bilinear 
interpolation) and BICUBIC (bicubic interpolation), are 
also compared with our model.

Experiment setting for medical diagnosis

Another 100 40× WSIs in the medical testing set were used 
to evaluate the pathological diagnosis by pathologists, as 
shown in Figure 5. Two nonoverlapping ROIs of every WSI 
were defined as HR ROI-1 and ROI-2, which were selected 
by the two pathologists mentioned in the dataset review 
subsection. The two ROIs from the same WSI are paired, 
and a total of 100 paired ROIs are obtained. We invited six 
highly experienced pathologists (A-F) who had all been in 
pathological clinics for at least 10 years to participate in this 
medical evaluation. None of them had access to the images 
before this experiment.

The reason why a preselected ROI is diagnosed is to 
exclude some influencing factors. When we compare the 
diagnostic difference between real images and generated 
images, there are three factors to consider: the difficulty 
of the disease, the pathologist’s diagnostic ability, and the 
difference in images. Among them, the first two differences 
must be ruled out first, and then the difference of diagnoses 
can show the difference between the two images. Therefore, 
we selected a pair of ROIs related to the disease from a 
WSI. Because these two ROIs come from the same patient, 
the same doctor diagnoses the same patient twice, so the 
two factors of the patient and the doctor’s ability will not 
affect the results. Therefore, the significant difference 

Figure 5 The flowchart of medical evaluation. Two ROIs from every WSI are selected, while ROI-1 is downsampled and then generated by 
our MSR method. The comparison of SR ROI-1 and HR ROI-1 by pathologist for visual scoring and HR ROI-2 and SR ROI-1 were paired 
for consistent diagnosis experiments. The images were made using the FFPE method and stained with HE. WSI, whole slide image; HR, 
high-resolution; ROI, regions of interest; LR, low-resolution; SR, superresolution; MSR, multiscale SR method; FFPE, formalin-fixed and 
paraffin-embedded; HE, hematoxylin-eosin.
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based on the ROI is only related to the image quality. In 
contrast, if the doctor is asked to see two different WSIs, 
one is real and the other is generated, then the differences 
of the patient and the doctor’s ability are included. In future 
diagnosis based on the newly scanned 5× images, we will 
start with 5× WSI and generate 10×, 20×, and 40× WSI by 
the presented SR model. The HR ROI-1 is downsampled 
to 5× LR and then input into the presented method (MSR) 
to generate the SR ROI-1. Because each pair of HR ROI-
1 and SR ROI-1 comes from the same WSI of the same 
patient, pathologists should make the same diagnosis, 
regardless of the diagnostic ability of pathologists.

Results

The comparison of quantitative comparison

The 10×–40× SR images are generated from 20,000 5× 
images in the testing set and compared with real 10-40× HR 
images. The PSNR and SSIM distributions of our model, 
five SR models (DBPN, ESPCN, EDSR, MDSR, RND), 
and two conventional digital zoom methods (BILINEAR, 
BICUBIC) at different resolutions are shown in Figure 6. 
Additionally, the PSNR and SSIM of each body system 
are listed in Table S2. The average PSNR with 0.95 
confidence interval of our method on 10×, 20×, and 40× are 
24.167±3.734 dB, 22.272±4.272 dB, and 20.436±3.845 dB, 
respectively, and the average with 0.95 confidence interval 
are 0.845±0.089, 0.680±0.150, and 0.559±0.179.

From Figure 6, it can be seen that the SSIM and PSNR 
on the 10× images of all methods are the highest, which 
means that the images generated by 2 times magnification 
are the closest to the real images, and the image quality is the 
highest. Because 40× images are downsampled to 5× images 
and most details are lost, the quality of the generated 40× 
images is relatively poor. In contrast, our method has a higher 
mean PSNR and SSIM than the other methods at 10×, 20×, 
and 40× generated images, which shows that our method has 
a better restoration of image details (P value <0.05).

The comparison of visual inspections

Although the mean PSNR and SSIM can evaluate the 
similarity in signal and vision between the generated 
images and the real images, they are still far from human 
visual perception. In Figure 7, the real HR 10×, 20×, and 
40× images are displayed in the left column, in which the 
ROIs are drawn by the green bounding box. The 10×, 20×, 

and 40× images generated from 5× ROIs by our model, 
the other SR models and two conventional digital zoom 
methods, and real ROI images are shown in the right 
column. By visually inspecting the generated images, it can 
be found that for 10×, all the generated images are of high 
quality and the image details are quite realistic.

Additionally, it is evident that the 20× images from 
our model are relatively close to the real image, but other 
methods have different degrees of distortion. Moreover, 
the 40× images generated by other models appear blurred, 
while our model can preserve important image structures. 
It is worth noting that from 5× to 40×, some backgrounds 
are too small to be completely restored, which is consistent 
with the PSNR and SSIM.

The images generated by our method and real images of 
one typical sample are shown in Figure 8, which shows that 
the visual perception of generated and real images is very 
similar. Pixel-sized scale is also shown on the 40× image.

Visual comparison for medical evaluations

The first comparison is the visual scoring of HR ROI-1 and 
SR ROI-1. Three pathologists (A-C) carefully observed 
the two images and then gave a score on the diagnostic 
consistency of the two ROI images. The scoring rules are 
shown in Table 2, where the visual scoring results are set to 
five different levels denoted by 1–5 to represent the quality 
of generated images. A more significant value implies better 
quality. When pathologists compare any pair of real and 
generated ROIs, if they think that important information 
for a correct diagnosis is retained in the generated ROI, 
the score is 3. For example, the features of cancer cells in 
cancer images are completely preserved. A total of 100 pairs 
of HR ROI-1 and SR ROI-1 were scored by pathologists 
A-C. The distributions of visual scorings from three 
pathologists are shown in Figure 9, and the average score 
on each body system is shown in Table S3. Figure 9 shows 
that the three pathologists agreed that all generated ROIs 
retained diagnostic features, so the ROIs scored at least 3. 
Regarding the closeness of the generated ROI to the real 
ROI, pathologists have inconsistent scores of 4–5, which 
may be due to differences in their subjective perceptions of 
the restoration of the generated image. The average visual 
scorings with 0.95 confidence intervals from pathologists A, 
B, and C were 3.630±1.024, 3.700±1.126, and 3.740±1.095, 
respectively, indicating that the pathologists believe that 
there is no visual difference in diagnosis between the 
generated image and the real image or that the visual 

https://cdn.amegroups.cn/static/public/QIMS-21-749-supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-21-749-supplementary.pdf
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Figure 6 SSIM and PSNR comparison. The PSNR and SSIM distribution of our model, five SR models (DBPN, ESPCN, EDSR, MDSR, 
RND), and two conventional digital zoom methods (BILINEAR, BICUBIC) at the testing set and two-sided paired T test are performed. 
The boxes indicate the upper and lower quartile values, and the whiskers indicate the minima and maxima values. The horizontal bar 
in the box indicates the median, while the cross indicates the mean. (A), (B) and (C) are the distributions of PSNR on 10×, 20× and 40× 
images, respectively. (A) The average PSNR with 0.95 confidence interval on 10× of our method vs. DBPN, ESPCN, EDSR, MDSR, 
BICUBIC, BILINEAR, RND: 24.167±3.734 vs. 23.502±3.895 dB, P value =1.978e-156; 23.435±3.564 dB, P value =0; 23.668±3.821 dB,  
P value =2.054e-89; 23.660±3.822 dB, P value =4.422e-92; 23.368±4.034 dB, P value =3.592e-212; 22.785±4.314 dB, P value =0; 23.486±3.647 dB,  
P value =1.041e-169. (B) 20×: 22.272±4.272 vs. 21.191±3.906 dB, P value =0; 21.609±3.827 dB, P value =0; 21.495±4.079 dB,  
P value =2.019e-174; 21.572±4.062 dB, P value =1.784e-143; 21.339±4.263 dB, P value =2.656e-235; 20.990±4.432 dB, P value =0; 
21.584±4.022 dB, P value =4.409e-140; (C) 40×: 20.436±3.845 vs. 20.295±4.172 dB, P value =6.479e-08; 20.334±3.772 dB, P value =5.471e-99;  
19.777±4.106 dB, P value =5.600e-139; 20.096±3.846 dB, P value =1.103e-41; 20.216±4.264 dB, P value =9.039e-17; 19.938±4.393 dB,  
P value =9.573e-76. (D), (E) and (F) are the distributions of SSIM on 10×, 20× and 40× images, respectively. (D) The average SSIM with a 0.95 
confidence interval on 10× of our method vs. DBPN, ESPCN, EDSR, MDSR, BICUBIC, BILINEAR, RND: 0.845±0.089 vs. 0.840±0.075, 
P value =3.850e-255; 0.844±0.084, P value =4.116e-08; 0.841±0.077, P value =1.034e-15; 0.841±0.077, P value =2.060e-15; 0.832±0.083, 
P value =0; 0.794±0.099, P value =0; 0.835±0.075, P value =2.361e-74. (E) 20×: 0.680±0.150 vs. 0.623±0.137, P value =0; 0.677±0.139,  
P value =5.287e-57; 0.657±0.133, P value =2.048e-126; 0.660±0.132, P value =1.794e-100; 0.646±0.146, P value =0; 0.612±0.162, P value =0; 
0.662±0.155, P value =5.523e-83. (F) 40×: 0.559±0.179 vs. 0.526±0.183, P value =3.155e-164; 0.555±0.181, P value =1.832e-4; 0.466±0.193, 
P value =0; 0.494±0.177, P value =0; 0.510±0.203, P value =0; 0.491±0.213, P value =0. SSIM, structural similarity; PSNR, peak-signal-
to-noise-ratio; DBPN, deep back-projection network; ESPCN, efficient sub-pixel convolutional neural network; EDSR, enhanced deep 
superresolution network; MDSR, multiscale deep superresolution system; RND, residual dense network.
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Figure 7 Visual inspections of 10×–40× images generated by different methods. On the far left are the real 10×–40× images, and for shapely 
layout, 10×, 20×, and 40× images are all adjusted to the same size. The right side of the real 10×–40× images are the same magnification 
images generated by different methods. The images were made using the FFPE method and stained with HE. HR, high-resolution; DBPN, 
deep back-projection network; EDSR, enhanced deep superresolution network; ESPCN, efficient sub-pixel convolutional neural network; 
MDSR, multiscale deep superresolution system; FFPE, formalin-fixed and paraffin-embedded; HE, hematoxylin-eosin.
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Figure 8 Visual comparison of generated and real images of one typical sample. The 10×, 20×, and 40× images generated by our model and 
10×, 20×, and 40× real images are shown. The images were made using the FFPE method and stained with HE. HR, high-resolution; SR, 
superresolution; FFPE, formalin-fixed and paraffin-embedded; HE, hematoxylin-eosin.

Table 2 Visual scoring rules of generated images by pathologists

Scores Descriptions

5 The differences between the generated and real images are so small that they are almost invisible

4 There is a slight difference, but it does not affect the diagnosis

3 There is a certain difference, but it does not affect the diagnosis

2 There are noticeable differences, which may affect the diagnosis

1 The difference is large enough not to be used for diagnosis

difference will not affect the diagnosis. The P value of 
analysis of variance was 0.367, meaning that the scores of 
the three pathologists were not significantly different.

Diagnosis comparison for medical evaluations

To obtain quantitative comparisons of the generated image 
and the real image diagnosis, the covariates of the difference 
between the diagnosis difficulty of the sample and the 
diagnosis ability of the pathologists should be removed. 
Therefore, the 100 paired SR ROI-1 and HR ROI-2 are 
randomly shuffled. Except for the human body system 
from which the images come, other information, including 
the WSIs to which the ROIs belong, has been eliminated. 
Another three pathologists (D-F) blindly reviewed the SR 
ROI-1 and HR ROI-2 independently and made diagnoses 

for every ROI.
The diagnosis comparison is shown in Figure 10, where 

the ROIs of the generated images were misdiagnosed twice 
and the ROIs of the real images were misdiagnosed once. 
Compared to the total number of ROIs, the error ratio of 
the generated and real images is very close. The Kappa test 
shows that KD (K value of pathologist D) about the 100 
paired SR ROI-1 and HR ROI-2 from pathologist D is 
0.990, KE from pathologist E is 1.000, KF from pathologist 
F is 0.980, showing no significant difference in the diagnosis 
of three pathologists based on the generated images and the 
real images.

Generation time and diagnosis time

A 5× ROI containing 128×128 pixels can be converted 

5×

HR 10×

SR 10×

SR 20×

SR 40×

HR 40×
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100 μm



Quantitative Imaging in Medicine and Surgery, Vol 12, No 5 May 2022 2825

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(5):2813-2829 | https://dx.doi.org/10.21037/qims-21-749

Figure 9 The line figure of visual scoring. (A), (B), and (C) represent the visual score distribution of pathologists (A), (B), and (C) on 100 
WSIs, respectively. The average visual scores with 0.95 confidence intervals were 3.630±1.024 (pathologist A), 3.700±1.126 (pathologist B), 
and 3.740±1.095 (pathologist C). Moreover, the median score of the three pathologists was 4.000. The P value of analysis of variance was 
0.367, meaning there was no significant difference among the scores of the three pathologists. WSI, whole slide image.

Figure 10 The diagnosis consistency of pathologists D-F. n (n=0, 1, 2...9) represents the n human body system, which refers to Table S1. 
C and W represent correct and incorrect diagnoses, respectively. The number in the table represents the number of consistently correct, 
consistently wrong, inconsistent diagnoses on the n human body systems. HR, high-resolution; SR, superresolution. 

to 10×, 20×, and 40× ROIs in 200 ms using a graphics 
processing unit of Tesla V100. If the server has 4 GPUs and 
the WSI has 4,000 ROIs with human tissue, the conversion 
from a 5× WSI to 10×–40× WSI would take 3–4 min.

The average time with 0.95 confidence intervals while 

diagnosing one generated ROI or one real ROI was 
compared by a two-sided paired T test. Pathologist A: 
5.849±2.200 vs. 5.951±2.349 s, P value =0.534; pathologist B: 
6.497±2.649 vs. 6.269±2.944 s, P value =0.285; pathologist 
C: 7.147±3.691 vs. 6.893±2.398 s, P value =0.248. There 
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was no significant difference in the diagnosis time between 
the generated image and the real image.

Discussion

Pathological slides are not conducive to preservation and 
are inconvenient to search and exchange. With the advent 
of HR scanners, pathological images from glass slides have 
been applied in modern pathology. The glass slides are 
scanned into digital WSIs, which can be conveniently stored 
and transmitted over the network for remote diagnosis. 
Because there are many microscopic cells and tissues in 
pathological slides, HR scanning is necessary to retain 
these image details. However, the file size of HR scanning 
is too large, which severely affects the acceptance of digital 
pathology because of the slow scanning and data exchange 
and huge storage costs.

We design an alternative strategy for LR scanning, 
where the 5× images are only approximately 15 MB, 
which is promising to solve the storage and exchange 
problems of pathological images. However, LR images, 
such as 5× images, only show large-scale structural 
information of human tissue. In fact, pathologists first 
observe LR images on a large scale and then use a larger 
magnification to observe the cells on a small scale. In 
other words, 40× image diagnosis and 5× image diagnosis 
are based on the information at different scales. The 5× 
images cannot support a complete pathological diagnosis 
because of the lack of small-scale information provided 
by 40× images.

If the structure is larger than 2 microns (one-pixel size 
in the 5× image), it can be recovered by SR. It is worth 
noting that structures smaller than 2 microns may be lost, 
or they cannot be fully restored based on adjacent pixels. 
The smallest structure concerned in pathological diagnosis 
is the nucleus of small lymphocytes, whose diameter is 
approximately 7 microns (35). The size of each pixel in 
the 40× image is 0.25 microns, so the nucleus of small 
lymphocytes includes 28×28 pixels. In the 5× image, the 
nucleus would include 3.5×3.5 pixels. Therefore, the 
smallest structure is present on the 5× image and should be 
restored from the 5× image to the 40× image by a good SR 
method.

Although the existing SR models have been widely used 
in natural and medical images, the main problem is fixed 
magnification, and the magnification is not more than 4 
times. According to the needs of pathological diagnosis, 
the SR method must be magnified continuously, and the 

maximum magnification can reach 8 times. The proposed 
method meets the above requirements and can continuously 
generate 10×, 20×, and 40× images.

We performed paired T tests on SSIM and PSNR 
between our method and existing methods. PSNR is 
an index for evaluating the similarity of pixel-by-pixel 
values of two images, and no image structure, such as 
edge, region, and texture, is considered. A large PSNR 
value means that the pixel-by-pixel values of two images 
are close, but it does not mean that the human visual 
perceptions of two images are close. SSIM can compare 
the similarity of image structures; it is closer than 
PSNR but still different from human perception. In all 
experiments, the PSNR and SSIM of our method are 
higher than those of other methods.

Visual comparison is more effective in illustrating the 
advantages of our method, which is significantly better than 
those of the existing methods, especially the restoration 
of cell structure and clusters related to pathological 
diagnosis. However, it is worth noting that the PSNR and 
SSIM of all methods are lower than those of the natural 
images. Although our method can restore local details 
very well, the color of the generated image is slightly 
changed. This may be because the method pays attention 
to microstructures such as cells in the pathological image 
but not macrostructures such as the color and background 
of the image. The PSNR and SSIM mainly consider the 
differences in macrostructures, so the two indicators are not 
too high.

Because the existing SR models have only fixed 
magnifications, we trained three versions, i.e., the 
generations of 5×–10×, 5×–20×, 5×–40×. In theory, a 
model that considers a single magnification ratio should 
perform better than a model that generates multiple 
magnification ratios simultaneously because the learning 
task is easier. However, our method has achieved better 
results than those in quantitative evaluation and visual 
comparison experiments. The possible reason is that the 
image generated by our method is optimized with the 
real image at multiple resolutions/magnifications, but 
other methods only consider the optimization at a single 
magnification.

For application in pathological domains, whether the 
generated image can replace the real image, the most 
important factor is whether it changes the diagnosis result. 
Therefore, medical confirmation is more important. In the 
visual assessment, the pathologists believed that although 
there were visual differences between the generated image 
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and the real image, the information required for diagnosis 
was complete.

Our clinical evaluation first chose the most important 
task of pathological diagnosis for cancer, including multiple 
cancers involving multiple organ systems. In addition, 
some inflammation and other benign lesions, such as 
hippocampal sclerosis, endometrial polyps, renal medullary 
lipoma, and kidney atrophy, are also included. Because the 
pathological diagnosis is based on human tissue structure 
and cells on the image, the process for cancer and other 
diseases is similar. If SR can provide the information of 
cells and human tissue structure needed for these diseases, 
we have reason to believe that the information needed for 
other disease diagnoses should also be generated. The blind 
diagnosis from 10 body systems confirmed that there was 
no significant difference between the diagnosis of generated 
images and real images in the medical testing set.

The development of digital pathology requires the 
preservation of a large number of whole slide images for a 
long time. Whether these images are 5× or 40× is related 
to storage capacity and copying or network transmission. 
Our research suggests permanently keeping 5× images 
instead of 40× images to reduce storage and transmission 
costs. The practical application of pathological images can 
be roughly divided into two common scenarios, among 
which the images to be generated are well known. First, 
for new patients in clinical practice, we can generate 
40× images from new scanned 5× images in advance for 
pathologists to diagnose. After diagnosis, the 40× images 
are then deleted. Second, for scientific research issues, 
researchers have designed clear experimental settings, 
looking for suitable slides (5× images) from pathological 
archives, quickly transmitting the 5× images to the local 
server via the network, and then generating 40× images 
for research. When the image to be generated cannot be 
known in advance, although this is not common, it is a 
wonderful alternative that generates in real-time the 40× 
region of interest that the pathologist is observing because 
the generation time of a region is only approximately  
200 ms.

Quantitative and visual experiments have confirmed 
the excellent image quality generated by the proposed 
method, and medical experiments on some specific diseases 
preliminarily confirmed that the generated images have 
the potential for clinical pathological diagnosis. The main 
limitation of this study is that there were not enough types 
of diseases in the test set. However, it shows the possibility 
of LR digitization, and it is worthwhile to further evaluate 

its feasibility on a wide range of datasets in further work.

Conclusions

Digital pathology can easily store and exchange WSIs, but 
the HR scan will produce large image files, high storage 
costs, and slow network transmission. The proposed 
multiscale method based on LR scanning can generate 
SR images with sufficient information for pathological 
diagnosis. The low-cost digital method was first proposed 
for pathology, showing potential for clinical application. In 
future work, on a large-scale image dataset, the diagnostic 
difference between the generated and real images should be 
further evaluated.
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Supplementary

Table S1 Types of diseases in each system

ID Human body systems Types of disease Numbers

0 Head and neck 1. Pleomorphic adenoma of salivary gland 3

2. Parotid gland cellular schwannoma 3

3. Papillary thyroid carcinoma 5

4. Tongue squamous cell carcinoma 2

5. Laryngeal squamous cell carcinoma 2

6. Nodular thyroid cancer 5

Total =20

1 Intracranial nervous system 1. Anaplastic oligodendroglioma 2

2. Anaplastic astrocytoma 3

3. Intracranial hair cell astrocytoma 3

4. Intracranial meningioma 7

5. Hippocampal sclerosis 5

Total =20

2 Respiratory system 1. Large cell neuroendocrine carcinoma of the lung 6

2. Lung adenocarcinoma 2

3. Lymph node metastatic lung adenocarcinoma 5

4. Lung adenocarcinoma in situ 4

5. Keratinizing squamous cell carcinoma 1

6. Anterior mediastinal thymoma 2

Total =20

3 Digestive system 1. Omentum Malignant Mesothelioma 4

2. Peritoneal mucous adenocarcinoma 2

3. Small intestine stromal tumor 3

4. Sigmoid colon adenocarcinoma 2

5. Colon adenocarcinoma 4

6. Rectal adenocarcinoma 5

Total =20

4 Skin and soft tissue 1. Poorly differentiated adenocarcinoma of eyelid 3

2. Highly differentiated myxoid liposarcoma of the buttocks 10

3. Foot malignant melanoma 2

4. Embryonic rhabdomyosarcoma 5

Total =20

Table S1 (continued)
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Table S1 (continued)

ID Human body systems Types of disease Numbers

5 Female reproduction system 1.Uterine Leiomyoma 1

2.High-grade serous carcinoma of the uterus 4

3.Cervical endometrioid adenocarcinoma 2

4.Cervical adenocarcinoma in situ 2

5.Placenta adhesion and implantation 3

6.Uterine pregnancy 1

7.Cervical polyps 2

8.Endometrial polyps 2

9.Pelvic papillary serous carcinoma 3

Total =20

6 Urinary system 1.Adrenal sebaceous adenoma 4

2.Retroperitoneal leiomyosarcoma 2

3.Renal clear cell carcinoma 2

4.Reninoma 3

5.Kidney atrophy 4

6.Renal medullary lipoma 5

Total =20

7 Lymphoid hematopoietic system 1.Reactive hyperplasia of peri-intestinal lymph nodes 5

2.Reactive hyperplasia of inguinal lymph nodes 4

3.Reactive hyperplasia of perigastric lymph nodes 5

4.Ocular-MALT lymphoma 6

Total =20

8 Liver 1.Hepatocellular carcinoma 9

2.Nodular hyperplasia of liver 11

Total =20

9 Breast 1.Invasive breast cancer Total =20
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Table S2 The distribution of PSNR and SSIM on each body system.

0 1 2 3 4 5 6 7 8 9

Our Model 10× SSIM 0.837±0.072 0.813±0.132 0.857±0.060 0.850±0.064 0.859±0.081 0.836±0.084 0.844±0.069 0.884±0.061 0.816±0.079 0.855±0.051

PSNR 24.783±3.812 23.657±2.508 24.235±3.525 24.716±3.007 24.895±6.118 25.332±2.957 23.444±2.998 22.461±2.112 23.467±4.300 24.684±2.662

20× SSIM 0.680±0.121 0.619±0.198 0.694±0.116 0.694±0.103 0.705±0.162 0.686±0.110 0.662±0.127 0.731±0.101 0.624±0.165 0.703±0.093

PSNR 23.011±4.061 21.491±2.975 22.184±3.853 22.996±3.288 23.211±6.777 23.623±3.267 21.351±3.471 20.477±2.243 21.336±5.317 23.045±2.988

40× SSIM 0.577±0.163 0.492±0.209 0.585±0.158 0.581±0.134 0.584±0.200 0.592±0.133 0.528±0.149 0.581±0.109 0.483±0.203 0.588±0.120

PSNR 21.209±3.656 19.760±2.965 20.210±3.613 21.191±3.142 21.254±5.325 21.753±2.917 19.557±3.442 18.685±2.195 19.424±4.470 21.319±2.819

DBPN 10× SSIM 0.832±0.065 0.816±0.118 0.848±0.050 0.845±0.054 0.855±0.079 0.837±0.049 0.837±0.059 0.876±0.053 0.810±0.074 0.841±0.040

PSNR 24.064±3.712 23.310±2.598 23.515±3.563 23.961±3.078 24.300±6.573 24.752±3.031 22.718±3.094 21.842±2.060 22.787±5.077 23.767±2.655

20× SSIM 0.614±0.109 0.582±0.180 0.638±0.102 0.632±0.100 0.652±0.152 0.627±0.113 0.606±0.109 0.679±0.094 0.563±0.146 0.637±0.074

PSNR 21.792±3.615 20.895±2.602 21.073±3.592 21.733±3.037 22.066±6.557 22.436±2.888 20.404±3.173 19.402±2.155 20.416±5.018 21.691±2.765

40× SSIM 0.551±0.167 0.469±0.203 0.545±0.159 0.551±0.132 0.563±0.239 0.568±0.128 0.490±0.144 0.526±0.092 0.451±0.227 0.550±0.113

PSNR 20.992±3.847 20.027±2.753 19.995±3.944 20.926±3.233 21.223±6.867 21.608±3.047 19.468±3.507 18.201±2.453 19.610±5.428 20.900±2.878

ESPCN 10× SSIM 0.842±0.069 0.814±0.133 0.849±0.060 0.856±0.063 0.862±0.084 0.848±0.062 0.840±0.064 0.866±0.054 0.812±0.086 0.856±0.046

PSNR 24.073±3.464 23.227±2.532 23.362±3.542 23.973±2.934 24.095±5.561 24.666±2.903 22.771±3.117 21.490±2.378 22.879±4.132 23.814±2.491

20× SSIM 0.682±0.118 0.626±0.183 0.689±0.107 0.694±0.098 0.706±0.164 0.691±0.100 0.658±0.110 0.711±0.083 0.619±0.162 0.695±0.081

PSNR 22.273±3.644 21.258±2.600 21.475±3.717 22.206±3.038 22.382±6.177 22.867±2.987 20.877±3.230 19.713±2.289 20.960±4.708 22.081±2.608

40× SSIM 0.575±0.159 0.492±0.208 0.573±0.154 0.580±0.131 0.589±0.224 0.591±0.129 0.521±0.146 0.568±0.098 0.476±0.221 0.581±0.115

PSNR 20.987±3.559 19.973±2.524 20.103±3.565 20.932±2.966 21.151±6.135 21.521±2.831 19.568±3.180 18.603±2.159 19.610±4.668 20.891±2.644

EDSR 10× SSIM 0.835±0.066 0.813±0.123 0.848±0.051 0.849±0.055 0.856±0.080 0.839±0.052 0.838±0.059 0.869±0.052 0.813±0.077 0.847±0.040

PSNR 24.268±3.680 23.414±2.485 23.585±3.555 24.168±2.951 24.437±6.525 24.860±2.991 22.951±3.034 21.817±2.203 23.126±4.870 24.051±2.568

20× SSIM 0.659±0.118 0.611±0.172 0.670±0.102 0.670±0.090 0.687±0.163 0.670±0.090 0.640±0.105 0.698±0.079 0.600±0.158 0.667±0.073

PSNR 22.108±3.798 21.173±2.640 21.345±3.746 22.038±3.125 22.389±6.954 22.770±3.104 20.723±3.229 19.656±2.192 20.809±5.409 21.944±2.713

40× SSIM 0.485±0.190 0.415±0.197 0.496±0.167 0.482±0.145 0.503±0.250 0.515±0.145 0.431±0.153 0.482±0.087 0.381±0.236 0.471±0.119

PSNR 20.375±3.801 19.544±2.728 19.611±3.769 20.280±3.192 20.702±6.896 21.089±3.142 18.974±3.296 18.056±2.115 18.983±5.473 20.154±2.712

MDSR 10× SSIM 0.835±0.066 0.813±0.123 0.848±0.051 0.849±0.055 0.856±0.080 0.839±0.053 0.838±0.060 0.869±0.053 0.812±0.077 0.847±0.040

PSNR 24.258±3.682 23.406±2.485 23.578±3.549 24.160±2.950 24.428±6.532 24.850±2.995 22.943±3.030 21.816±2.187 23.117±4.876 24.045±2.568

20× SSIM 0.662±0.116 0.613±0.172 0.672±0.100 0.673±0.089 0.689±0.162 0.672±0.089 0.643±0.104 0.700±0.078 0.605±0.156 0.670±0.072

PSNR 22.189±3.777 21.231±2.622 21.406±3.751 22.131±3.102 22.457±6.909 22.839±3.074 20.799±3.222 19.714±2.213 20.900±5.371 22.053±2.719

40× SSIM 0.511±0.163 0.441±0.194 0.515±0.152 0.513±0.130 0.530±0.223 0.536±0.127 0.459±0.140 0.508±0.086 0.414±0.222 0.512±0.111

PSNR 20.703±3.631 19.825±2.598 19.842±3.654 20.673±3.087 20.945±6.081 21.361±2.927 19.303±3.275 18.301±2.173 19.313±4.809 20.690±2.763

BICUBIC 10× SSIM 0.832±0.071 0.802±0.131 0.841±0.058 0.843±0.062 0.850±0.087 0.838±0.058 0.828±0.061 0.847±0.049 0.800±0.088 0.841±0.044

PSNR 24.052±3.853 23.178±2.707 23.247±3.841 23.893±3.176 24.170±6.812 24.634±3.200 22.671±3.286 21.162±2.614 22.912±4.997 23.761±2.780

20× SSIM 0.659±0.130 0.595±0.187 0.660±0.119 0.667±0.105 0.677±0.184 0.670±0.102 0.625±0.113 0.658±0.076 0.588±0.177 0.662±0.085

PSNR 22.075±3.941 21.043±2.791 21.109±4.051 21.946±3.294 22.233±7.204 22.679±3.254 20.593±3.489 19.053±2.649 20.812±5.465 21.851±2.888

40× SSIM 0.546±0.185 0.449±0.219 0.529±0.183 0.542±0.151 0.549±0.263 0.564±0.144 0.472±0.164 0.482±0.110 0.432±0.249 0.540±0.130

PSNR 20.970±3.927 19.948±2.784 19.835±4.105 20.870±3.320 21.141±7.016 21.553±3.145 19.427±3.615 17.912±2.631 19.632±5.412 20.875±2.983

Table S2 (continued)
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Table S2 (continued)

0 1 2 3 4 5 6 7 8 9

BILINEAR 10× SSIM 0.799±0.086 0.760±0.148 0.807±0.078 0.810±0.077 0.815±0.108 0.810±0.073 0.786±0.073 0.794±0.060 0.754±0.112 0.806±0.057

PSNR 23.563±4.048 22.612±2.954 22.607±4.147 23.320±3.417 23.628±7.239 24.161±3.501 22.098±3.554 20.239±2.955 22.423±5.265 23.200±2.992

20× SSIM 0.631±0.147 0.559±0.197 0.628±0.139 0.637±0.120 0.645±0.207 0.647±0.116 0.586±0.125 0.606±0.086 0.549±0.198 0.632±0.098

PSNR 21.783±4.054 20.720±2.917 20.711±4.250 21.602±3.441 21.900±7.469 22.405±3.434 20.255±3.657 18.468±2.870 20.541±5.623 21.519±3.022

40× SSIM 0.531±0.196 0.429±0.224 0.510±0.196 0.525±0.161 0.530±0.278 0.550±0.153 0.450±0.173 0.449±0.121 0.411±0.260 0.522±0.138

PSNR 20.736±4.017 19.693±2.877 19.523±4.262 20.594±3.432 20.872±7.220 21.336±3.283 19.159±3.745 17.443±2.801 19.420±5.528 20.606±3.087

RND 10× SSIM 0.830±0.066 0.809±0.121 0.841±0.051 0.843±0.055 0.851±0.081 0.835±0.051 0.833±0.058 0.861±0.051 0.808±0.076 0.841±0.039

PSNR 24.110±3.571 23.293±2.447 23.358±3.519 23.986±2.897 24.163±5.841 24.682±2.948 22.814±3.047 21.563±2.260 23.027±4.664 23.864±2.499

20× SSIM 0.664±0.115 0.614±0.172 0.674±0.100 0.675±0.089 0.691±0.162 0.673±0.089 0.645±0.104 0.701±0.077 0.608±0.156 0.673±0.072

PSNR 22.212±3.759 21.239±2.618 21.420±3.746 22.150±3.086 22.447±6.770 22.844±3.060 20.818±3.219 19.709±2.237 20.929±5.292 22.070±2.699

The blod indicates that the SSIM or PSNR value of the method on the generated and real images (10×, 20× or 40×) of one body system is the maximum among all methods. 0–10 represent the IDs of ten body 
systems, which are listed in Table S1.

Table S3 The visual score distribution of pathologists A, B, and C on each body system

Head and neck
Intracranial 

nervous system
Respiratory 

system
Digestive system

Skin and soft 
tissue

Female reproduction 
system

Urinary system
Lymphoid 

hematopoietic system
Liver Breast

Pathologist A 3.5±0.980 3.5±0.980 3.7±0.898 3.7±1.255 3.7±0.898 3.8±1.176 3.7±0.898 3.7±0.898 3.4±0.960 3.6±0.960

Pathologist B 3.7±1.255 3.6±0.960 3.7±1.255 3.6±0.960 3.8±1.176 3.7±0.898 3.7±1.255 3.9±1.055 3.7±0.898 3.6±1.300

Pathologist C 3.8±1.176 3.6±0.960 3.8±1.176 3.7±0.898 3.9±1.055 4.0±0.877 3.6±0.960 3.9±1.372 3.6±0.960 3.5±0.980


