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Iron overload disorder (IOD) is a group of diseases 
characterized by a gradual build-up of excess iron in 
organs, especially in the liver, heart, and pancreas. IOD 
consequently induces accumulative oxidative stress and 
tissue injury before clinical symptoms appear (1). The 
common form of IOD includes hereditary hemochromatosis 
(genetic IOD) and ineffective erythropoiesis (acquired 
IOD) (1-3). Iron overload in the liver is considered a co-
factor for the progression of liver diseases, such as in 
patients with chronic hepatitis (4), non-alcoholic fatty liver  
disease (5), chronic viral hepatitis, and hepatocellular 
carcinoma (6). Maintaining a high vigilance for IOD 
is essential to minimize the incidence of organ damage 
from iron overload. A number of diagnostic techniques 
can quantify iron overload in vivo, including MRI (7-10). 
Although the quantification of liver iron concentration 
(LIC) through the MRI approach may guide the 
further diagnostic and therapeutic initiation, accurately 
distinguishing between normal iron stores and iron overload 
can be a challenge (11,12).

Recent advances in the understanding of metal-
organic supramolecular assembly in biological systems 
provide new insights into the diagnosis and treatment of 
diseases. Reports suggest that several stimuli-responsive 
self-assembled or disassembled metal-organic dye 
nanocomplexes, including metal-organic nanodrugs 

(13,14), membrane-coated nanosensitizers (15,16), and 
nanosonosensitizers (17,18), can control the metal-bio 
interactions and activate spontaneously in a physiological 
milieu with diagnostic/therapeutic components, which 
draws increasing attention in precision medicine.

Among the existing small molecule dyes, indocyanine 
green (ICG) was the first fluorescent dye approved by the 
United States Food and Drug Administration (FDA) for 
diagnostic imaging, including lymphangiography, intra-
operative lymph node identification, identification of tumor 
margins, and superficial vascular imaging. The well-studied 
safety profile and functional diversity of ICG define the 
high potential for reverse translation in medical research 
and clinical settings (19). Notably, growing number of 
studies have reported that ICG dye can strongly coordinate 
to iron ions with selective and stimulated switch-on 
therapeutic effect/signal readout in the living system (16,20). 
Recently, Lin et al. reported a novel strategy that repurposes 
ICG dye for high-accuracy evaluation and quantification of 
LIC in vivo (21).

ICG has a complex molecular structure that consists 
of two polycyclic (benzoindotricarbocyanine) lipophilic 
moieties with conjugated backbone, which contribute to 
its near-infrared (NIR) fluorescence property, and two 
extended sulfonyl groups impart the hydrophilicity and 
chelating activity. The new study of Lin et al. (21) builds 
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on previous works in supramolecular assembly to confirm 
the formation of multiple coordination bonds between 
ICG and iron ions which leads to stimulated theragnostic 
applications (13,14,16-19,22). Lin et al. proposed and 
validated that a self-assembly ICG-Lecithin (ICG-Leci) 
system can effectively coordinate with focal iron to form 
stable bivalent Fe(III)-ICG2 complexes. This ICG activated 
Fe(III) chelation framework creates compact architecture 
that shields iron ions from water molecules and lowers 
water exchange rates, producing an augmented T1 contrast 
effect. Such stable Fe(III) chelate of ICG promotes 
iron excretion and reduces iron toxicity. To validate the 
sensitivity and specificity of ICG-iron chelation for MR 
liver iron quantification, Lin et al. initially identified the 
correlation between r1 values and Fe(III) ions with and 
without the presence of ICG molecules in different main 
magnetic fields from 1.5, 3 to 9.4 T. The results showed 
that the addition of ICG remarkably reduced the r1 value of 
Fe Fe(III) ions by approximately 50-fold (21). A comparable 
reduction of the r1 value was also observed in Fe(III)/
aggregated-ferritin mixture. In comparison, no observable 
r1 value change was noticed when ICG was added to 
hemosiderin-like aggregated ferritin phantoms. The T2* 
values showed no correlation with iron concentration  
(>0.1 mM). Lin et al. speculated that the significantly low 
r1 value of Fe(III) ions was achieved primarily by forming 
a stable hydrophobic Fe(III)-ICG coordination network, 
which reduces the local water exchange rate and leads to a 
shorter spin-lattice relaxation time and a lower r1 value.

Lin et al. (21) next explored the optical and photoacoustic 
(PA) characteristics of ICG-Leci and described the in vitro 
results, and indicated that ICG can sensitively respond to 
cellular iron concentration and produce an amplified PA 
signal. It was demonstrated that the “bi-augmentation” 
of MRI and PA contrast effects is in consequence of 
photophysical property changes of ICG. Leci facilitates 
ordered aggregation and promotes the formation of 
J-aggregation of ICG upon exposure to Fe(III) in the 
biological milieu, which results in increased PA intensity in 
the NIR window and a significant decrease in the value of r1 
of Fe(III) ions. These results suggested that ICG/Leci may 
enable high specificity and sensitivity for the detection of 
iron deposition. Furthermore, an in vivo study was carried 
out in two different iron-overload phenotype knockout mice 
(Hfe−/− mice and Hjv−/− mice) to evaluate the performance 
of ICG-mediated iron-overload quantification (21).  
It was found that the signal changes in the liver of Hfe−/− 
and Hjv−/− mice were negatively correlated with iron 

concentration, which showed apparent contrast changes 
of 19.19% and 29.97% at 4 hours, respectively (21). To 
further explore the iron concentration detection ability of 
ICG in chronic viral hepatitis, Lin et al. examined the T1 
signal response in hepatitis B virus transgenic (HBV-Tg)  
mice with hepatic iron overload. T1 signal intensity of 
the muscle/T1 signal intensity of the liver (T1SIM/T1SIL) 
of the liver tissues demonstrated a 14.91% change in the 
relative T1 signal intensity at 4 hours post-injection (21). 
The ICG contrast effect was in agreement with the LIC 
measurement. Furthermore, Lin et al. performed a pilot 
clinical assessment of patients with chronic viral hepatitis-
related hepatocellular carcinoma to study the MRI 
performance of ICG in iron-overload conditions prior to 
the surgical removal of the tumor. It was observed that the 
health volunteer detected a −3.20% change of T1 signal 
intensity of liver tissues, while patient case one showed a 
−0.5% change at 1 versus 0 hour, and 14.71% change in 
patien case two. The LIC measurement confirmed the MRI 
results and further support the rationale for developing 
ICG as a contrast agent in iron-overload quantification.

By virtue of the coordination feature of ICG, Lin  
et al. explored binding affinities of ICG toward Fe(III) for 
potential chelation therapy (21). A significant improvement 
in iron chelation effects of ICG was observed compared to 
deferoxamine (DFO, an iron-chelating agent for treatment 
of iron overload). This was validated by determining 
the dissociation constant using the isothermal titration 
calorimetry (ITC) technique and calculating aggregation 
modes between ICG and ferric chloride molecules through 
the Gaussian 09 simulation. For the in vitro chelation effect 
and corresponding fluorescence, MR and PA imaging were 
verified in mouse primary hepatocytes. Based on in vitro 
findings, Lin et al. investigated the in vivo biodistribution 
of ICG and ICG/Leci in the liver through fluorescence 
and PA monitoring. After 4 hours injection of ICG/Leci, 
approximately 75 and 225% PA contrast enhancement was 
achieved in the liver of Hfe−/− and Hjv−/− mice, respectively. 
Similarly, the tissue specimens from diagnosed iron-
overload patients were stained by ICG/Leci, and PA 
imaging clearly visualized the iron-deposited section and 
was in good agreement with the Prussian blue staining (21).

Beyond the bimodal diagnostic applications of ICG/
Leci formulas in iron-overload conditions, ICG/Leci 
demonstrated a comparable iron depletion efficacy to DFO 
treatment. The pharmacokinetic study showed a 1.5-fold 
higher fecal iron content in mice after receiving ICG/Leci, 
which implies more favorable kinetics and biocompatibility 
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than DFO (21). The histochemical and blood biochemical 
analyses further verified that ICG or ICG/Leci formulas 
are promising as a new and safe iron chelator candidate for 
iron-overload diagnosis and treatment (21). The study of Lin 
et al. used this strategy via ICG-mediated chelation of ferric 
ions in the liver to amplify the MR diagnostic sensitivity and 
treatment efficacy in iron overload subjects (21).

Although the current concept is at an early stage for 
clinical translation, the initial findings are impressive 
regarding the high specificity and sensitivity of ICG/
Leci in MR/PA-based LIC quantification and iron 
chelation therapy. Future clinical studies are needed to 
fully characterize the safety and efficacy of the ICG-
guided theragnostic approach in iron overload patients. It 
is undoubtedly essential to monitor the potential effects of 
dose-response relationships and phototoxic effects during 
application. A lot of room for improvement may still exist 
for this new strategy of supramolecular approaches.
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