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Background: The aim of this study was to investigate the reliability and accuracy of automatic coronary 
artery calcium (CAC) scoring and risk classification in non-gated, non-contrast chest computed tomography 
(CT) of different slice thicknesses using a deep learning algorithm.
Methods: This retrospective study was performed at 2 tertiary hospitals. Paired, dedicated calcium-scoring 
CT scans and non-gated, non-contrast chest CT scans taken within a month from the same patients were 
included. Chest CT images were grouped according to the slice thickness (group A: 1 mm; group B: 3 mm). 
For internal scans, the CAC score manually measured on dedicated calcium scoring CT images was used as 
the gold standard. The deep learning algorithm for group A was trained using 150 chest CT scans and tested 
using 144 scans, and that for group B was trained using 170 chest CT scans and tested using 144 scans. The 
intraclass correlation coefficient (ICC) was used to evaluate the correlation between the algorithm and the 
gold standard. Agreement between the deep learning algorithm, the manual results on chest CT, and the 
gold standard was determined by Bland-Altman analysis. Cardiac risk categories were compared. External 
validation was performed on 334 paired scans from a different organization. 
Results: A total of 608 internal paired scans (1 mm: 294; 3 mm: 314) of 406 individuals and 334 external 
paired scans (1 mm: 117; 3 mm: 117) of 117 individuals were included in the analysis. The ICCs between the 
deep learning algorithm and the gold standard were excellent in both group A (0.90; 95% CI: 0.85–0.93) and 
group B (0.94; 95% CI: 0.92–0.96). The Bland-Altman plots showed good agreement in both groups. For the 
cardiovascular risk category, the deep learning algorithm accurately classified 71% of cases in group A and 
81% of cases in group B. The Kappa values for risk classification were 0.72 in group A and 0.82 in group B.  
External validation yielded equally good results.
Conclusions: The automatic calculation of CAC score and cardiovascular risk stratification on non-gated 
chest CT using a deep learning algorithm was reliable and accurate on both 1 and 3 mm scans. Chest CT 
with a slice thickness of 3 mm was slightly more accurate in CAC detection and risk classification.

2695

https://crossmark.crossref.org/dialog/?doi=10.21037/qims-21-1017


Quantitative Imaging in Medicine and Surgery, Vol 12, No 5 May 2022 2685

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2022;12(5):2684-2695 | https://dx.doi.org/10.21037/qims-21-1017

Introduction

Cardiovascular disease (CVD) is one of the leading causes 
of death worldwide. Coronary artery calcium (CAC) 
scoring is a well-established approach to predicting 
adverse cardiovascular events (1) and guiding treatment 
decisions (2,3). Typically, a CAC score is obtained from 
electrocardiogram (ECG)-gated, non-contrast-enhanced 
cardiac computed tomography (CT), and a radiologist 
needs to identify dense calcification on CT images, a 
process that is time-consuming. In addition, non-contrast 
chest CT is widely used in clinical practice, especially in 
lung cancer screening, which shares some risk factors with 
CVD. However, quantification of the calcification score is 
often ignored on chest CT. CAC quantifications based on 
chest CT can provide additional information for clinicians 
screening for lung disease, thereby improving the efficiency 
of clinical diagnosis without additional cost and avoiding 
additional radiation doses. Automatic CAC scoring has 
attracted increased attention in recent years due to the 
rapid development of technologies in the deep learning 
community. The results of CAC scoring can be presented 
automatically while evaluating chest CT images, requiring 
no manual operation or review by clinicians. 

Strategies previously reported in the l iterature 
concerning automatic CAC scoring can be broadly divided 
into two categories: (I) CAC is first identified and thereafter 
quantified, similar to a clinical workflow; (II) CAC scoring 
is directly regressed with a large training dataset, thus 
eliminating the intermediate identification process. In the 
first category, the automatic scoring methods typically 
rely on segmenting or roughly localizing the anatomical 
structures (4-10), such as the heart, to obtain a region 
of interest (ROI). For example, Wolterink et al. (5) and 
Lessmann et al. (6) both used a dedicated convolutional 
neural network (ConvNet) to localize the heart with a 
bounding box. Wolterink et al. (9) identified candidate 
calcifications that could not be automatically labeled with 
high certainty and optionally presented these to an expert 
for review. Considering the high computational cost of 

the aforementioned automatic methods, particularly when 
applied to large datasets, some researchers have focused on 
exploring direct quantification methods for CAC (11-14). 
Cano-Espinosa et al. (11) trained a 3D deep ConvNet to 
regress the Agatston score within a pre-segmented region 
of the heart, and yielded a high correlation with manual 
measurements (r=0.93). More recently, de Vos et al. (13) 
employed two ConvNets, one for atlas registration and one 
for CAC regression, and demonstrated a computationally 
efficient solution for both cardiac and chest CT, with 
an intraclass correlation coefficient (ICC) between the 
predicted and manual calcium scores of 0.98. Despite 
its efficiency, the direct regression method also has its 
disadvantages. For example, when regions that contribute to 
the calcium score are expected to be investigated, a decision 
feedback process must be executed to obtain a visual 
attention heatmap. However, in most cases, this heatmap 
cannot depict lesions with pixel-level accuracy. Additionally, 
the reference standard for most of the aforementioned 
studies was a manual result on chest CT, which differs from 
that measured on a dedicated calcium scoring CT of the 
same patient, as motion artifacts are more likely to occur 
on chest CT images due to the lack of ECG control (15).  
Recently, several studies investigated automatic deep 
learning algorithms using a dedicated calcium scoring CT 
as a reference, but the sample sizes were relatively small (16), 
the interval between the paired scans was long (17), and 
the influence of slice thickness on the algorithm was not 
compared. 

Therefore, we proposed and validated a two-stage 
segmentation deep learning algorithm and performed 
this study to investigate the reliability and accuracy of the 
automatic CAC scoring and risk classification on non-gated, 
non-contrast chest CT scans of different slice thicknesses 
using a deep learning algorithm. 

We present the following article in accordance with the 
Transparent Reporting of a multivariable prediction model 
for Individual Prognosis Or Diagnosis (TRIPOD) reporting 
checklist (available at https://qims.amegroups.com/article/
view/10.21037/qims-21-1017/rc).
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Methods

Patient population

The scans of patients who had undergone both a dedicated 
calcium scoring CT and a non-gated chest CT within  
1 month between October 2016 and July 2019 in our 
hospital were retrospectively included as internal paired 
scans, whereas external paired scans were collected from 
January 2021 to April 2021 in another hospital. The pairing 
criteria involved matching a non-gated, non-contrast chest 
CT scan with a dedicated gated, non-contrast CT scan from 
the same patient using a dedicated CAC-scoring protocol. 
Patients with severe motion artifacts or a history of stent, 
pacemaker, artificial valve implantation, or coronary bypass 
graft surgery were excluded. 

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study 
was approved by the Institutional Ethics Committee of the 
Peking Union Medical College Hospital. Written informed 
consent was waived due to the retrospective nature of the 
study.

Cardiac and chest CT protocol

Non-gated chest CT scans were performed using 
multidetector CT scanners from Siemens AG (Somatom 
Definition Flash or Somatom Force; Siemens, Forchheim, 
Germany), General Electric (Discovery CT750 HD; 
Milwaukee, WI, USA), Philips (IQon Spectral CT, 
Cleveland, OH, USA), and Toshiba (Aquilion 64; Tokyo, 
Japan), with a tube voltage of 120 kVp and automatically 
adjusted tube current. The slice thickness varied from 1 to 
5 mm and the slice increments varied from 1 to 3 mm. The 
scans ranged from the thoracic inlet to the adrenal glands 
with breath-hold instruction. The chest CT images were 
grouped according to the slice thickness (group A: 1 mm; 
group B: 3 mm). 

Dedicated calcium scoring CT was performed on  
3 different systems with prospective ECG-triggered cardiac 
CT (IQon Spectral CT, Philips Healthcare; Somatom 
Definition Flash or Somatom Force, Siemens). The 
slice thicknesses were 1.5 (IQon Spectral CT) and 3 mm 
(Somatom Definition Flash or Somatom Force), with a tube 
voltage of 120 kVp and automatically adjusted tube current. 
Acquisitions included the entire heart, from the carina to 
the level of the diaphragm. Intravenous contrast agents 
were not used in any of the scans. 

Calcification score assessment

The CAC scores from the dedicated calcium scoring CT 
were calculated using commercial software (Syngo.via 
VB10; Siemens Healthcare), and board-certified radiologists 
in our hospital with relevant experience performed the CAC 
score measurements for the clinical reports. 

For chest CT, the CAC scores were calculated both 
manually by a radiologist with 5 years of experience 
(blinded to the results on dedicated calcium scoring 
CT) and automatically using a deep learning algorithm. 
The threshold for calcification detection was set at  
130 Hounsfield units (HU) with an area ≥1 mm3. The density 
score was determined based on the maximal attenuation 
of lesions, as follows: score 1, 130–199 HU; score 2,  
200–299 HU; score 3, 300–399 HU; score 4, ≥400 HU. 
The calcification score for each lesion was calculated by 
summing the multiplication of the density score and slice 
area of all slices (18). The total score for each patient was 
calculated automatically by summing the scores of all the 
lesions. CAC scores of 0, 1 to 100, 101 to 300, and more 
than 300 represented a very low risk, mildly increased risk, 
moderately increased risk, and severely increased risk, 
respectively (19).

Deep learning algorithm

In this work, a widely used U-Net (20,21) was adopted to 
segment the heart region into ROIs in the first stage. To 
efficiently prepare the training data, only CT scans from 
the training set of group B (slice thickness of 3 mm) were 
annotated at the pixel level. Specifically, because aortic 
calcified plaques are difficult to distinguish from CAC, the 
aortic region and remaining regions inside the heart were 
marked as 2 different foreground classes during annotation. 
During the whole inference pipeline, false-positive 
calcium lesions located in the aortic region were identified 
and removed. The input data were reshaped uniformly, 
with respect to both the training and inference of heart 
segmentation. In our experiments, data were shaped to 64, 
256, and 256 pixels in depth, height, and width, respectively. 
Data with slice thicknesses of 1 mm were also downsampled 
to this shape to perform heart segmentation.

A semantic segmentation network comprising autofocus 
layers (22) was employed to identify CAC in the second 
stage. Using autofocus layers, more powerful features could 
be effectively extracted because of the adaptive receptive 
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fields. 3D chest CTs with calcified plaques were manually 
annotated pixel-by-pixel and sampled as fixed-size patches 
for network training. In our experiments, the sampling 
size was 16, 64, and 64 pixels in depth, height, and width, 
respectively. During the inference phase, candidate plaques 
chosen by a threshold of 130 HU inside the ROI were also 
sampled as fixed-size patches, and then the collected patches 
were sequentially predicted by the autofocus network, with 
the overlap between segmented patches determined by a 
majority voting strategy. In order to test the generalizability 
of the model, we used a relatively large number of 
testing datasets. The datasets for training and testing 
were composed of 150 and 144 CT scans, respectively, in  
group A. The datasets for training and testing comprised 
170 and 144 CT scans, respectively, in group B.

For data preprocessing, the 12-bit CT intensity 
range was clipped to a range (−125, 225) HU to obtain a 

better contrast for heart and calcium lesions. Each image 
was then normalized to a floating-point number in the  
0–1 range. During the training stage, random cropping and 
random mirroring in the axial plane were adopted for data 
augmentation. The networks were trained using an Adam 
optimizer (23) with an initial learning rate of 0.0002, and 
momentum parameters beta1 =0.5 and beta2 =0.9. In the 
total 200 epochs, the learning rate was linearly reduced to  
0 during the second 100 epochs.

Statistical analysis

Statistical analyses were performed using SPSS 20.0 (SPSS 
Inc., Chicago, IL, USA) and MedCalc Statistical Software 
version 15.2.2 (MedCalc Software bvba, Ostend, Belgium). 
Continuous variables were expressed as the mean values 
± standard deviation or medians (interquartile range). 
Categorical variables were expressed in terms of the frequency 
and composition ratio (%). The Kolmogorov-Smirnov test 
was used to assess the normality of the quantitative data. 
The ICC was used to evaluate the correlation between the 
algorithm and the gold standard. The agreement between the 
deep learning algorithm, the manual results on chest CT, and 
the gold standard was determined by Bland-Altman analysis. 
The Chi-squared test was used to evaluate the ability of the 
deep learning algorithm to detect calcification. Linearly 
weighted Kappa values were used to assess the concordance 
of the CAC score ranking of the chest CT and the dedicated 
calcium scoring CT. A value of P<0.05 was considered 
statistically significant.

Results

Patient population

Based on the predefined exclusion criteria, 406 internal 
individuals (217 men and 189 women) and 117 external 
individuals (74 men and 43 women) were included in the 
analysis. Table 1 shows the detailed baseline characteristics 
of the study population and Table 2 shows the CAC score 
categories of the test and validation cohorts. Figure 1 shows 
the flowchart of patient enrollment and study design.

Reliability and accuracy of the deep learning algorithm 

The reliability of the deep learning algorithm was defined as 
the difference between manual and automatic CAC scores 
on chest CT. The accuracy of the deep learning algorithm 

Table 1 Detailed baseline characteristics of the study population

Characteristics
Internal cohort 

(n=406)
External cohort 

(n=117)

Age (year) 61.8±12.1 59.8±12.6

Male 217 (53.3%) 74 (63.2%)

BMI (kg/m2) 26.8±4.2 25.8±3.5

Diabetes 78 (19.2%) 21 (17.9%)

Hypertension 183 (45.1%) 40 (34.2%)

Hypercholesterolemia 80 (19.6%) 17 (14.5%)

Smoking 119 (29.3%) 27 (23.1%)

CVD family history 32 (7.9%) 1 (1.0%)

Median CAC score (25–75%) 45.6 (1.2–211.6) 1.4 (0–60.7)

BMI, body mass index; CVD, cardiovascular disease; CAC, 
coronary artery calcium. 

Table 2 CAC score categories of the test and validation cohorts

Category

Internal cohort External cohort 

1 mm 
(n=144)

3 mm 
(n=144)

1 mm 
(n=117)

3 mm 
(n=117)

I 52 49 54 54

II 50 49 39 39

III 21 23 9 9

IV 21 23 15 15

CAC, coronary artery calcium.
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Data screening
Patients who had undergone both 
dedicated calcium scoring CT and 

non-gated chest CT within one month  

Internal paired data 
(n=505) 

External paired data 
(n=200)

Excluded 
(n1=99)

Group A 
(n=294)

Group A 
(n=117)

External validation
(n=117)

Training 
(n=150)

Training 
(n=170)

Test 
(n=144)

Test 
(n=144)

Group B
(n=314)

Group B
(n=117)

External validation
(n=117)

Excluded 
(n2=83)

Internal paired data 
(n=406)

External paired data 
(n=117)

Exclusion

Severe motion artifacts (n1=33; n2=34)

Stents implantation (n1=41; n2=38)

Pacemaker or artificial valve (n1=18; n2=11)

CABG (n1=7; n2=0)

Figure 1 Flowchart of patient enrollment and study design. Chest CT images were grouped according to the slice thickness (group A:  
1 mm; group B: 3 mm). CT, computed tomography; CABG, coronary artery bypass grafting. 

was defined as the difference between the automatic CAC 
score on chest CT and the gold standard. The systemic 
difference was defined as the difference between the manual 
results on chest CT and the gold standard, which inevitably 
affected the accuracy of the deep learning algorithm. The 
reliabilities of the algorithm were good on both the 1 and 
3 mm scans. The mean difference (with 95% limits of 
agreement) between the algorithm on chest CT and the 
gold standard was slightly better on the 3 mm scans [−10 
(−296.7 to 276.7) vs. −55 (−464.9 to 354.9)]. There were 
systematic differences in both the 1 and 3 mm thickness 
images. Figure 2 shows the detailed Bland-Altman plots. 
Excellent ICCs between the chest CT and the gold standard 
were obtained while quantifying the CAC scores for group A  
(ICC =0.90; 95% CI: 0.85–0.93) and group B (ICC =0.94; 
95% CI: 0.92–0.96). Figure 3 shows several example cases.

CAC detection

Coronary calcifications were detected in 63.8% of cases in 
group A and 65.9% of cases in group B according to the 
dedicated calcium scoring CT. Compared with the gold 

standard, the sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), and diagnostic 
accuracy of the automatic algorithm for detecting CAC >0 
were, respectively, 90%, 83%, 90%, 83%, and 88% in group A  
and 99%, 86%, 93%, 98%, and 94% in group B. Nine false-
positive cases were identified in group A while 7 cases were 
identified in group B, and the cause was misidentification of 
valve calcification. Nine false-negative cases were identified 
in group A while 1 case was identified in group B, and this 
situation could be attributed to cardiac motion. 

CAC category 

Regarding the CAC categories, the agreement between 
the automatic and gold standards was quite good. The 
Kappa value was 0.72 (95% CI: 0.64–0.80) in group A and 
0.82 (95% CI: 0.76–0.89) in group B. The deep learning 
algorithm accurately classified 71% (group A) and 81% 
(group B) of the data. Regarding group B, 22 cases (15%) 
were reclassified to higher categories and 6 cases (4%) were 
reclassified to lower categories. Figure 4 shows the detailed 
classification confusion matrices. 
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Figure 2 Bland-Altman plots. The Bland-Altman plots show agreement between the deep learning algorithm and the manual results on 
chest CT scans of 1 mm slice thickness (A) and 3 mm slice thickness (D). The gold standard (manual results on dedicated calcium scoring 
CT) and the deep learning algorithm on chest CT scans of 1 mm slice thickness (B) and 3 mm slice thickness (E). The gold standard and the 
manual results on chest CT scans of 1 mm slice thickness (C) and 3 mm slice thickness (F). CT, computed tomography.

External validation

External validation was performed on 334 paired scans  

(1 mm: 117; 3 mm: 117). The Bland-Altman plots showed 

good agreement for both 1 and 3 mm scans [mean 
difference (95% limits of agreement) of 25 (−316.3 to 
366.3) and 21.3 (−452.7 to 495.2)]. As for CAC category, 
the Kappa value was 0.80 (95% CI: 0.72–0.88) for the slice 
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Figure 3 Example cases. Cross section images of non-gated chest CT. The image in the lower right corner shows an enlarged image of 
that inside the dotted blue box. Calcification plaques were correctly identified (A). Calcification plaques were correctly identified (B). Aortic 
calcification was distinguished from coronary calcification by the deep learning algorithm (C). Calcification in RCA was affected by cardiac 
motion (D). CT, computed tomography; RCA, right coronary artery.

Figure 4 Classification confusion matrix. The classification confusion matrices of the coronary artery calcification categories. Truth risk 
categories based on the gold standard are depicted on the y-axis and prediction risk categories based on the deep learning algorithm are 
depicted on the x-axis of each matrix.
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Figure 5 External validation results. The Bland-Altman plots of 1-mm-slice thickness (A) and 3-mm-slice thickness (B) chest CT. The 
classification confusion matrices of external validation on 1-mm-slice thickness (C) and 3-mm-slice thickness (D) chest CT. CT, computed 
tomography.

thickness of 1 mm and 0.80 (95% CI: 0.73–0.88) for the 
slice thickness of 3 mm. Figure 5 shows the detailed Bland-
Altman results and classification confusion matrices of the 
external validation. 

Discussion

In the present study, we investigated a deep learning 
algorithm to automatically calculate the CAC score on non-
gated, non-contrast chest CT of different slice thicknesses. 
The results showed that the algorithm was reliable and 
accurate for coronary calcification detection, quantification, 
and cardiac risk stratification on both 1-mm- and 3-mm-
slice thickness chest CT. External validation also yielded 
good results. This method can save time spent on manual 
calculations and complete cardiac risk assessments while 

simultaneously screening for chest diseases on chest CT. 
The CAC score derived from cardiac CT remains 

the gold standard in clinical practice. Previous studies 
have demonstrated good consistency between manual 
calcification scores derived from chest CT and dedicated 
calcium scoring CT. Hutt et al. (24) investigated the 
reliability of non-gated CT for CAC screening in 185 
individuals, however, there were 74 negative cases and 44 
severe calcification cases, accounting for more than half 
of the data. Wu et al. (25) investigated 483 cases with 262 
negative cases on low-dose, non-gated multi-detector CT, 
and the mean intertechnique scoring variability was 40–
43%. The data in these studies contained too many negative 
cases (CAC score 0) or cases of severe calcification (CAC 
score ≥300), causing the consistency of the results to appear 
better than it actually was. The study by Budoff et al. (26)  
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involved 50 patients, representative of a small sample size. 
A meta-analysis showed that, although the agreement 
between the 2 techniques was relatively high (κ =0.89), 
non-gated CT yielded an 8.8% false-negative calcification 
score and an underestimated high calcification score in 
19.1% of cases (27). In our study, Bland-Altman analyses of 
the manual results on chest CT and the dedicated calcium 
scoring CT demonstrated the inherent differences between 
the 2 tests. From the perspective of automatic scoring using 
deep learning-based algorithms, few studies have adopted 
dedicated calcium scoring CT as a reference. van Assen  
et al. (16) examined 95 paired scans within 1.5 years and 
Eng et al. (17) examined 447 paired scans, with a maximum 
time interval of 2 years. CAC may show progression, 
and the accuracy of the deep learning algorithm may be 
affected. The time interval of 1 month in our study could 
avoid increases in the CAC score over time. 

To the best of our knowledge, ours is the first study to 
compare the influence of different slice thicknesses on the 
deep learning-based automatic CAC scoring algorithm. 
Results showed that both 1 and 3 mm scans achieved good 
agreement with the gold standard, and chest CT with 
a slice thickness of 3 mm was slightly more accurate in 
CAC detection, with a sensitivity of 99% and a diagnostic 
accuracy of 94%. Previous studies have reported a 
sensitivity of 82% to 94% in detecting CAC (9-11,16,17). 
The sensitivity of our deep learning algorithm was higher 
than in previous studies, reducing the rate of missed 
diagnosis. The diagnostic accuracy was slightly higher than 
that of van Assen et al. (16), who reported an accuracy of 
90%. The quantification of the CAC score on 3-mm-slice 
thickness CT was almost perfect in internal scans (ICC 
=0.94) and good in external validation (ICC =0.83). As 
for cardiac risk classification, our deep learning algorithm 
accurately classified 81% of internal and 79% of external 
cases, and the Kappa values were 0.82 and 0.80, respectively, 
which were higher than those of Cano-Espinosa et al. (11). 
The miscategorization rate was also in line with that of van 
Assen et al. (16) and Wolterink et al. (5). Most misclassified 
cases were within one category, with only 1% of cases 
showing more than one category in internal scans. Most 
misclassified cases were reclassified to higher categories, 
which hardly affected clinical decision making. This may 
be due to the increased volume of coronary calcium caused 
by artifacts. Only 1 (1%) false negative case and 6 (4%) 
underestimated cases were found on internal 3-mm-slice 
thickness chest CT, lower than previously reported (26).

Automatic CAC quantification on non-gated chest CT 

is particularly cumbersome because of high noise, low 
resolution, and motion artifacts (13,28). The solutions 
to tackle this challenging task should be focused on the 
following: (I) accuracy, i.e., maintaining good consistency 
with the gold standard; (II) reliability, i.e., maintaining 
good consistency with manual results on chest CT; (III) 
easy interpretation, i.e., pixels that contribute to the 
calcium score are well classified in a single forward pass. 
Based on these considerations, we employed a two-stage 
segmentation method in this study. Our automatic scoring 
pipeline followed the identification and quantification 
style. Readers may refer to the work of Agatston et al. (18) 
on the accepted method of calculation of the calcification 
integral for quantification details, where the identification 
process is further discussed. As described previously (29), 
various tissues may be mistaken for calcified plaques 
in the surrounding environment of coronary arteries. 
Constructing a simple bounding box as an ROI is likely to 
be insufficient for subsequent CAC identification. However, 
our converged U-Net, which was trained with elaborate 
pixel-level annotated data, can predict a more precise ROI 
than previous methods when a new image is fed as the 
input. Given the heart ROI, many calcified plaques are still 
relatively small in the field of view, and segmenting such 
small objects is challenging due to the problem of heavy 
data imbalance. Figure 6 shows the automatic coronary 
calcification identification process and Figure 7 shows the 
flowchart of the post-processing phase using the deep 
learning algorithm.

Although our method obtained good overall performance, 
this study has some limitations. First, a chest CT-specific 
risk category was not investigated. Classification confusion 
matrices showed that our deep learning algorithm on chest 
CT tended to overestimate the risk category, and a chest 
CT-specific risk category may support the development of 
individualized treatment plans. Second, our method might 
fail for images with heavy motion artifacts or metal artifacts. 
Third, there were slightly more training data for the slice 
thickness of 3 mm than for 1 mm (170 vs. 150), which might 
have affected the result of the deep learning algorithm. 
Fourth, the sample size was too small to investigate the 
influence of CT scanner models or manufacturers on the 
results, and further studies are warranted on a larger scale to 
confirm our preliminary results.

In conclusion, our study proposed a reliable and 
accurate deep learning algorithm to automatically calculate 
coronary calcification scores and perform cardiovascular 
risk classification on non-gated, non-contrast chest CT. 
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Heart segmentation Sampling
Majority voting

Calcium segmentation via autofocus network

Figure 6 Automatic identification process. Automatic coronary calcification identification process from chest CT including the process of 
heart segmentation, sampling, calcium segmentation, and majority voting. CT, computed tomography.

Pre-processing
Scaling the original non-contrast chest CT image to 

a preset size and normalizing the scaled image

Restoring the size of the heart 
segmentation image to that of the original 
image, and determining a boundary of the 

heart region in the original image

Segmentation
Inputting the pre-processed data into a heart 
segmentation model, and segmenting a heart 

region using U-Net

A semantic segmentation network 
comprising autofocus layers was 

employed to identify CAC

Screening and extracting
Screening suspected coronary artery calcium 

lesions in the heart region and extracting a plurality 
of candidate sample blocks

Obtaining
Obtaining a coronary artery calcium lesion 

segmentation result of each candidate sample 
block by using a calcium lesion segmentation mode

Figure 7 Flowchart of the post-processing phase using the deep learning algorithm. CT, computed tomography; CAC, coronary artery 
calcium.
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The technique may be promising for clinical use, and may 
enable cardiovascular risk assessment to be undertaken while 
simultaneously screening for lung diseases on chest CT.
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