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Background: To investigate the effect of a new deep learning image reconstruction (DLIR) algorithm 
on the detection, characterization and image quality of pulmonary nodules (PNs) in ultra-low dose chest 
computed tomography (CT) in comparison with the adaptive statistical iterative reconstruction-V (ASIR-V) 
algorithm.
Methods: Nine artificial pulmonary nodules [six ground glass nodules (GGNs) and three solid 
nodules (SNs); density: −800, −630, 100 HU; diameter: 12, 10, 8 mm] were randomly placed in a thorax 
anthropomorphic phantom (Lungman, Kyoto Kagaku Inc.) and scanned on a 256-row CT (Revolution CT, 
GE Healthcare). Eight scans were performed at 70 kVp with different tube currents (20, 30, 50, 70, 90, 100, 
120, 150 mA). Raw data were reconstructed using the filtered back projection (FBP), ASIR-V (30%, 50%, 
80%) and DLIR (Low, Medium, High; TrueFidelity™) at 0.625 mm thickness. The effective radiation dose 
was recorded. All images were automatically analyzed using a commercially available artificial intelligence 
software (Intelligent 4D Imaging System for Chest CT 5.5, YITU Healthcare) and CT value, standard 
deviation (SD), long and short diameters of each nodule and SD of air (background) were measured. The 
detection rate, deformation degree (long diameter/short diameter), signal-to-noise ratio (SNR) and contrast-
to-noise ratio (CNR) of pulmonary nodules were calculated.
Results: Nodule CT values were the same in all mA settings for all three types of reconstruction algorithms 
(all P>0.05). DLIR groups had significantly lower SD and higher SNR and CNR values, with better overall 
image quality than ASIR-V and FBP groups at each mA, ranging from 65–85% reduction in SD, 67–83% 
increase in SNR with DLIR-H over 50%ASIR-V and 75–91% reduction in SD and 77–89% increase in 
SNR with DLIR-H over FBP (all P<0.05). At ultra-low dose conditions (30 mA), the DLIR-H images had 
the highest detection rate of PNs (100%). In addition, the DLIR-M had a minimal negative effect on the 
characterization of PNs.
Conclusions: DLIR algorithm can be a potential reconstruction technique to optimize image quality and 
improve detection rate of PNs in ultra-low dose lung screening
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Introduction

Lung cancer is one of the major threats to human health, 
and its morbidity and mortality rank first among cancers 
(1,2). Early diagnosis of lung cancer is the key to the 
successful treatment and prolonged survival of patients (3).  
In 2011, the National Lung Screening Test (NLST) 
reported that low-dose computed tomography (LDCT) is 
more sensitive to the early detection of lung cancer than 
chest X-rays, and that LDCT lung cancer screening reduces 
deaths by 15 to 20% (4,5). LDCT has become an effective 
method for early lung cancer screening, but it is critical to 
maintain image quality and diagnostic confidence while 
reducing radiation dose (4,6).

A number of strategies, such as tube current and tube 
voltage modulation, and multiple reconstruction techniques, 
such as iterative reconstruction (IR) algorithms, have been 
developed and used for the purpose of dose reduction 
and image quality improvement (7,8). The Filtered Back 
Projection (FBP) reconstruction algorithm has been the 
historical standard for CT image reconstruction. However, 
the use of FBP, particularly when lower radiation doses are 
used, results in higher image noise, causing fringe artifacts 
and poor low contrast-to-noise ratio, affecting image 
evaluation (9-11). Compared with FBP, IR techniques 
can reduce image noise and radiation dose while ensuring 
image quality (12,13). The adaptive statistical iterative 
reconstruction algorithm-V (ASIR-V) is one of the IR 
algorithms developed to further reduce image noise 
(9,14,15). However, the nonlinear and non-stationary 
characteristics of IR algorithms make the spatial resolution 
dependent on contrast and dose, and change the noise 
intensity and texture of the image (16). In addition, high 
level IR algorithms may produce wax-like or plastic-like 
artifacts, which may affect image quality and evaluation of 
low contrast lesions. 

With the increased use of machine learning as a subset of 
artificial intelligence, a deep learning image reconstruction 
(DLIR) algorithm (TrueFidelity, GE Healthcare) has 
been introduced and showed great potential in medical 
imaging (17-19). Deep learning-based image reconstruction 
technology in general can suppress image noise while 
minimizing the change in noise texture or anatomical and 
pathological structures (20,21). Specifically, DLIR is based 
on Deep Convolutional Neural Networks (DCNN), and 
uses normal-dose, high-quality FBP images to train the 
algorithm to distinguish noise and artifacts from signals, 
which reduces image noise, suppress spectral artifacts, and 

improve the detectability and resolution of low-contrast 
objects (22). To the best of our knowledge, the effect 
of DLIR algorithm on the detection, characterization, 
and image quality of pulmonary nodules (PNs) in chest 
CT at different dose levels has yet to be evaluated. 
This is important because this knowledge may help to 
optimize radiation dose and improve the detection and 
characterization of lesions in chest CT examinations. 

Computer-aided diagnostic systems have been used for 
automatic detection and analysis of pulmonary nodules 
for many years (23). With the development of computer 
technology and the improvement of hardware, Artificial 
Intelligence (AI) is now widely used in imaging. With the 
emergence of deep learning, the application of artificial 
intelligence technology to the intelligent detection of 
pulmonary nodules based on chest CT images has become a 
hot topic in this field (24). 

Therefore, the purpose of this study was to compare 
image quality, detection rate, and characterization of 
pulmonary nodules in chest CT, using a phantom scanned 
with different tube currents and reconstructed with FBP, 
ASIR-V and DLIR algorithms.

We present the following article in accordance with 
the STARD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-21-815/rc). 

Methods

Phantom

In the present study, a Lungman chest phantom (Lungman 
ph-1, Kyoto Kagaku Inc, Japan) was used (Figure 1). 
Trachea and pulmonary vessels were simulated by a mesh 
structure connected to the mediastinum. The lungs were 
simulated by air naturally filled in the phantom. A total of 
9 isolated spherical nodules included ground glass nodules 
(GGNs) and solid nodules (SNs) with different diameters 
(8, 10, 12 mm) and different attenuations (−800, −630,  
+100 HU for each diameter) were randomly placed in a 
thorax anthropomorphic phantom. 

Scanning techniques 

A 256-row CT scanner (Revolution CT, GE Healthcare, 
Milwaukee, WI, USA) was used to scan the phantom with 
nine simulated artificial pulmonary nodules (PNs), and 
eight scans were performed at 70 kVp with different tube 
currents (20, 30, 50, 70, 90, 100, 120 and 150 mA), 0.5s 

https://qims.amegroups.com/article/view/10.21037/qims-21-815/rc
https://qims.amegroups.com/article/view/10.21037/qims-21-815/rc
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rotation speed, helical scan mode with 0.992:1 pitch, 40 mm 
detector width, 360 mm display field of view, and 512×512 
matrix. Apart from the tube current, the other parameters 
did not change for the repeated scans, including the position 
of phantom and nodules.

Image reconstruction and processing

The raw data of the above eight scans were reconstructed 
using FBP, ASIR-V and DLIR algorithms at different 
strengths. All reconstructed images were axial, with a slice 
thickness and interval of 0.625 mm. Thus, a total of 7 
subsets of images at each dose level were obtained: FBP, 
30%ASIR-V, 50%ASIR-V, 80%ASIR-V, DLIR-Low, 
DLIR-Medium, DLIR-High. All reconstructed images were 

then transferred to an AW4.7 workstation (GE Healthcare, 
Milwaukee, WI, USA) and an image processing machine 
with an artificial intelligence (AI) software (Intelligent 4D 
Imaging System for Chest CT 5.5, YITU Healthcare) for 
image analysis and processing.

Image quality assessment

Two radiologists independently reviewed all images in 
random order, blinded to the scanning parameters and 
reconstruction algorithms, and graded the images on a scale 
from 1 (worst) to 4 (best) for each of the following imaging 
features: image contrast, image noise and nodule edge. The 
mean score of image contrast, image noise and nodule edge 
were evaluated as overall image quality. A score greater than 

Figure 1 The Phantom and pulmonary nodules (ph-1, Kyoto Kagaku Inc, Japan). Trachea and pulmonary vessels were simulated by a mesh 
structure connected to the mediastinum. spherical nodules: diameters (8, 10, 12 mm) and attenuations (−800, −630, +100 HU).
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or equal to 3 is considered to meet clinical requirements (as 
shown in Table 1).

The long/short diameters and average CT attenuation 
value (HU), standard deviation (SD) of PNs were measured 
automatically by an AI software (Intelligent 4D Imaging 
System for Chest CT 5.5, YITU Healthcare). The 
numbers of recognized nodules were counted manually. 
The mean CT and standard deviation of each nodule was 
recorded as CT1 and SD1, respectively. We selected the 
anterior sternum at the same level as the nodule for the 
air measurement, which recorded CT2 for the mean CT 
value and SD2 for the standard deviation. The contrast-
to-noise [CNR, CNR=(CT1−CT2)/SD2], signal-to-
noise (SNR, SNR=CT1/SD1), detection rate of PNs and 
the deformation degree (DD, DD=long diameter/short 
diameter) of pulmonary nodules were calculated by a 
technician for each reconstruction algorithm and at each 
dose level. The same window width and window level were 
used for image display. 

Radiation dose

To assess radiation exposure, the system automatically 
records volume CT dose index (CTDIvol, in mGy) and dose 
length product (DLP, in mGy*cm). The effective radiation 
dose (ED) is the product of radiation weight factor K and 
DLP: ED=DLP × K, and K is 0.014 mSv/(mGy·cm) for the 
chest (European Standard Guide).

Statistical analysis

The CT value, SD, SNR and CNR values were expressed 
as mean ± standard deviation, and the values with FBP, 
ASIR-V algorithm and DLIR algorithm at different 
strengths were analyzed by using the Analysis of Variance 
(ANOVA test). A P value of less than 0.05 was considered 
statistically significant. The Kappa test was used to evaluate 
the interobserver consistency of image quality score: A 
Kappa value of 0.75 indicated good consistency, 0.4< Kappa 
value <0.75 indicated medium consistency, and a Kappa 
value <0.4 indicated poor consistency. Also, the subjective 
image quality scores were analyzed by using the non-
parametric analysis of variance (Kruskal-Wallis test). All 
statistical analyses were performed with SPSS statistical 
software (version 22.0, IBM SPSS Statistics).

Results

Radiation dose

Radiation dose increased as the tube current increased, 
which is shown in Table 2.

Subjective analysis

The two physicians had good consistency in the evaluation 
of image contrast, noise of the background and nodules 
(κ=0.78, 0.87 and 0.82). Under different mA conditions, 

Table 1 Scores and definition for subjective analysis of images

Score Image contrast Image noise Nodule edge

4 points Excellent image contrast Minimal image noise Completely clear edge

3 points Acceptable contrast Less than average image noise Clear edge

2 points Suboptimal contrast Average image noise Less clear edge

1 point Poor contrast Unacceptable image noise Beyond recognition edge

Table 2 Radiation doses of different tube current

mA 20 30 50 70 90 100 120 150

CTDIvol (mGy) 0.13 0.2 0.34 0.47 0.61 0.67 0.81 1.01

DLP (mGy*cm) 4.88 7.32 12.19 17.07 21.95 24.38 29.25 36.57

ED (mSV) 0.06 0.10 0.17 0.23 0.30 0.34 0.41 0.51

CTDIvol, volume CT dose index; DLP, dose-length product; ED, effective dose.
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there were significant differences in the image quality scores 
of PNs among different reconstruction groups (P<0.05, 
P=0.001). Under different reconstruction conditions, there 
were significant differences in image noise of PNs (P<0.05, 
P=0.004), but no significant difference for the other 
measurements (P>0.05). As for the subjective image quality 
score (image contrast, noise and nodule edge), the FBP 
algorithm resulted in the lowest mean scores, with the mean 
scores of DLIR being slightly higher than those of ASIR-V. 
The 80% ASIR-V, DLIR-H, and DLIR-M were better 
than other reconstruction algorithms in image contrast, 
noise, and nodule edge. DLIR algorithm with different 
strengths led to better overall image quality compared with 
the ASIR-V or FBP algorithms under 20 and 30 mA; and 
in other mA conditions, DLIR-M, DLIR-H and ASIR-V 
had similar and good image quality (Table 3). Among DLIR 
with different strengths, medium strength level resulted in 
the best image contrast and nodule edge, followed by the 
high strength level and then the low strength level, while 
DLIR-H performed the best in reducing image noise (as 
shown in Table 3). 

Quantitative analysis 

The detection of PNs
There were differences in the detection rate of PNs 
among different tube currents and different reconstruction 
algorithms. The detection rates at 20 mA were the lowest, 
caused by the excessive image noise due to lower dose, 
and the detection rate was similar for all reconstruction 

algorithms (6/9, 66.67%). At the next dose level (tube 
current of 30 mA), the detection rate of DLIR-H was 
significantly higher than the others (9/9, 100%). When the 
tube current was equal to or greater than 50 mA, there was 
no difference among different reconstruction algorithms (as 
shown in Table 4).

The characterization of PNs
Regardless of the reconstruction algorithm, there were 
significant differences in the characterization of PNs among 
different tube currents. The DDmean at 50 mA dose 
level was higher than 20 and 30 mA, but in general, the 
results showed the trend of a decreased degree of nodule 
deformation with the increase of tube current (P=0.005, 
Table 4). 

Regardless of tube current and reconstruction strength, 
the DDmean of DLIR, ASIR-V and FBP were 1.08, 1.10 
and 1.11, respectively. There was significant difference 
between DLIR and ASIR-V (P=0.002) and between DLIR 
and FBP (P=0.013). The DDmean were 1.08, 1.07, 1.08, 
1.12, 1.09, 1.08 and 1.11 for DLIR-L, DLIR-M, DLIR-H, 
30%, 50%, 80% ASIR-V and FBP, respectively. DLIR-M 
performed best among all reconstruction algorithm groups, 
with the smallest DDmean of 1.07 (P=0.001) (Figure 2).

CT attenuation value, Image Noise and CNR
Under different mA conditions, there was no statistically 
significant difference in CT value of the GGNs or SNs 
among different reconstruction groups (P>0.05). However, 
there were significant differences in SDnodule, SDair, SNR 

Figure 2 The line graph of DD of PNs under different conditions. (A) The DD values of different algorithms. The DD value of DLIR 
was the lowest among the three algorithm groups. (B) The DD values of different strengths DLIR. The DD value of DLIR-M was the 
lowest among the three DLIRs. FBP, filtered back projection;  ASIR, adaptive statistical iterative reconstruction; DLIR, deep learning image 
reconstruction; DLIR-L; DLIR-low; DLIR-M, DLIR-medium; DLIR-H, DLIR-high; DD, deformation degree; PNs, pulmonary nodules.
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Table 3 Qualitative analysis scores of FBP, ASIR-V, and DLIR images

mA IR Image contrast Image noise Nodule edge Overall

20 FBP 2.33 2.11 2.00 2.15

30%ASIR-V 2.56 2.22 2.22 2.33

50%ASIR-V 2.56 2.44 2.33 2.44

80%ASIR-V 2.56 2.56 2.33 2.48

DLIR-L 2.33 2.78 2.33 2.48

DLIR-M 2.44 2.89 2.56 2.63

DLIR-H 2.44 2.89 2.22 2.52

30 FBP 2.56 2.33 2.44 2.44

30%ASIR-V 2.56 2.56 2.44 2.52

50%ASIR-V 2.89 2.67 2.44 2.67

80%ASIR-V 3.11 3.11 2.67 2.96

DLIR-L 2.44 2.67 2.44 2.52

DLIR-M 3.00 3.00 2.56 2.85

DLIR-H 2.78 3.33 2.89 3

50 FBP 2.78 2.67 2.67 2.7

30%ASIR-V 3.22 3.00 3.22 3.15

50%ASIR-V 3.33 3.56 3.33 3.41

80%ASIR-V 3.33 3.56 3.33 3.41

DLIR-L 2.89 3.11 3.00 3.00

DLIR-M 3.22 3.44 3.44 3.37

DLIR-H 3.33 3.56 3.33 3.41

70 FBP 2.78 2.67 2.67 2.7

30%ASIR-V 3.00 2.89 3.00 2.96

50%ASIR-V 3.22 3.33 3.22 3.26

80%ASIR-V 3.22 3.33 3.22 3.26

DLIR-L 3.00 3.00 3.00 3.00

DLIR-M 3.44 3.44 3.44 3.44

DLIR-H 3.33 3.67 3.44 3.48

90 FBP 3.22 2.89 3.00 3.04

30%ASIR-V 3.22 3.11 3.11 3.15

50%ASIR-V 3.44 3.56 3.56 3.52

80%ASIR-V 3.67 3.67 3.67 3.67

DLIR-L 3.33 3.22 3.33 3.30

DLIR-M 3.67 3.67 3.67 3.67

DLIR-H 3.56 3.67 3.56 3.59

Table 3 (continued)
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Table 3 (continued)

mA IR Image contrast Image noise Nodule edge Overall

100 FBP 3.11 3.11 3.11 3.11

30%ASIR-V 3.22 3.22 3.11 3.19

50%ASIR-V 3.33 3.33 3.33 3.33

80%ASIR-V 3.56 3.67 3.67 3.63

DLIR-L 3.22 3.22 3.11 3.19

DLIR-M 3.44 3.56 3.54 3.48

DLIR-H 3.56 3.89 3.56 3.67

120 FBP 3.33 3.11 3.11 3.19

30%ASIR-V 3.33 3.11 3.22 3.48

50%ASIR-V 3.44 3.44 3.44 3.67

80%ASIR-V 3.67 3.67 3.44 3.19

DLIR-L 3.33 3.11 3.22 3.22

DLIR-M 3.67 3.44 3.56 3.56

DLIR-H 3.78 3.89 3.44 3.70

150 FBP 3.89 3.56 3.56 3.67

30%ASIR-V 3.89 3.56 3.56 3.67

50%ASIR-V 4.00 4.00 4.00 4.00

80%ASIR-V 4.00 4.00 4.00 4.00

DLIR-L 3.89 3.56 3.56 3.67

DLIR-M 4.00 4.00 4.00 4.00

DLIR-H 4.00 4.00 4.00 4.00

FBP, filtered back projection; ASIR-V, adaptive statistical iterative reconstruction; DLIR-L/M/H, deep learning image reconstruction-low/
medium/high.

and CNR among different groups (all P<0.05; Tables 5,6). 
Compared with ASIR-V and FBP, DLIR significantly 

reduced the SD value (in HU) of GGNs [DLIR (low, 
medium and high): 38.49±12.66, 36.51±10.88, 33.11±11.17; 
ASIR-V (30%, 50% and 80%): 106.65±27.92, 94.41±20.00, 
65.24±19.62; FBP: 136.90±26.93]. Meanwhile, SNR and 
CNR were increased (for SNR, DLIR (low, medium and 
high): 21.18±8.00, 21.76±7.37, 24.81±10.01; ASIR-V 
(30%, 50% and 80%): 7.62±3.23, 8.14±2.19, 12.31±4.51; 
FBP: 5.61±1.56; for CNR, DLIR (low, medium and high): 
12.99±6.08, 18.17±8.44, 31.84±14.86; ASIR-V (30%, 
50% and 80%): 3.84±1.93, 4.74±2.08, 6.22±3.00; FBP: 
3.18±1.41). Different degrees of DLIR, ASIR-V and FBP 
had different effects on the SD value (in HU) of SNs 
[DLIR (low, medium and high): 27.48±8.01, 21.06±5.82, 

13.15±4.65; ASIR-V (30%, 50% and 80%): 96.70±20.44, 
84.27±25.53, 55.13±16.39; FBP: 132.23±26.51]. The overall 
SNR and CNR of GGNs and SNs were significantly higher 
and SD value significantly lower with DLIR reconstruction 
algorithm than with ASIR-V at all dose levels (Figure 3).

Discussion

In this study, we evaluated the influence of three types 
of reconstruction algorithms (FBP, ASIR-V, DLIR) on 
the image quality, detection rate and characterization of 
pulmonary nodules using AI software analysis in ultra-low 
dose chest CT using a lung nodule phantom. The results 
showed that under a wide range of dose levels, DLIR 
significantly reduced image noise and provided better 
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Table 4 The results of using different reconstructions in detecting 
pulmonary nodules and deformation degree in different dose levels

mA Reconstruction algorithm Detection rate DD

20 FBP 6/9 (66.67%) 1.09

30%ASIR-V 6/9 (66.67%) 1.17

50%ASIR-V 6/9 (66.67%) 1.09

80%ASIR-V 6/9 (66.67%) 1.12

DLIR-L 6/9 (66.67%) 1.11

DLIR-M 6/9 (66.67%) 1.08

DLIR-H 6/9 (66.67%) 1.11

Mean 6/9 (66.67%) 1.11

30 FBP 6/9 (66.67%) 1.08

30%ASIR-V 6/9 (66.67%) 1.11

50%ASIR-V 8/9 (88.89%) 1.08

80%ASIR-V 8/9 (88.89%) 1.12

DLIR-L 7/9 (77.78%) 1.07

DLIR-M 7/9 (77.78%) 1.06

DLIR-H 9/9 (100.00%)‡ 1.07

Mean 7.28/9 (80.95%) 1.08

50 FBP 8/9 (88.89%) 1.10 

30%ASIR-V 8/9 (88.89%) 1.17

50%ASIR-V 8/9 (88.89%) 1.14

80%ASIR-V 9/9 (100.00%) 1.1

DLIR-L 8/9 (88.89%) 1.1

DLIR-M 8/9 (88.89%) 1.12

DLIR-H 8/9 (88.89%) 1.08

Mean 8.14/9 (90.47%)  1.12

70 FBP 8/9 (88.89%) 1.17

30%ASIR-V 8/9 (88.89%) 1.14

50%ASIR-V 9/9 (100.00%) 1.13

80%ASIR-V 9/9 (100.00%) 1.08

DLIR-L 8/9 (88.89%) 1.09

DLIR-M 8/9 (88.89%) 1.07

DLIR-H 8/9 (88.89%) 1.08

Mean 8.28/9 (92.06%) 1.11

Table 4 (continued)

Table 4 (continued)

mA Reconstruction algorithm Detection rate DD

90 FBP 8/9 (88.89%) 1.06

30%ASIR-V 9/9 (100.00%) 1.1

50%ASIR-V 9/9 (100.00%) 1.08

80%ASIR-V 9/9 (100.00%) 1.08

DLIR-L 8/9 (88.89%) 1.07

DLIR-M 9/9 (100.00%) 1.07

DLIR-H 9/9 (100.00%) 1.11

Mean 8.71/9 (96.83%) 1.08

100 FBP 9/9 (100.00%) 1.12

30%ASIR-V 9/9 (100.00%) 1.1

50%ASIR-V 9/9 (100.00%) 1.12

80%ASIR-V 9/9 (100.00%) 1.08

DLIR-L 9/9 (100.00%) 1.07

DLIR-M 9/9 (100.00%) 1.07

DLIR-H 9/9 (100.00%) 1.08

Mean 9/9 (100.00%) 1.09

120 FBP 9/9 (100.00%) 1.10 

30%ASIR-V 9/9 (100.00%) 1.1

50%ASIR-V 9/9 (100.00%) 1.07

80%ASIR-V 9/9 (100.00%) 1.08

DLIR-L 9/9 (100.00%) 1.06

DLIR-M 9/9 (100.00%) 1.07

DLIR-H 9/9 (100.00%) 1.04

Mean 9/9 (100.00%) 1.07

150 FBP 9/9 (100.00%) 1.11

30%ASIR-V 9/9 (100.00%) 1.09

50%ASIR-V 9/9 (100.00%) 1.08

80%ASIR-V 9/9 (100.00%) 1.07

DLIR-L 9/9 (100.00%) 1.08

DLIR-M 9/9 (100.00%) 1.07

DLIR-H 9/9 (100.00%) 1.08

Mean 9/9 (100.00%) 1.08
‡, at this condit ion, the detection rate of DLIR-H was 
significantly higher than the others. DD, the deformation degree; 
FBP, filtered back projection; ASIR-V, adaptive statistical 
iterative reconstruction; DLIR-L/M/H, deep learning image 
reconstruction-low/medium/high.
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Table 5 The SNR and CNR of GGNs under different tube current and reconstruction algorithm

mA Reconstruction algorithm CTnodule SDnodule CTair SDair SNR CNR

20 DLIR-L −724.79±105.42 56.88±7.45 −1,002.45±5.41 32.95±1.99 −12.75±0.99 8.44±3.21

DLIR-M −721.96±105.58 49.89±12.47 −999.58±5.16 23.84±1.12 −15.80±7.36 11.59±4.34

DLIR-H −728.61±106.23 44.76±11.76 −1,001.53±4.46 13.13±1.00 −17.37±5.80 20.88±8.30

30%ASIR-V −737.62±133.42 116.17±34.54 −96.72±5.73 77.27±3.52 −7.36±4.63 2.91±1.77

50%ASIR-V −732.43±115.35 113.53±20.00 −972.85±2.13 66.53±3.82 −6.68±2.03 3.64±1.81

80%ASIR-V −723.63±116.92 78.17±24.10 −982.56±4.61 51.19±5.35 −9.92±2.75 5.14±2.49

FBP −719.50±108.49 145.64±22.03 −956.46±7.01 88.42±7.56 −5.02±0.98 2.70±1.40

30 DLIR-L −718.89±93.32 53.39±8.55 −1,005.10±2.23 30.39±1.51 −13.82±3.45 9.46±3.23

DLIR-M −714.88±97.62 48.24±11.09 −104.46±2.35 21.24±0.81 −15.75±5.20 13.61±4.46

DLIR-H −724.79±100.79 44.52±14.00 −1,003.82±2.87 12.14±0.13 −18.37±8.80 23.01±8.28

30%ASIR-V −724.80±91.41 129.72±21.27 −970.69±4.33 70.83±4.79 −5.82±1.78 3.51±1.37

50%ASIR-V −722.09±82.07 114.13±12.37 −976.07±3.44 61.70±4.44 −6.24±1.26 4.12±1.46

80%ASIR-V −719.91±91.39 86.92±11.47 −987.32±2.26 45.96±2.81 −8.39±1.50 5.85±2.14

FBP −723.72±99.66 168.11±32.85 −961.45±3.02 82.92±7.05 −4.54±1.65 2.85±1.12

50 DLIR-L −724.02±101.23 40.57±7.36 −1,005.46±1.66 25.56±1.61 18.44±4.71 11.16±4.39

DLIR-M −721.09±108.25 40.64±4.93 −1,005.29±0.83 18.49±2.14 17.95±3.51 15.89±7.08

DLIR-H −726±112.23 33.69±10.06 −1,003±1.71 10.10±0.81 23.87±10.09 27.78±12.16

30%ASIR-V −728.68±103.02 121.63±25.73 −973.42±3.71 68.33±4.36 6.32±1.99 3.62±1.61

50%ASIR-V −722.76±109.39 104.61±18.75 −979.17±2.03 55.77±3.61 7.05±1.29 4.91±1.94

80%ASIR-V −721.60±103.41 71.56±24.17 −989.08±2.64 41.79±5.38 10.78±2.98 6.45±2.56

FBP −726.57±99.77 144.57±25.19 −963.36±4.18 77.31±4.83 5.21±1.41 3.07±1.32

70 DLIR-L −730.11±100.98 38.17±8.77 −1,005.85±3.74 21.87±3.82 20.67±8.78 13.38±6.46

DLIR-M −731.87±109.73 33.34±8.23 −1,004.62±2.17 15.63±1.85 24.07±11.06 17.92±8.24

DLIR-H −730.68±107.73 32.17±9.51 −1,004.79±1.53 8.79±0.86 25.66±12.94 31.94±14.91

30%ASIR-V −731.70±108.04 104.08±41.96 −974.34±1.83 62.56±2.36 8.60±4.74 3.91±1.82

50%ASIR-V −733.39±112.72 95.79±18.29 −981.79±0.93 52.69±3.07 8.10±2.84 4.76±2.27

80%ASIR-V −735.19±104.07 65.66±18.23 −990.18±1.98 41.37±2.08 12.80±7.14 6.08±2.27

FBP −730.26±107.73 140.83±23.96 −966.67±3.24 75.27±5.65 5.42±1.78 3.19±1.59

90 DLIR-L −738.99±107.52 34.85±7.64 −1,005.48±2.16 20.39±1.51 22.36±7.75 13.14±5.45

DLIR-M −735.89±104.99 33.89±5.07 −1,005.76±2.83 14.27±1.04 21.95±3.67 19.13±7.91

DLIR-H −735.05±104.50 30.72±5.93 −1,005.40±2.88 8.21±0.67 24.61±5.55 33.17±13.12

30%ASIR-V −741.62±105.48 103.52±12.21 −976.09±3.31 60.45±8.07 7.18±0.77 3.89±1.67

50%ASIR-V −738.21±107.83 89.77±9.96 −983.28±1.76 49.42±4.34 8.30±1.57 5.00±2.25

80%ASIR-V −766.27±146.75 56.96±13.50 −952.80±65.95 39.40±4.28 14.77±7.52 5.07±4.94

FBP −743.69±98.97 131.93±13.24 −969.41±2.10 70.03±4.87 5.73±1.26 3.26±1.53

Table 5 (continued)
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Table 5 (continued)

mA Reconstruction algorithm CTnodule SDnodule CTair SDair SNR CNR

100 DLIR-L −727.83±101.18 32.17±4.16 −1,004.21±3.05 19.18±3.17 22.97±4.71 15.24±7.24

DLIR-M −730.04±108.11 31.36±2.98 −1,004.68±2.59 14.37±1.44 23.52±4.52 19.63±8.83

DLIR-H −724.19±100.42 30.50±3.14 −1,003.78±2.56 8.02±1.04 24.11±5.28 35.98±15.34

30%ASIR-V −741.23±95.67 106.67±18.76 −978.77±1.44 56.72±2.72 7.03±0.93 4.19±1.71

50%ASIR-V −732.90±97.58 85.84±9.49 −983.88±2.24 50.58±3.54 8.58±1.18 5.01±2.06

80%ASIR-V −735.57±99.09 58.48±12.42 −990.27±4.07 39.10±4.15 12.76±1.46 6.71±3.06

FBP −736.57±111.72 121.52±19.44 −971.49±2.58 69.21±5.35 6.23±1.68 3.40±1.63

120 DLIR-L −737.77±105.54 28.34±4.64 −1,006.37±3.23 17.54±1.42 26.41±4.69 15.68±6.94

DLIR-M −734.61±106.68 30.05±4.36 −1,005.01±2.53 12.31±1.48 24.63±3.39 22.69±10.41

DLIR-H −729.54±103.97 25.20±4.38 −1,005.34±2.69 7.24±0.97 29.81±7.04 39.18±16.81

30%ASIR-V −734.40±99.50 91.12±15.56 −981.59±2.49 55.41±4.92 8.34±2.35 4.56±2.04

50%ASIR-V −744.11±103.41 75.32±9.34 −987.19±3.52 47.31±5.27 9.90±0.88 5.25±1.02

80%ASIR-V −741.07±109.36 51.68±12.47 −998.79±1.95 36.84±3.06 14.69±2.29 7.01±3.33

FBP −740.89±103.93 139.62±10.98 −968.30±3.05 73.43±4.27 5.35±1.01 3.17±1.62

150 DLIR-L −735.81±94.41 23.51±4.05 −1,005.21±3.40 15.92±1.75 32.04±6.81 17.45±7.32

DLIR-M −734.44±93.17 24.63±4.24 −1,004.50±3.51 11.10±1.12 30.41±5.96 24.91±9.91

DLIR-H −732.24±103.23 23.32±7.47 −1,004.07±2.64 6.65±0.96 34.72±13.66 42.79±20.26

30%ASIR-V −755.51±142.11 80.31±18.95 −955.96±66.96 55.66±10.79 10.27±4.81 4.12±3.56

50%ASIR-V −738.56±103.15 76.32±16.44 −986.44±3.65 46.86±4.96 10.10±2.98 5.51±2.81

80%ASIR-V −735.13±103.16 52.51±11.51 −994.17±1.96 35.52±2.91 14.40±3.09 7.46±3.37

FBP −745.57±91.79 102.95±17.85 −975.67±2.21 62.48±4.22 7.41±1.49 3.75±1.67

GGNs, ground glass nodules; SD, standard deviation; SNR, signal-to-noise ratio; CNR, contrast-to-noise ratio; FBP, filtered back 
projection; ASIR-V, adaptive statistical iterative reconstruction; DLIR-L/M/H, deep learning image reconstruction-low/medium/high.

overall image quality score compared with FBP and ASIR-V 
algorithms. At ultra-low dose conditions (30 mA), DLIR-H 
had the highest PNs detection rate. In addition, DLIR-M 
had a minimal negative effect on PNs characterization. 
Therefore, our results suggest that DLIR can provide the 
best noise reduction and the highest SNR, while ensuring 
the image quality and satisfying the diagnostic requirements, 
and better make up for the deficiencies caused by low-dose 
conditions.

 ASIR-V is a new generation iterative reconstruction 
algorithm that contains more advanced noise modelling and 
object modelling than the previous version ASIR. ASIR-V 
has also added some physics modelling (9) to maintain 
image quality in low dose scans with low tube voltage and 
tube current. However, with the increase of ASIR-V level, 

there is a potential risk of creating ‘wax-like’ artifacts while 
providing deep image noise reduction (9,14). DLIR builds 
a new image chain through years of clinical application 
experience of FBP and model-based iterative reconstruction 
(MBIR), reducing noise without changing the image texture, 
and improving the spatial resolution and the detection of 
lesions (25-27). Therefore, DLIR is expected to outperform 
ASIR-V with better dose performance and image quality. 
As expected, our study results showed that the images 
reconstructed with DLIR exhibited the best detection rate 
and minimal negative effect on the characterization of PNs.

Our study showed that DLIR algorithm was used to 
achieve image noise reduction under the ultra-low dose, 
and we found that the difference of image reconstruction 
effects between DLIR-L and 30% ASIR-V was higher than 
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Table 6 The SNR and CNR of SNs under different tube current and reconstruction algorithm

mA Reconstruction algorithm CTnodule SDnodule CTair SDair SNR CNR

20 DLIR-L 132.47±24.61 37.62±5.61 −1,000.85±2.87 34.68±3.91 3.57±0.80 33.01±4.48

DLIR-M 123.30±1.45 30.37±5.75 −1,001.70±5.08 23.50±4.49 4.16±0.81 48.12±4.19

DLIR-H 119.82±13.01 19.10±2.23 −1,000.42±4.01 13.76±1.37 6.28±0.21 82.01±8.66

30%ASIR-V 145.01±51.71 101.05±27.33 −964.33±6.02 76.91±8.35 1.64±1.11 14.58±2.31

50%ASIR-V 148.60±40.99 84.53±28.43 −974.73±0.49 62.30±4.28 2.07±1.41 18.09±1.55

80%ASIR-V 142.39±36.89 64.65±5.78 −982.78±4.14 50.08±7.39 2.23±0.69 22.91±4.53

FBP 153.82±19.94 123.09±41.4 −957.41±2.45 86.56±4.77 1.43±0.78 12.87±0.90

30 DLIR-L 136.05±15.51 33.83±11.34 −1,000.69±6.06 28.89±3.99 4.49±2.13 39.85±5.50

DLIR-M 133.47±17.93 25.67±4.20 −1,002.88±4.74 20.05±1.45 5.38±1.67 56.89±4.62

DLIR-H 125.32±4.87 18.76±7.1 −1,001.66±3.49 11.53±1.47 7.42±2.71 98.76±12.28

30%ASIR-V 144.64±17.08 108.56±25.09 −972.80±4.54 66.56±3.77 1.39±0.37 16.84±1.25

50%ASIR-V 153.80±20.49 95.07±477.73 −910.55±4.62 58.91±4.88 1.92±0.90 15.13±8.80

80%ASIR-V 158.00±11.77 64.20±5.90 −987.23±1.61 44.58±4.34 2.46±0.04 25.87±2.80

FBP 158.72±33.67 136.47±14.86 −958.44±5.87 82.93±4.39 1.19±0.36 13.51±1.14

50 DLIR-L 131.74±15.93 29.32±2.39 −1,005.60±1.03 25.70±1.84 4.53±0.82 44.37±2.46

DLIR-M 133.83±17.33 20.07±1.31 −1,005.77±1.05 18.15±1.44 6.73±1.35 63.01±4.21

DLIR-H 133.20±18.21 13.14±1.21 −1,005.36±1.04 10.57±3.78 10.20±1.76 108.24±8.59

30%ASIR-V 128.45±27.67 99.82±2.88 −975.60±0.47 62.88±4.39 1.28±0.24 17.60±1.22

50%ASIR-V 150.80±16.33 78.29±12.66 −928.88±0.38 54.61±3.69 1.94±0.09 19.244.36

80%ASIR-V 148.07±16.06 55.56±14.14 −989.44±1.68 43.93±3.89 2.80±0.89 26.02±2.14

FBP 140.15±8.38 127.27±14.80 −962.77±4.15 79.62±3.77 1.11±0.17 13.88±0.76

70 DLIR-L 134.19±5.38 26.66±0.43 −1,005.07±2.78 21.91±1.95 5.04±0.28 52.26±4.64

DLIR-M 130.75±7.75 21.62±2.72 −1,004.95±1.89 15.08±1.39 6.12±0.93 75.75±6.82

DLIR-H 131.96±6.97 11.57±1.58 −1,004.71±2.23 8.98±0.52 11.58±2.06 126.84±7.31

30%ASIR-V 136.75±16.69 100.77±5.39 −974.18±6.81 66.08±11.35 1.35±0.09 17.11±2.59

50%ASIR-V 143.89±3.42 96.44±6.86 −982.99±3.47 51.68±6.57 1.50±0.07 22.03±2.65

80%ASIR-V 144.64±20.62 54.30±7.09 −992.57±2.55 37.76±6.85 2.67±0.27 30.73±5.15

FBP 130.86±27.04 142.51±12.10 −970.38±2.21 70.65±3.82 0.91±0.13 15.61±0.60

90 DLIR-L 127.10±8.85 20.00±4.38 −1,005.48±3.08 19.03±1.99 6.55±1.36 60.01±6.91

DLIR-M 129.49±10.05 17.47±0.23 −1,004.78±2.90 14.01±2.13 7.42±0.65 82.32±13.43

DLIR-H 128.14±9.59 10.89±3.69 −1,004.33±2.78 7.99±0.50 12.73±4.27 142.18±9.96

30%ASIR-V 140.05±5.83 98.06±17.89 −977.86±4.46 58.36±6.77 1.45±0.20 19.34±2.31

50%ASIR-V 139.94±18.58 75.11±17.85 −981.30±5.79 53.50±6.57 1.90±0.28 21.18±2.79

80%ASIR-V 140.33±20.82 48.32±4.45 −993.23±0.29 36.89±3.60 2.91±0.37 30.93±3.15

FBP 148.58±15.07 128.82±16.39 −973.46±3.32 65.49±3.69 1.16±0.05 17.16±0.79

Table 6 (continued)
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Table 6 (continued)

mA Reconstruction algorithm CTnodule SDnodule CTair SDair SNR CNR

100 DLIR-L 130.30±10.41 31.39±7.70 −1,003.58±1.73 20.10±1.86 4.39±1.52 56.77±5.72

DLIR-M 130.29±10.56 22.84±4.97 −936.01±8.93 13.83±1.12 6.00±2.00 76.29±11.36

DLIR-H 129.35±11.64 11.22±2.04 −1,004.52±1.63 8.25±0.83 11.95±3.54 138.48±14.36

30%ASIR-V 131.14±10.05 110.53±33.36 −980.39±2.91 56.74±2.65 1.27±0.42 19.62±1.01

50%ASIR-V 139.49±10.66 106.23±24.79 −985.36±0.81 49.65±0.74 1.39±0.47 22.66±0.55

80%ASIR-V 149.41±12.31 69.22±21.32 −991.70±3.29 36.84±2.52 2.29±0.68 31.06±1.99

FBP 147.03±5.95 160.67±47.45 −972.42±3.41 67.85±4.38 0.96±0.25 16.55±1.21

120 DLIR-L 133.49±5.21 22.91±0.88 −1,004.85±4.49 16.23±1.81 5.84±0.41 70.76±8.14

DLIR-M 132.21±6.44 16.87±2.19 −1,002.74±4.76 12.48±0.89 7.91±0.96 91.26±6.75

DLIR-H 133.11±5.52 11.57±2.85 −1,003.72±4.49 6.54±0.40 12.15±3.92 174.28±10.47

30%ASIR-V 135.42±11.56 77.03±13.92 −981.61±0.96 51.03±1.63 1.78±0.17 21.90±0.71

50%ASIR-V 133.35±9.09 60.87±20.50 −986.43±1.64 44.55±2.51 2.36±0.77 25.20±1.61

80%ASIR-V 139.51±10.50 35.79±13.23 −994.70±3.39 33.43±2.64 4.25±1.46 34.08±2.93

FBP 148.56±22.65 130.11±22.93 −966.88±2.71 72.17±1.84 1.15±0.18 15.46±0.50

150 DLIR-L 131.75±3.45 18.11±1.65 −1,004.91±1.60 15.37±1.36 7.32±0.71 74.35±6.52

DLIR-M 131.34±3.61 13.54±1.24 −1,004.90±1.72 11.48±2.15 9.70±0.74 101.25±18.17

DLIR-H 130.73±4.88 9.02±2.11 −1,004.90±1.03 6.87±0.46 15.00±0.22 165.72±11.06

30%ASIR-V 135.30±2.15 77.84±9.19 −984.25±3.60 51.09±5.16 1.76±0.22 22.06±2.21

50%ASIR-V 135.73±11.27 77.65±25.70 −988.34±1.22 45.21±3.97 1.88±0.61 24.99±2.27

80%ASIR-V 137.77±5.41 49.04±29.64 −994.82±3.60 35.75±4.30 3.46±1.62 32.01±4.09

FBP 146.16±12.18 108.91±18.26 −976.30±5.48 62.70±6.38 1.36±0.19 18.02±1.74

SNs, solid nodules; SD, standard deviation; SNR, signal-to-noise ratio; CNR, contrast-to-noise ratio; FBP, filtered back projection; ASIR-V, 
adaptive statistical iterative reconstruction; DLIR-L/M/H, deep learning image reconstruction-low/medium/high.

that between DLIR-H and 80% ASIR-V, and the degree 
of lesion edge texture change of DLIR was also lower than 
that of ASIR-V. In the subjective rating of image quality, 
the image reconstructed by DLIR-H achieved more 
satisfactory results, and we found that the greatest image 
noise reduction with DLIR-H did not affect physicians’ 
judgment and assessment of nodules, especially the nodules 
with diameter of >8 mm.

As for the detection of nodules, we found that when 
mA was greater than 70mA, there was no difference 
in the detection results of nodules between DLIR and 
ASIR-V (9/9, 100%), probably due to the sufficient X-ray 
signals and the high contrast between the nodules and the 
background. At 50 and 70 mA, DLIR could achieve 88.89% 
nodule detection (8/9). A surprising finding was that at 

30 mA, DLIR-H achieved a 100% detection rate. When 
the radiation dose was too low (20 mA), no reconstruction 
method could improve the detection of nodules. Therefore, 
we should pay attention to the dose reduction and maintain 
sufficient dosage in clinical application.

Regarding of image quality, we found that under the 
condition of ultra-low dose, such as 20mA, the clarity of 
displaying GGNs under the DLIR reconstruction was 
higher than FBP and ASIR-V algorithms, which could be 
attributed to the better ability of DLIR in separating signal 
and noise under ultra-low dose conditions. This study also 
showed that the deformation degree (long diameter/short 
diameter) of nodules in DLIR reconstructed images was 
the smallest with the nodule shape closer to the standard 
spherical nodule than that of the ASIR-V and FBP, and we 
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believe it might be an indicator that DLIR has less impact 
on image texture while reducing image noise under low 
dose conditions (DD with DLIR-L, M, H: 1.08, 1.07, 1.08; 
ASIR-V-30%, 50%, 80%: 1.12, 1.09, 1.08; FBP: 1.10, 
respectively).

This study has the following limitations: first, it is 
believed that pulmonary nodules less than 5mm have a 
poor correlation with lung cancer (28,29), our study only 
analyzed nodules with a diameter greater than or equal to 
8 mm, and did not discuss nodules with a smaller diameter, 
which may lead to positive bias in the results; second, the 
study used only phantom images which have higher contrast 
between the nodules and lung parenchyma than in patient 
images. The performance in simple phantoms may not fully 
represent how it performs in complex patient imaging. We 
will perform an image quality study on clinical patients by 
DLIR in the following work; third, at 30 mA, DD of PNs 
was lower than 50 mA, which was considered to be caused 
by the limited spatial resolution of the edge of nodules due 
to low dose and the small sample size. However, with the 
increase of mA, DD generally showed a downward trend; 

fourth, only one scan was performed in our study without 
repeated acquisition which could be another limitation of 
our study. In order to make up for this limitation to the 
greatest extent, this study had taken each single nodule as 
the study object to increase sample size. Of course, this did 
not change the fact that the sample size was small.

In conclusion, DLIR algorithm further optimizes 
image quality and improves the detection of PNs with 
minimum negative effect on the characterization of lesions 
in ultra-low dose conditions, in comparison with ASIR-V 
and FBP algorithms. DLIR algorithm can be a potential 
reconstruction technique in ultra-low dose lung PNs 
screening and DLIR-M is recommended for screening 
pulmonary nodules.
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